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Abstract—The problem of designing a digital controller is The emulation approach is followed with the novelty of
considered with the novelty of explicitly taking into account directly taking into account the computation cost of the
the computation cost of the controller implementation. A class digital controller implementation. In this setting, the ima

of controller emulation methods inspired by numerical analysis tributi two fold (i show that if i
is proposed. Through various examples it is shown that these contributions are two fold (i) show that nonuniform samglin

methods are capable of outperforming the conventional ones, €an reduce the controller computation cost; and (i) prefos
in the sense of achieving a better performance/computation class of emulation methods inspired from numerical anglysi
cost tradeoff. The performance indexes consider (i) the error that can significantly outperform classical implementagio
between the continuous-time controller to be emulated and the iy the sense of achieving a better performance/computation
digital controller; and (ii) the closed-loop induced norm. ; -
cost tradeoff. By nonuniform sampling we mean that the
. INTRODUCTION output sampling and actuation update operations might not

With the advent of cost-effective processors, fast angiccur at evenly spaced time instants. This is motivated &y th
reliable analog-digital (A/D) and digital-analog (D/A) mo availability of increasingly faster A/D and D/A converters
verters, digital control has become the tool per excellencéhich generally allow for on demand conversions.
for controller implementation. Several approaches haembe The performance indexes considered herein are similar
taken for designing a d|g|ta| controller, essentia"ydm"ng to EXiSting ones in the literature for related prOblemS and
two main directions: emulation and direct design. Whileonsider (i) the error between the continuous-time coletrol
in emulation, given a continuous-time controller the diit t© be emulated and the digital controller interfaced thioug
controller is obtained by using a numerical discretizatiof/D and D/A converters [3], [4]; and (i) the closed-loop
method, in direct design, a discrete-time model of the plarfiz induced norm of the feedback interconnection of a
is first obtained and the digital controller is then synthedi continuous-time plant with the digital controller [1].
in discrete-time. We also include in this latter group the Regarding related work in the literature, see [1], [3], for a
sampled-data design approach, presented in [1], [2], thdiscussion of various issues associated with digital obntr
directly takes into account in the design the continuoudncluding the computation cost. This latter paper, ouline
time performance specifications. These approaches consifé€rformance indexes to evaluate digital controller immam
a fixed sampling period: for the measurements and ac-tations, some of which, are used in the present paper. With
tuation update, and recover the performance of the idetgspect to the relation between numerical analysis methods
continuous-time linear controller @ — 0 [1]. However, and control, see [5], where the similarities between the
using a very small sampling period becomes impractical fd¥vo areas are pointed out in terms of stability definitions.
digital controllers implemented on embedded processdis wiAmong the many references available in the literature for
limited computation resources. Moreover, the computatioROn-conventional digital control algorithms, see [6] for a
effort is tied in with the energy consumption of the processodiscussion on computation saving.
which generally needs to be kept as small as possible. ThisThe remainder of this paper is organized as follows.
motivates the search for efficient digital controllers withSection Il presents the problem statement and Section Il
minimal computation requirements, which is the subject diliscusses the performance indexes and costs considered
the present paper. More Specifica”y’ the prob|em addressegren’]. Section IV outlines numerical integrations method
herein can be stated as a tradeoff performance/cost; Giver@d provides an example of their applicability to contrdieT
plant to be controlled with an A/D and D/A interface, findProposed emulation method is presented in Section V, fol-
a digital controller algorithm to satisfy a given perfornsan lowed by the results in the considered performance indexes
criteria with the least computation cost. in Section VI. The conclusions are provided in Section VII.
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controller output is a sequenagfrom which the continuous- and conventional methods depend on a design parameter
time control signalu(t) is generated by a hold device.such as the sampling period, that is chosen to yield a
Formally, the sample and hold operations are modeled Igood tradeoff between performance and computation cost.
the following operators A reasonable way to compare the efficiency of DCAs is
g I ; o ‘ in terms of the tradeoff obtained while varying More

ot Laola g =y(oi) specifically an efficiency curve for a parameterized class of
Hp : by Lo, u(t)=w, t€[n,m1), (1) DCAsA is defined as the set

where the elements of the sequences of sarr_lpling times (C(A(n)),Z(A(n))),n € =. 2)
{0i}i>0, 0 < 0; < 0441, and actuation updating times
{ni}1>0, 0 < 71 < 741, take values oR>,. We assume >
that the measured output sampling and actuation updditrve lies bellow.

operations are available at any time instant and the sagplin|||. CoMPUTATION COST AND PERFORMANCE INDEXES

and updating rates might be nonuniform, thatds,; — o; A Cost

andr;; — 7; do not need to be either constant or equal. ) . . .

In broad terms, given a plant with a D/A and A/D interface The_ c_omputatlon cost of implementing a digital cont_rol_ler
(1) and a performance index related to the cIosed-Ioo'B a d|g|ta_l processor depends on the number of multiplica-
behavior we want to find an efficient design method for thdons, additions, ar_1d memory accesses, among other factors
digital control algorithm yielding a good tradeoff betweer/*S & 9ood approximation it suffices to consider the number

the performance index and the cost. Hence, we need gb Multiplications per second, since the computation time
define what we mean by (i) digital control algorithm, (i) " & digital processor is often largely dominated by this

performance index, (jii) computation cost, and (iv) effitie number [7]. This is the approximation followed in the presen
design method. paper. The efficient structures for implementing a digitegfi

By Digital Control Algorithm (DCA) we mean a numerical discussed ih [7] are .the casc?ﬁgg;%arallel_ an d _direct forms.
algorithm implemented digitally, that causally mapsinto | "€S€ require a minimum oY multiplications per

w, that is, providesi(r;) based on{y(c;) : 0; < 7} second for implerﬂer;tingk a filter at a sampling peribd
Each DCA has associated a cost, measured for examgking the form%. Notice that, in general)/ =
in terms of computations per second, and an index, whick for the digital controllers resulting from zero-order hold
measures the performance of the DCA according to sonf@OH), first order hold (FOH), and bilinear discretizations
specifications. The two main ingredients to define a DCA3], which reduces toM/ = N — 1 for the ZOH if the
are (i) the selection of the sampling times and o; and continuous-time controller is strictly proper.
_the associaﬁednput-qutput map from wu; to y;; _and (ii) B. Performance Indexes
implementation of this map in terms ofcamputational al- ] ) ) )
gorithm. The value of the performance index, depends solely The first two performance indexes considered herein are
on (i), whereas the computation cost depends most direcfiated to the error system shown in Fig. 1, whefgs)
on (i), but also indirectly on (i). To discuss computatibna!® 2 S'Fable continuous-time controlle_r that we mt_end to
algorithms for DCA and their associated costs, we need @PProximate by the DCAA, and F'(s) is a stable strictly
provide specific pseudocode for (i) that implements theiP"OPer system. The first performance index is the induced
input output map with a reduced amount of computatiod’o'm Of the operatoi.; — La, ¢ = (K — Hy AS,,)Fw,

For example, the implementation of a FIR system of ordegNd it will be denoted byZx(.). Notice that this norm is
N working at a sampling period of, is specified by the the same as the one considered in the extensively studied
sampling timesry, = o = t, txr1 — tx = h and input- model reduction and weighted model reduction problems,

output mapQ(z) = ZJ_V ¢i12~" and can be described by and therefore there is a bulk of knowledge on how this open-
the following computaﬁgngl algorithm loop norm impacts on the closed-loop performance [3]. For
example, denoting the plant transfer function Bys) and

A class of DCAs is more efficient than other if its efficiency

DCA Orin choosingF = %, if the L, induced normw — e is less

Initializations, Y = zerog1, N). than 1 one can guarantee closed-loop stability. The second

At each timet,, do, performance index, denoted By;s(.), is a sampled version
up = ery(te) + 20, o Y, of the previous one and is given by the induced norm of
g‘[ﬁr?h;ggj the operatorLy — Ly, e, = H,, Sy, (K — H;, ASy,)Fw. A

similar performance index is considered in [4] for the tygpic
However, the same input-output map can be implementesse,t, = 7 = ok, tk+1 — tp = h.

with a state-space based computational algorithm which The last performance index is given by considering di-

typically requires a different number of operations. rectly the closed loop performance in the four-port frame-
The performance index and cost are simply maps, thatork depicted in Fig. 2, defined in terms of the closed-loop

assign a positive number to a DCA, and are denoted by L, induced normw — z. This performance index is denoted

andC, respectively. By convention, we intend to minimizeby Z¢ 1 (A) = || F(G, H;, ASy,)||L,—1,, Where F denotes

7 and C. Both the emulation methods considered hereithe feedback connection.




by a quadrature formul®(f) = 7 Aif(z), a < @; <
x;+1 < b. We assume the weighting functid#i (x) verifies:

P1: f; |z|"W (z)dx is integrable and finite for ath > 0.

The integration methods are classified by the degree of
precisionP, which is the largest polynomial order for which
the quadrature formula is exact, meaning that

Fig. 1. Error System

—w Q%) = I(2%), j€{0,1,...,P}. (4)

L G Well-known examples, are the Trapezoidal and Simpson
formulas, which are particular cases of the Newton-Cotes
formulas, obtained by using evenly spaced nodes,=

Hﬂ}i A a+%+(b—a),i =0,...,1. For future reference we write
the equations for the trapezoidal rulgr and for the zero-

Fig. 2. Closed-loop system order approximation rulé) 7, which have degree of precision
P =1 andP = 0, respectively

b b
i i i r—>b r—a
.Notllce that to compute bqth induced norms assouatqu :f(a)(/ ( )W(x)dx)Jrf(b)(/ ( )W(x)dx)
with Fig. 1 we need to restricK(s) and A to be stable, o a—b b—a

and F(s) must be strictly proper, otherwise the norm of

the operatorsw +— e, w +— e would be unbounded QZ:f(a)/a

[1], [4]. The DCAs considered herein have an input—outpult: . :
map description in terms of periodically time-varying lane rom these class of methods, denomlln.ated S|.mple rules, com-
posite rules can be constructed, by dividjagb] into smaller

systems. The DCAA is defined to be stable if this SyStemintervals, applying an integration method with degree of

description is stable, which can be easily verified [8]. The ecisionP on each interval, and summing the contributions.

induced norms considered can be computed using extensicﬁ? . . . .
to the periodic case of the sampled-data lifting tools fedi e formula is then exact for piecewise polynomials of order
P. An optimal method, in the sense that attains the maximal

in [1]. The derivations are omitted due to space Ilmltatlonsdegree of precisio — 21-+1 is called gaussian quadrature.

IV. NUMERICAL ANALYSIS AND EMULATION This method amounts to choosing tRél + 1) degrees of
METHODS freedomA; andz;, as to make the set of equations (4) hold

The traditional emulation methods used in control ar%Or P = 2I'+ 1. These are nonlinear equations, difficult

L . . . . : P solve for largel, and therefore a different approach is
inspired in numerical techniques for ODEs and in numericgl ..\ tollowed. Supnose besides PY,(x) verifies:
integration methods. This originates from the fact that griealy - =oupp ' '

linear controllerk : L, — L, can be equivalently described P2 Mg(x) does not change sign i, b]. _ _
by the linear ODE P3: [ W(x)g(x)dx = 0 for some nonnegative continuous

function g(z), theng(z) = 0 on (a, b).
Without loss of generality?, can be replaced by assuming

a

’ W (zx)dx. (5)

{;ic:A:L'—}—By7 z(t)=0

u=Cz+ Dy ’ W (z) is non-negative irfja, b]. Then, the gaussian quadrature
or by the convolution integral nodesz, are given by the roots of the polynomial of order
. I+ 1, from the set of orthogonal polynomials according to
u(t) = / Cexp(A(t — s))By(s)ds + Dy(t) . the inner product
0 b
The Bilinear (particular case of Adams-Moulton), Runge- < pp(x), pm(z) >:/ W (z)pn(2)pm(z)dz,  (6)

Kutta, Adams-Moulton and Adams-Bashforth methods [9]

are numerical methods with a direct application in contgol bwhich can be obtained by Gram-Schmidt orthogonalization
their iterative nature. The ZOH, FOH are based on approf9]- The coefficients4; can then be obtained by solving the
imating the convolution integral. This integral intergéon ~ System (4) for” = I, which amounts to a linear set of
is the basis of the method to be presented shortly. Therefogguations after replacing the nodes

we briefly outline numerical integration methods and prese

L ) B, Example of application to controller emulation
an example of application to controller emulation.

To gain intuition, we start by considering a first order

A. Numerical Integration and Gaussian Quadrature controller, which we intend to approximate by a DCA,
The numerical integration methods approximate an inte- @ ab] [z
gral of the form E=11u = 10| |y ,x(to) =0, )

b and assume the actuation updating times are fixed at a given
1(f) :/a W(z)f(z)dz () rate. Denoting byH the actuation update period, the value



of the actuation signat(t) provided by (7) at evenly spaced

10 T T
sampling timesr;, 7.1 — 7, = H, verifies g :
10 " §| E (B;kuss Q
U(Tl+1) = adu(n) -+ IB(QI)’ _ o COMP.GAUSS : : o o
8 107 ° ?
Wheread = exp(aH), y,(t) = y(n +t),t € [0,H) and R A
Iy fo exp(a(H —s))y,(s)ds. This formula motivates £ 0% g : ® *
a DCA that implements the following recursion E i : = *
% 10 'k : g
1 = aquy + Qp(Y,), ®) g 3 et
J) &l %ﬁ
where Qp(y,) = ZZ o Riy,(0:) is a quadrature formula o 8 : EE
for I55(y,). This DCA can be implemented as follows g i
DCA € T R R

Initializations, U =0. C (Multiplications per period H=0.25 seconds)

At each timet = [H + o3,
savey(t) in memory.
At each timet; = [H do,

U=aaU+@Qs(y, ,) decreases by four when the number of integration nodes for

u=U. @p doubles. We will see, however, that in other performance
We consider five integration methods for the quadratur@dexes the improvement is not so drastic.

formula Q. The first two use uniform sampling and are
composite rules considering at eachlofntervals of length V. NEW EMULATION METHOD

4 (i) the zero-order approximation simple rule; and (i) |n this section, we present an emulation method based

the trapezoidal simple rule (5). The associated DCAs aigh numerical integration, and particularize it for gaussia
denoted (i) ZOH; and (ii) FOH, because they are eqU'Va|eféfuadrature

to consider a discretization at a fast sampling rate:,

by the ZOH and FOH methods, respectively, and prowdé- Method Description

the actuation only at timesH. Using this same procedure  The continuous-time controller to be emulated by a DCA
for the bilinear discretization yields another method,ated s denoted by

by (iii) BIL. The remaining two use nonuniform sampling )

based on (iv) a composite rule considering at each interval {x} - [A B] [ﬂ ,z(tg) = 0.
of length % a gaussian quadrature formula withnodes, u ¢D

I =2L—1; and (v) pure gaussian quadrature with- 1 Consider a time-interval, which determines the periodicity
nodes. These are denoted (iv) comp. gauss; and (v) gaussthe DCA, and the time sequenpg = rH. Between times
The number of multiplications per second(i6+ 1)H for pr and p, 11, the actuation is updated at times= p, + 7,

Fig. 3. Efficiency curves in indeXg g for DCAs of the illustrative example

(10)

() and (I + 2)H for the remaining methods. with 7, € (0,H) VI € {1,...,L — 1} and 7, = 0. Using
A reasonable performance index is the norm of the errqhese definitions, the continuous-time controller (10) ban

sequencdu; —u(m)|,, when the input of the controllef(t)  written in the form

belongs to a certain class of signals. This index correspond tyin = A, + Bly )

to Z£5, whereZgg is the index presented in Section lI-B, { r+1 = dl r .

when the class of signals {3 = Fw,w € Ly}, whereF (s) r(1) = Clay + Dy () +D(y,)

is the filter shown in Fig.1. It is p055|ble to write the DCA\yhere the output is considered atand Ay = exp(AH),

as a linear periodic input-output map and therefbsg can ¢t — Cexp(An), y (¢ ) = ylpr + 1), u.(t) = ulp, + 1),

be computed as indicated in Sectlon IHi-B. t€[0,H). The inteéral operator$ and D' can be written
Example 1: ConsiderK(s) = H =0.25, and

+1' in the form
o) = (e ) © B(y,) = In(y,) = [Ih(y,) . I} (u,))"
S) = B B
52 + V2w,s + w? -
for w. = 27. The efficiency curves (2) in the inde?%s / Wi(s s)ds,
are shown in Fig. 3 in a logarithmic scale, for different )
values of the parametey = I. The results are impres- D'(y) = Ip(y / Wh(s)y, (s)ds, (11)

sive showing that for this performance index, choosing the
sampling times coincident with gaussian quadrature nod&dere, denoting by,
can drastically outperform the conventional methods. It is

€ R¥*N the nth standard basis vector,

interesting to notice that, in this example, the DCAs intseri W?(s) = enexp(A(H —5))B, ne{l,....N}
the characteristics of the numerical method usedZgr([9]. Wp(s) = Cexp(A(n —s))B, 7 €[0,H),
For example, in the case of the trapezoidal rule the error le{l,...,L-1}.(12)



To obtain a DCA we approximate these operators by the It is possible to show that this DCA is a linear periodic
guadrature formulas, input-output map, and therefore the performance indexes
considered in Section Il can be computed as indicated

m T (
Qb(y)=> Ry (1), Qbly)=>_ Sy (W}). (13) therein.
N =0 B. Gaussian Sampling

The proposed DCA can then be described by Due to the optimality of gaussian quadrature in the sense
already mentioned, we show how to particularize the pro-

E]ciiéli?ations, X=zeros(N, 1). posed method to the case Whlere 'Fhe nodes and weights of the
At each timet = rH + o andt = rH + v} , quadra_ture formulan and @', given by (13), are .chosen
savey(t) in memory. according to gaussian quadrature. The caveat is that the
At each timet = rH do, orthogonal polynomial approach, addressed in Section IV-
X =AX+Qpy,_,) A, requires the technical conditions P2 and P3, besides P1.
Ateach timet = rH + . do, In the next lemma we give conditions on the time peridd
w =C" X+ Dy(t) + @p(y,)- under which these conditions hold.

Lemma 5.1: There exists a block-diagonal realization (15)
For simplicity, we consider the same number of nodesf (10) such that the weighting functiori&’}(s), W2(s),
for the formulasQ?%, that is, I = I, and evenly spaced given by (12), verify conditions P1-P3 in the interya) b] =
actuation update timeg,, — 7, = £,1 € {0,...,L —1}. [0, H| where H € [0, min{e;,e2}) for
Then, the DCA can be parameterized by €1 = sup{e : Cexp(At)B does not change sign i0,¢)}

— I — i3, a4 #£0

1 . _ max(acn )
(H,L,J",Meth;, I,Meth;), le{1,...,.L -1}, (14) e o otherwise

b

where H is the time period of the DCAL is the number Whereac,, n € {1,..., N.} are the imaginary parts of the
of actuation updating times; within a period H. The e€igenvalues ofd.
parameterg.J!, Meth;) and (I, Meth;) provide the number VI. RESULTS

of integration nodes and integration method use@', and ) ) . .
g g ol In this section we test the proposed emulation method in

%, Vn, respectively, and determing’ and vé. he th ; d q
We determine next the computation cost (number of multi€ three performance indexégs, Zs andZc..

plications) of#, when an efficient block-diagonal realization A, Error System Norms Zz, Zzs
for (10) is cons@ered. A;sumlng hasN; real andN, pairs Consider the continuous-time controller taken from
of complex conjugate simple eigenvalueé,= N, + 2N, [10](pp.565)

there exist a block-diagonal realization taking the form
) o K(s) = — 94.5(s 4 7.98)(s + 2.52)
A= dIaQXCLl,...,CLNT,Al,...,ANC), a; ER,A; € R - (S+4.28ﬂ:6.42j)(8—|—10.6)’

T r 1T . T 2x1
B =[br ... by, by biv ] bieRODG € }Fw and the filterF(s) of Fig.1 taking the form (9) forw,. = 107,
C=[l...1ca...con], ci=[1 cai] €R™2. (15) A first DCA M, is obtained for the parameters (18)= 4,

B e . :
The number of multiplications of the DCA{ along a ! = 1, J° = 1,V using the pure gaussian quadrature
period H is given by M = M, + M, + My, where M, — for Meth, and Meth. A second DCA M, is obtained
N, + N, (I+1)+ Ny(L—1), M, = 4N, + 2N, (I + 1) + for the same parameters except fbr= 0, J! = 0, V,.
N.(2L — 1), and My = lL—'l(Jz +1) ‘The térms in)z.  For an actuation update period of= % the number of
c ’ - =1 ' T 2
and M, account for the multiplications ofi;, Qz and C!,

multiplications per second (16) i§- for M;, 2} for Mo,

6 . .
and M, for the multiplications ofQ . Adding up the terms & for the ZOH, and; for the FOH and bilinear methods. The
yields,

efficiency curves (2) are shown in Fig. 4 in the indéxs
. forn=he {0.04/2'",i € {1,...,8}}, and in Fig. 5 in the
- — indexZg for n = h € {0.04/2°7%,i € {1,...,5}}. In the
M=NI+1+1L)+ Z(J +1) +3Ne. (16) index Zgg very significant amount of computation savings
=t are obtained, whereas f@i; the results are more moderate.
The total number of multlpllcatlonM should be com- However, by proper'y Choosing the degrees of freedom, as

pared toMc = (2N +1)3 = (2N + 1)L, which is the in the choice ofM,, there is still a significant amount of
number of multiplications in a time perioff needed by a computation savings.

conventional implementation of a digital controller withet

same actuation updating peridd= £ . Notice that)/ can B. Closed Loop

be smaller thanV/ for large N. This means we can apply We consider here a standafd induced norm problem,
numerical integration methods with high degree of preaisiodepicted in Fig. 7, which can be formulated in the framework
even for smalll and.J!, use less number of multiplications of Fig. 2.

and potentially obtain better results, due to the high eifficy The plantP is a simple double integrataP = 2. The

S

of the numerical methods illustrated in Example 1. frequency weightd1;(s) = 1, Wa(s) = 0.2, Z1(s) = 0.5,
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and Z,(s) = 0.5(555)? are chosen in order to make of
the Ly induced norm ofG : [w; ws] — [z1,29], @ useful
index of the closed-loop behavior of the system, which we
desire to minimize. The continuous-time optimal controlle

that minimizes the closed-loop induced norm is given by

51.41(s® + 201.12s% + 1.02.10%s + 1.12.10%)
s + 68.1653 + 163652 + 1.98.10%s + 1.28.104

For evaluating the performance of the digital imple-
mentations we limited the bandwidth of the disturbances
we by setting the frequency weightia(s) to Wa(s) =
% with p2. = 100. This is in fact needed, to make
the norm-computation well-posed[1]. The controll€g,, in
this performance index yields = ||F(G, Kopt)|| oL, =
0.7283. Figure 6 shows the results in the performance index
Icp(M) = ||F(G, H,MS;,)| L1, — 7y for the conven-
tional methods and for a DCAM with parameters (14),

L =5,1=0,andJ!' =0,V and using the pure gaussian
guadrature for Methand Meth. The set of values considered
for the actuation update rate= h, which is the parameter
of the efficiency curves (2), i € {0.00125/2¢"1,i €
{1,...,5}}. Once again, the proposed method outperforms
the conventional ones.

VII. CONCLUSIONS

The design of computationally efficient digital controfier
was tackled with a direct concern with the computation
cost in the continuous-time controller emulation procedur
A technique was provided that takes advantage of highly
efficient numerical integration methods such as the gauissia
qguadrature. The results show that moving away from the
paradigm of using a uniform sampling rate can lead to
significantly more efficient methods.

Kopt(s)=
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