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Abstract— Least-squares state estimators present an alterna-
tive to Luenberger observers and yield an exact (deadbeat)
estimate of the state vector of a dynamic system as an optimal
solution to a least-squares problem in some vector or functional
space. Sensitivity of these estimators to structured uncertainty
in the system matrix of the plant is studied in a common
for continuous and discrete case framework using the Fréchet
derivative. It is shown that the state estimation error caused
by the plant model mismatch is proportional to the Fréchet
derivative of the symbol of the parametrization operator used
for the estimator implementation, evaluated for the nominal
value of the system matrix. For the special case of state
estimation in a single-tone continuous oscillator, the crucial
impact of the parametrization operator choice on the observer
sensitivity to plant model uncertainty is investigated in detail.

I. INTRODUCTION

Least-squares state estimators present an alternative to

Luenberger observers and yield an estimate of the state of

a dynamic system as a solution to a least-squares problem

in some suitable space. In this way, the very approach guar-

antees optimality of the produced estimate by minimizing a

quadratic loss function. Vector spaces in both continuous [1]

and discrete case [2] as well as functional (Banach) spaces

[3] have been considered in deterministic and stochastic

frameworks.

To make practical use of a least-squares estimator, the

information about system’s inputs and outputs should be

collected at a finite time interval. Therefore, such observers

are often termed as finite memory (or finite impulse response)

observers or filters. Besides, in a noise-free case of an

observable linear certain system, the least-squares estimate is

exact, i.e. the estimation error converges to zero after a finite

time has elapsed and thus exhibits deadbeat performance.

In a stochastic framework, this property is equivalent to

unbiasedness of the estimate, [4], [2].

Similar to their infinite memory counterparts, least-squares

state estimators appear often e.g. in decoupling and distur-

bance rejection controllers [5], fault detection and isolation

[6], control of time-delay systems [7]. In contrast to the

Luenberger observer and the Kalman filter, the least-squares

observers are used to limit estimate divergence due to process

uncertainty by means of finite observer memory instead of

robust feedback. This is also similar to the moving horizon

approach to state estimation where limited memory is used
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to control the computational complexity of the underlying

optimization problem, [8].

Since the pioneering work of Gilchrist [1], state estimators

for continuous systems converging in finite time have been

re-discovered many times. Most recent contributions to the

field are [9] and [10], followed up by [11].

As mentioned above, all least-squares observers are stable

due to their finite memory and optimal, by design, in the

sense of a quadratic criterium. However, sensitivity of least-

squares observers is seldom addressed. A special case of

least-squares state estimation in a harmonic oscillator is

analyzed in [12] demonstrating that observer robustness

against oscillation frequency variation can be unacceptably

low, especially when time delays are chosen for observer

implementation.

In continuous time, the theory of least-squares state es-

timation based on the notion of pseudodifferential operator

[13] provides necessary and sufficient existence conditions of

the observers. It also stipulates that the observer properties

are mainly defined by the pseudodifferential operator chosen

for the observer parametrization.

Three particular operators have been treated so far. The

differential operator is the classical one, see [14]. The time

delay operator is though a more reasonable choice since it

can be implemented in practice, see [15], [16]. The third

operator, the sliding-window convolution operator, has been

found to possess some beneficial properties when it comes

to disturbance attenuation, [6], [7].

Corresponding analysis of the least-squares estimator in

discrete time is not readily available. This can to some extent

be explained by the fact that any discrete least-squares ob-

server can be written as a finite impulse response filter. Thus,

using different implementation operators along the lines of

the continuous theory becomes a pure parametrization issue,

see [17]. Nevertheless, parametrization is known to play a

significant role in robustness properties of controllers and

observers.

The fact that a least-squares observer is structurally stable

does not necessarily guarantee good robustness properties

of the state estimate. The lack of feedback in least-squares

observers makes them vulnerable to parameter uncertainty.

At the same time, the dynamic complexity of the least-

squares observers can be easily increased, thanks to their

filter-bank structure, which property is presumably helpful

in shaping sensitivity functions.

In this paper, it is suggested that parameter sensitivity

properties of the least-squares observers, both in discrete

and continuous time, can suitably be analyzed via matrix

function sensitivity theory, see [18], [19], [20], based on
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the Fréchet derivative. The paper is composed as follows.

First the notion of continuous least-squares state estimator

is revisited and followed up with a corresponding theory for

the discrete time case. The sensitivity of the estimation error

to structured perturbation in the plant system matrix are then

studied in a common for discrete and continuous time formal-

ism. Next, Fréchet derivatives for relevant parameterizations

operators are evaluated to get insight into how free design

parameters can be utilized for achieving higher observer

robustness. Furthermore, the general theory is applied to the

case of state estimation of a single-tone continuous oscillator,

yielding recommendations on how parameters in two suitable

operators have to be selected to achieve low state estimate

sensitivity to oscillator frequency variations.

II. LEAST-SQUARES STATE ESTIMATOR

A. Continuous time

In this section, results necessary for further exposition

on continuous least-squares observers originally presented

in [13] are summarized. Only systems without exogenous

signals are treated in the paper for simplicity of notation, al-

though generalization to regular linear time-invariant systems

is straightforward. Consider the autonomous system

ẋ(t) = Ax(t)
y(t) = Cx(t)

(1)

where x(t) ∈ Rn is the state vector with the initial condition

x(0) = x0, y(t) ∈ Rℓ is the output vector, the eigenvalues

of A comprise its spectrum σ(A) = {µ1, . . . , µn}.

Let the operator (P ·)(λ; t), depending on parameter λ ∈ Λ
be defined via the Laplace inversion integral

(Pv)(λ; t) =
1

2πj

∫ c+∞

c−∞

p(λ, s)V (s)est ds (2)

where V (s) = (Lv)(s) ( i. e. the Laplace transform of v(t)),
c is a suitable real constant and Λ is a nonempty real set of

cardinality k. In the context of pseudodifferential operators,

p(λ, s) is called the symbol of the operator (P ·)(λ; t).
Suppose that p(λ, s) is analytic on σ(A). Moreover, let

the following two conditions hold.

Assumption 1 There exist real constants c, τ > 0 such

that the inequality

|p(λ, c + Rejϕ) |≤ e−(c+R cos ϕ)τ ;
π

2
≤ ϕ ≤

2π

3
(3)

holds for any large enough R > 0.

Condition (3) specifies the class of operators that can

be used in least-squares state estimation by imposing an

exponential decay of the operator symbol at infinity.

Assumption 2 For any given λ ∈ Λ and µi ∈ σ(A), it

holds that

(i) p(µi) 6= p(µj) if µi 6= µj

(ii)
dp(s)

ds
|s=µi

6= 0 for every eigenvalue µi with height of

the Jordan block greater than 1.

The above assumption is necessary to guarantee the preser-

vation of all invariant subspaces of A under the transforma-

tion p(λ, A).

Consider now the following observer

x̂(t) = V−1
∑

λi∈Λ

p(λi, A)T CT (Py)(λi; t) (4)

where

V =
∑

λi∈Λ

p(λi, A)T CT Cp(λi, A)

When Assumptions 1,2 are fulfilled, observer (4) possesses

a deadbeat performance, in the sense that e(t) = x(t) −
x̂(t) ≡ 0; t ≥ τ for any x0. Furthermore, the minimal

number of λi ∈ Λ for which the observer always exists is

equal to n, see [13] [6].

Naturally, deadbeat performance (or finite impulse re-

sponse) in continuous time can only be achieved by means

of an infinite-dimensional p(λ, ·), which is of course a

complication.

As demonstrated in [6], there is always a state-space

realization of (1) such that the gramian matrix V is equal

to a unit matrix. Thus, the least-squares observer can be,

without loss of generality, written as

x̂(t) =
∑

λi∈Λ

p(λi, A)T CT (Py)(λi; t) (5)

In the sequel, the system equations are assumed to be in a

V-balanced realization, if not stated otherwise.

B. Discrete time

In a discrete time framework, the issue of least-squares

state estimation is much simpler because it does not involve

infinite dimensional systems. Indeed, infinite dimensional

dynamics have to be used in continuous time in order to

obtain a finite memory in the observer. In discrete time, it

suffices to consider operators that can be written as a finite

polynomial of the discrete delay operator. The following

result is a discrete time version of Lemma 1 in [13].

Lemma 1: Consider a discrete vector sequence x(t) ∈
Rn, t = 0, . . . ,∞

x(t) = Atx0 : t = 0, . . . ,∞

x0 = x(0)

and a scalar transfer function p(z) that is analytic on σ(A).
Let x̃(t) ∈ Rn, t = 0, . . . ,∞ be a sequence whose Z-

transform is

X̃(z) = p(z)X(z)

Then the following relationship holds

x̃(t) = p(A)x(t)
Proof: Omitted.

Notably, in discrete time, there is no restriction on how

fast |p(z)| decays at infinity, compared to the continuous

time case. Otherwise, all the results obtained in [13] for the

continuous least-squares observers are still valid in discrete

time. They can be summarized for the purpose of this paper

in the following manner.
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Proposition 1: Consider an autonomous discrete system

x(t + 1) = Ax(t) (6)

y(t) = Cx(t)

where x ∈ Rn is the state vector, y ∈ Rl is the output

vector and (A, C) is an observable pair. Let a scalar transfer

function p(λ, z) be analytic on σ(A) for all λ ∈ Λ. Suppose

that for any given λ ∈ Λ and µi ∈ σ(A) the conditions of

Assumption 2 are fulfilled. Then the least-squares observer

is given by (5). If, furthermore, for some constants ai,i =
0, . . . , τ

p(λ, z) =

τ
∑

i=0

aiz
−i

then (5) exhibits deadbeat performance in the sense that

e(t) = x(t) − x̂(t) ≡ 0; t ≥ τ for any x0.

Proof: Follows from Lemma 1 proceeding along the

lines of Theorem 1 in [13].

A nice property of the least-squares state estimators is

that the expression for the state estimate has the same form

of equation (5), no matter whether continuous or discrete

time framework is meant. This makes it possible to study

the robustness properties of the estimators in both cases at

the same time.

III. SENSITIVITY TO SYSTEM MATRIX UNCERTAINTY

A natural way of investigating the robustness properties

of (5) is to take advantage of the Fréchet derivative that is

widely applied in matrix function sensitivity theory. Indeed,

a model uncertainty in the system matrix A gives rise to

a corresponding perturbation of p(·, A) in (5). Achieving

low sensitivity of p(·, A) with respect to a certain class of

perturbations of A by choosing appropriate Λ yields local

robustness of the least-squares state estimator against this

particular class of perturbations.

Let a matrix function p(A) be continuously differentiable

at A in the sense that there exists a linear matrix operator

Lp(·) such that for any matrix E

lim
δ→0

p(A + δE) − p(A)

δ
= Lp(A, E) (7)

Then Lp(E) is the Fréchet derivative of p(·) at A in the

matrix direction E.

Denote the Fréchet derivative of p(λ, A) in the direction

E as Lp(λ; A, E).
Proposition 2: Assume that the system matrix in (1) or

(6) is perturbed according to A = A0 + E and least-squares

observer (5) for either case is evaluated for the nominal value

of the state matrix A0. Then, provided that p(λ, ·) is still

analytical at σ(A) for all λ ∈ Λ, the observer estimation

error e(t) = x̂(t) − x(t) is given by

e(t) =
(

∑

λi∈Λ

p(λi, A0)
T CT C ×

(

Lp(λi; A0, E) + O(‖E‖2)I
)

)

x(t) (8)

Proof: Omitted.

Proposition 2 justifies the following approximation

e(t)≈

(

∑

λi∈Λ

p(λi, A0)
T CT CLp(λi; A0, E)

)

x(t) (9)

Apparently, in order to desensitize the observer against

system matrix uncertainty, the matrix function p(λi, A0)
should be small, measured in some suitable norm, and satisfy

certain smoothness conditions in the perturbation matrix

direction E so that its Fréchet derivative is small, too.

IV. EVALUATION OF FRÉCHET DERIVATIVES

In this section, Fréchet derivatives of the matrix functions

arising in least-squares state estimation are evaluated.

A. Continuous time operators

In the literature, three operators used for continuous least-

squares observer design can be found, namely the differential

operator, the continuous time-delay operator and a finite

memory convolution operator, see [13],[7]. Though the dif-

ferential operator cannot be used in practice for the observer

implementation without some sort of additional filtering, it is

taken into consideration for reference. Besides, the obtained

results appear to be useful in the case of discrete-time shift

operator.

An apparent difficulty in constructing operators for least-

squares state estimation in continuous time is the necessity

of finite memory, i.e. the operator impulse response has

to be equal to zero starting from some finite time. In any

other case, exact (deadbeat) state estimation is impossible.

For instance, in [21], the integral operator pi(λ, s) = 1/sλ

is utilized for initial condition estimation. Since the integral

operator possesses an infinite impulse response, any attempt

to use it for least-squares estimation of the current value of

the plant state vector would not be successful due to the

reason above. However, choosing a finite integration horizon

leads to a viable solution, [10].

The differential operator pd(λ, s) = sλ where λ = 1, 2, . . .
evaluated at a matrix A gives rise to pd(λ, A) = Aλ. In [18],

the Fréchet derivative of pd(A) is evaluated as

λ = 2 : Lpd
(A, E) = AE + EA (10)

λ ≥ 2 : Lpd
(A, E) =

∑

j+k=λ−1

j,k≥0

AjEAk

Another classical choice of implementation operator is the

continuous time delay operator pτ (λ, s) = eλs where λ < 0.

The corresponding matrix function is the matrix exponential

pτ (λ, A) = eλA whose Fréchet derivative is [18]

Lpτ
(A, E) =

∫ 1

0

e(1−θ)AλEeθAλ dθ (11)

An operator that combines integrating behavior with a finite

memory is the finite-memory convolution operator

pc(λ, s) =
1 − e(λ−τ)s

s − λ
(12)
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Letting λ = 0 reduces pc(λ, ·) to finite-memory integration,

utilized for instance in [10]. Being evaluated for a matrix

argument, the finite-memory convolution operator yields

pc(λ, A) = (I − exp ((λ − τ)A))(A − λI)−1
(13)

The Fréchet derivative of pc is not readily available and has

to be derived separately.

Proposition 3: The Fréchet derivative of pc(λ, A) in the

matrix direction E is given by

Lpc
(A, E) =

(

(λ − τ)

∫ 1

0

exp
(

(1 − θ)(λ − τ)A
)

E exp (θ(λ − τ)A) dθ

+ pc(λ, A)E
)

(λI − A)
−1

. (14)

Proof: Omitted.

B. Discrete time operators

Using zλ as a parametrization operator for (5) in discrete

time will obviously lead exactly to the same form of the

Fréchet derivative as for sλ in continuous time.

Another popular discrete operator is the δ-operator, [22]

pδ(λ, z) =

(

z − 1

∆

)λ

where ∆ is a constant. δ-operator can be interpreted as a

discrete time approximation of the continuous time derivative
d(·)
dt

. The corresponding matrix function is

pδ(λ, A) =

(

A − I

∆

)λ

The Fréchet derivative of pδ(1, z) is

Lpδ
(1; A, E) =

1

∆
E

Recall now that the Fréchet derivative of z is simply

E. Immediately one obtains that a parametrization in δ-

operator is less sensitive to matrix perturbations than a

parametrization of the same system in z whenever ∆ > 1.

This is a well-known fact, see [17].

The use of so-called γ-operator

pγ(λ, z) =

(

1

∆

z − 1

z + 1

)λ

has been advocated in [17]. Assuming σ(A) ∩ −1 ≡ ∅ and

evaluating pγ(1, z) at z = A gives

pγ(A) =
1

∆
(A − I)(A + I)−1

It can be shown that

Lpγ
(1; A, E) =

2

∆
(A + I)

−1
E(A − I)

In contrast with z and δ-operator, the sensitivity of γ-operator

depends on the properties of A, as also pointed out in [17].

It can be shown that for the same value of ∆, the sensitivity

of γ-operator can be higher or lower than that of δ-operator,

for different values of the plant system matrix.

A discrete counterpart to the continuous operator pc(λ, ·)
given by (12) is the operator

pdc(λ, z) =
1 − (λz−1)

τ

z − λ
=

τ−1
∑

i=0

λiz−(i+1)

In contrast to the continuous finite-memory convolution,

pdc(λ, z) can be written as a finite polynomial in z of order

τ , e.g.

pdc(λ, z)|τ=1 = z−1

pdc(λ, z)|τ=2 = z−1(1 + λz−1)

Being evaluated for a nonsingular matrix argument, the

discrete finite-memory convolution operator gives

pdc(λ, A) = (I − λτA−τ )(A − λI)
−1

=

τ−1
∑

i=0

λiA−(i+1)

Therefore, the Fréchet derivative of pdc(λ, A) can be ob-

tained using the same rules as for the differential operator,

see (10), e.g. for τ = 2

Lpdc
(A, E) = −A−1

(

λ(A−1E + EA−1) + E
)

A−1

V. LEAST-SQUARES STATE ESTIMATOR OF A HARMONIC

OSCILLATOR

Consider now a single-tone harmonic oscillator, i.e. au-

tonomous dynamic system

ẋ(t) = Fx(t)
y(t) = Cx(t)

(15)

whose matrices are the following ones

F =

[

0 ω2

−1 0

]

C =
[

1 1
]

(16)

The choice of this particular example is motivated by the ease

of its generalization to the case of multiple frequencies as

well as its simplicity and practical importance in engineering

applications.

Proposition 4: Assume that for any λ ∈ Λ, the operator

(P ·)(λ; t) satisfies Assumption 1. Then, the observer

x̂(t) = UV−1
F

∑

λ∈Λ

[

p(λ, jω)
p(λ,−jω)

]

(Py)(λ; t) (17)

where

U =

[

−jω
1−jω

jω
1+jω

1
1−jω

1
1+jω

]

;

VF =
∑

λ∈Λ

[

p2(λ, jω) p(λ, jω)p(λ,−jω)
p(λ, jω)p(λ,−jω) p2(λ,−jω)

]

yields the estimate x̂(t) = x(t), t > τ if and only if there is

no c ∈ C such that

p(λ, jω) = cp(λ,−jω), ∀λ ∈ Λ (18)

Proof: See Theorem in [12]
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Since only ω can vary in F , it is reasonable to choose the

following perturbation direction

E =

[

0 1
0 0

]

Proposition 5: The Fréchet derivative of p(λ, F ) in the

direction E is

Lp(F, E) =
1

2

∑

s=±jω

p′(s, λ)

[

1
− 1

s

]

[

− 1
s

1
]

and its Euclidean norm ‖Lp(F, E)‖2 is

‖Lp(F, E)‖2
2 =

1

2

((

1 +
1

ω4

)

α2(ω, λ) +
2

ω2
β2(ω, λ)

+|1−
1

ω2
||β(ω, λ)|

√

(

1

ω2
+1

)2

α2(ω, λ)+
4

ω2
β2(ω, λ)





where

p′(jω, λ) = α(ω, λ) + jβ(ω, λ)
Proof: Omitted.

A. Time delay operator

The time delay operator is the simplest one and widely

used for implementation of least-squares state estimators.

Given

p′τ (jω, λ) = −λ (cos(ωλ) − j sin(ωλ))

the norm of the Fréchet derivative is

‖Lpτ
(F, E)‖2

2 =
λ2

2

(

(1 −
1

ω2
)2 cos2(ωλ) +

2

ω2

+|
1

ω2
− 1|| cos2(ωλ) |

√

(1 −
1

ω2
)2 cos2(ωλ) +

4

ω2

)

(19)

Clearly, the problem of global minimization of ‖Lpτ
(F, E)‖2

with respect to the time delay duration λ has only a trivial

and not feasible solution, i. e.

argmin
λ

‖Lpτ
(F, E)‖2 = 0

Despite of that, (19) provides an important insight into how

the time delay value influences the directional sensitivity of

the matrix operator. Indeed, one can notice that

‖Lpτ
(F, E)‖2

2 =
λ2

2
bτ (λ)

where bτ (λ) is periodic and bounded from below and above.

Besides, bτ (λ) achieves minima when cos(λω) = 0 and

maxima when cos2(λω) = 1. This observation results in

the following bounds, see Fig. 1

λ

ω
≤ ‖Lpτ

(F, E)‖2 ≤
λ

ω2
for ω < 1

λ

ω
≤ ‖Lpτ

(F, E)‖2 ≤ λ for ω > 1

Therefore, to achieve low sensitivity to frequency variations,

the time delays in the estimator and the quantities cos(λω)
should be kept as small as possible. As well known, small

time delays in least-squares observers lead to drastic estima-

tion error transients and should be avoided. Thus, the only

option left here is to minimize cos(λω).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
Norm of the Frechet derivative for the time delay operator

λ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

λ

ω=1.7

 

ω=0.7 

Fig. 1. ‖Lpτ (F, E)‖2 for the time delay operator and its bounds. Upper
plot for ω > 1, lower plot for ω < 1. Solid line — ‖Lpτ (F, E)‖2. Dashed
line — λ/ω. Dash-dotted line — λ/ω2. Dotted line — λ.

B. Finite memory convolution operator

For τ > 0, in this case

p(λ, s) = pc(λ, s) =
1 − e(λ−s)τ

s − λ

Notice here that the sign of λ does not influence stability of

p(λ, s) due to the finite memory of it. Actually, it is easy to

see that the pole of p(λ, s) is canceled yielding an infinite

series representation of the operator

p(λ, s) =

∞
∑

i=1

(λ − s)i−1τ i

i!

Furthermore,

Re p(λ, jω)=
1

λ2+ω2

(

ωeλτ sin(ωτ) + λ(eλτ cos(ωτ) − 1)
)

Im p(λ, jω)=
1

λ2+ω2

(

ω(eλτ cos(ωτ) − 1) − λeλτ sin(ωτ)
)

For the reason explained later, consider now only λ < 0.

In order to obtain a satisfactory transient performance in the

observer, τ should not be small. Therefore, eλτ << 1 and

the following approximations apply

Re pc(λ, jω) ≈ −
λ

λ2 + ω2

Im pc(λ, jω) ≈ −
ω

λ2 + ω2

Clearly, the gain of p(λ, ·) is small for high frequencies ω
and large in absolute values parameters λ. The derivative of

the operator symbol is

p′c(λ, s) =
(1 − (λ − s)τ) e(λ−s)τ − 1

(s − λ)2
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Under the same approximation assumptions as before, it

follows

‖Lpc
(F, E)‖2

2 ≈
1

2(ω2+λ2)
4

((

1+
1

ω4

)

(ω2−λ2)2+2λ2

− ωλ|1−
1

ω2
|

√

(

1+
1

ω2

)2

(ω2−λ2)2+4λ2





and the norm of the Fréchet derivative as well as the sensi-

tivity of the corresponding matrix function can be brought

down by choosing λ << 0, see Fig. 2. Notice also that

‖Lpc
(F, E)‖2 continues to rise for positive values of λ which

fact explains why only λ < 0 have been considered in the

first place. As mentioned before, stability of the observer is

preserved even for λ > 0 thanks to the finite memory of

the operator. A standard and L2[t, t− τ ]-optimal solution to

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Norm of Frechet derivative for the finite memory convolution operator

λ

norm
approximation

τ=2

ω=1.7 

Fig. 2. ‖Lpc(F, E)‖2 for the time finite memory convolution operator
(solid line) and its approximation (dashed line). The approximation is better
for λ << 0. Note that the approximation is not a bound.

finite-memory state estimation is to use

x̂H(t) =

∫ t

t−τ

exp
(

AT (θ − t)
)

CT y(θ) dθ

where the pair (A, C) in (1) is chosen so that the corre-

sponding gramian is balanced. Using Buchheim’s formula

[20], one has for n constant matrices Mij

exp
(

−AT (t − θ)
)

=
∑

j

∑

µi∈σ(A)

(t − θ)je−µi(t−θ)Mij

Then, for the case of distinct eigenvalues of A, the optimal

estimate x̂H can be written in the form of (4) with the use of

finite-memory convolution (12) and Λ ≡ σ(−A). For a stable

system, the latter implies positive values of λ in pc(λ, s) and

results in high estimate sensitivity, as demonstrated in the

analysis above.

VI. CONCLUSIONS

Sensitivity of least-squares state estimators to structured

uncertainty in the system matrix of the plant is studied in a

common for continuous and discrete case framework using

the Fréchet derivative. The design degree of freedom offered

by the estimator parametrization operator is investigated. It

is shown that the state estimation error caused by the plant

model mismatch is proportional to the Fréchet derivative

of the symbol of the parametrization operator evaluated for

the nominal value of the system matrix. The particular case

of state estimation in a single-tone continuous oscillator is

treated in detail as an illustration. When the time delay

is used for observer implementation, the sensitivity of the

observer in the direction of perturbation rises almost linearly

with the time delay duration. On the contrary, the observer

sensitivity decreases when a continuous finite-memory con-

volution operator with a significant decay rate of the kernel

function is chosen for the design.
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