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Abstract— This paper studies a class of hybrid systems with
linear (or linear plus saturated linear) continuous and discrete
dynamics, which are determined by a flow map and jump
map, and state-triggered jumps. One motivation for considering
this class of systems is that they can model control systems
with a relay-type hysteresis element. Based on Lyapunov the-
orems for hybrid systems, a Lyapunov function is constructed
that effectively incorporates the feature of the jumps. Global
asymptotic stability analysis is presented for the case when
the flow map is linear, and local asymptotic stability analysis
is presented for the case when the flow map is linear plus
saturated linear. The stability conditions are derived as matrix
inequalities. A numerical example is presented to illustrate the
hybrid modeling process for a system experiencing hysteresis.
Simulations confirm the effectiveness of the proposed analysis
tools and demonstrate the potential of the Lyapunov function.
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I. INTRODUCTION

Hybrid systems are a class of dynamical systems that

display continuous behavior, or flows, which is usually

represented by differential equations, and discontinuous be-

havior, or jumps, which is usually modeled by difference

equations. Hybrid systems permit the modeling of a wide

range of engineering systems and scientific processes. They

are sometimes induced by system design, and other times,

they appear as appropriate modeling abstractions. Notable

references on hybrid systems include e.g., [1], [8], [21], [25].

In this paper, we study a class of hybrid systems with

linear (or linear plus saturated linear) continuous and discrete

dynamics, which are determined by a flow map and jump

map, and state-triggered jumps. This class of hybrid systems

arises in control systems with impulsive, state-dependent

behavior in the same way as in impulsive hybrid systems and

reset systems; see, e.g., [9], [14], [23], [17]. Those hybrid

models have been shown useful in studying several problems

in engineering and science. In particular, we consider systems

with saturation and relay-type hysteresis nonlinearities (see

e.g., [20]). Regarding the impulsive behavior, we are inter-

ested in the jumps that are state triggered and may or may
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not be persistent, whereas in [14] the jumps are persistent

with an average dwell time condition.

Relay-type hysteresis is a nonlinearity that typically

arises in closed-loop systems in engineering applications.

It presents challenges for analysis and design of control

systems, like in control design for pneumatic proportional

valves with hysteresis in [15] and the limit cycle analysis

of relaxation oscillators in feedback with relay hysteresis

in [11]. Different types of hysteresis models can be found

in, e.g., [13], [16]. In order to embed such a nonlinearity

in hybrid systems with dynamics described above, we are

focusing on the relay-type hysteresis.

The goal of this paper is to conduct stability analysis for

this class of hybrid systems via Lyapunov functions. Our

motivation is firstly to choose a flow Lyapunov function that

will decrease along flows. The construction of Lyapunov

functions has been extensively studied for the case of linear

flow maps. When the flow is linear plus saturated linear,

a number of Lyapunov techniques are also available in the

literature. For example, quadratic Lyapunov functions are

proposed in [5], [7], [10], Lure-type Lyapunov functions

are proposed in [6], [12], and piecewise quadratic Lya-

punov functions are proposed in [4], [22]. However, such

a flow Lyapunov function may not decrease along jumps.

To overcome this difficulty, we introduce a jump Lyapunov

term in the Lyapunov function. The jump Lyapunov term

is chosen so that it may increase during flows, but with a

rate slower than the decreasing rate of the flow Lyapunov

function, and it decreases during jumps, more than the

increment of the flow Lyapunov function. By appropriately

combining the flow Lyapunov function and jump Lyapunov

term, the resulting Lyapunov function can be tailored to

decrease along solutions. Based on a novel construction of

the Lyapunov function as described above and the general

stability properties of hybrid systems in [3] and [19], we

derive global asymptotic stability conditions for the case of

linear flow map, and local asymptotic stability conditions

for the case of linear plus saturated linear flow map. Those

conditions are cast into matrix inequalities. To handle the

saturation nonlinearity, we rely partially on the analysis tools

from the literature on systems with saturation (see e.g., [5],

[7], [10]).

The rest of the paper is organized as follows. In Section

II, we define the class of hybrid systems of interest as well

as a hybrid model for relay-type hysteresis. In Section III,

the sufficient conditions for asymptotic stability are given. In

Section IV, an integral control example is used to illustrate

the analysis results.
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Notation For compact description, we denote the saturation

function as sat(u) := u
max{1,|u|} , and the deadzone function

as dz(u) = u − sat(u). For a square matrix X , we denote

HeX := X + XT . For P ∈ R
n×n, P = PT > 0, denote

E(P ) := {x ∈ R
n : xT Px ≤ 1}. For H ∈ R

1×n, L(H) :=
{x ∈ R

n : |Hx|∞ ≤ 1}. For a given function J , c∗-sublevel

set is given by LJ(c∗) := {x : J(x) ≤ c∗}. | · | denotes

the Euclidean vector norm, and given a nonempty subset

A of Euclidean space, |x|A := infa∈A |x − a|. The unit

ball denotes B := {x ∈ R
n : |x| ≤ 1}. A function α :

R≥0 → R≥0 is said to belong to class K∞ if it is continuous,

zero at zero, positive when its argument is positive, strictly

increasing and unbounded. For a locally Lipschitz function

V , ∂V (x) denotes the Clarke generalized gradient of V at

x.

II. GENERAL MODEL AND PROBLEM FORMULATION

A. A class of hybrid systems

Following [18], a hybrid system H is given by five objects

defining the data: the state space, two mappings that specify

the continuous and discrete evolution, and two sets in the

state space where the continuous and discrete evolution

occur. In particular, the five objects are: the state space R
m,

the flow set C ⊂ R
m where the continuous evolution occurs,

the jump set D ⊂ R
m where the discrete evolution occurs,

the flow map f : R
m → R

m, governing the continuous

evolution, and the jump map g : R
m → R

m, determining

the discrete evolution.

In this paper, we are interested in hybrid systems with

state space R
n+1 and state given by

η =

[

ξ
q

]

, (1)

where ξ ∈ R
n is the continuous state and q is a logic mode

that remains constant along flows and is updated at jumps.

The logic mode q takes values in Q′ := {1,−1}.

The flow map is given as

[

ξ̇
q̇

]

:= f(ξ, q) =

[

Aξ + Bσ(ũ)
0

]

(2)

where ũ = Kξ ∈ R with K ∈ R
1×n. The function σ(·) is

specified by an identity function σ(ũ) = ũ if the flow map

is linear, or a saturation function σ(ũ) = sat(ũ) if the flow

map is linear plus saturated linear.

With q taking values in Q′, the jump map is given by
[

ξ+

q+

]

:= g(ξ, q) =

[

ξ + 2ǫΘq
−q

]

, (3)

where Θ ∈ R
n×1 and ǫ > 0 scales the magnitude of the

jump change in ξ. The parameter ǫ will correspond to the

width of hysteresis in Section II-B. The update rule for the

logic variable is defined in a way such that it is triggered

when the control input reaches the threshold ū. The flow set

is taken to be

C :=
{

[

ξ
q

]

∈ R
n+1 : Kξq ≤ ū, q ∈ Q′}, (4)

and the jump set is taken to be

D :=
{

[

ξ
q

]

∈ R
n+1 : Kξq ≥ ū, q ∈ Q′

}

. (5)

In the following subsection, we will describe the behavior

of the system with hysteresis, which can be regarded as a

special case of the aforementioned hybrid model.

B. Modeling hysteresis

Consider the input-output behavior of an actuator

v = u − ǫq, ∀(u, q) ∈ {(u, q) ∈ R ×Q′ : uq ≤ a}, (6)

where u is the feedback control input, ǫ > 0 is the width of

the hysteresis, a > 0 is the threshold and q ∈ Q is the logic

variable. Fig. 1 shows the input-output relationship.

Fig. 1. Input-output behavior for the actuator with hysteresis

On the other hand, when the actuator is saturated, its input-

output behavior is shown in Fig. 2 and the representation is

given as

v = sat(u − ǫq), ∀(u, q) ∈ {(u, q) ∈ R ×Q′ : uq ≤ a}, (7)

where ǫ and a are defined in the same way as below (6).

Fig. 2. Input-output behavior for the actuator with saturation and hysteresis

Assumption 1: a > 0, ǫ > 0, ǫ < min{1, a} and 1 − ǫ <
a ≤ 1 + ǫ.

Hence, in Fig. 2, the threshold is such that switching hap-

pens in the linear section of each curve, and after switching,

the output is saturated. When a = ǫ+1, two curves connect

and the output does not jump.

To model the input-output behavior of the actuator in a

control system, we define ũ = u − ǫq such that σ = v. By

appropriately choosing the control framework and defining

the coordinates, we are able to embed the system with
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hysteresis into H = (f, C, g,D) description and apply state-

feedback laws. Later in Section IV, the modeling procedure

will be illustrated by using a numerical example for a

tracking problem. Please note that in such a case ū = a− ǫ.

In the following section, we will replace ū in (4) and (5)

with a − ǫ in the analysis.

III. MAIN RESULTS

A. Preliminary results on hybrid systems

In this section, we summarize some preliminary results

regarding the class of hybrid system H with data (f, C, g,D),
or simply, H = (f, C, g,D), defined in Section II.

Solutions to a hybrid system are given on hybrid time

domains by hybrid arcs. A set E is a hybrid time domain

if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . J}) is

a compact hybrid time domain, i.e., it can be written as
⋃J−1

j=0 ([tj , tj+1], j) for some finite sequence of times 0 =
t0 ≤ t1 . . . ≤ tJ . A hybrid arc η is a function defined

on a hybrid time domain dom η mapping to R
m such

that η(t, j) is locally absolutely continuous in t for each j,

(t, j) ∈ dom η. A hybrid arc η is a solution to the hybrid

system H if η(0, 0) ∈ C ∪ D and

(S1) For all j ∈ N and almost all t such that (t, j) ∈ dom η,

η(t, j) ∈ C, η̇(t, j) = f(η(t, j))

(S2) For all (t, j) ∈ dom η such that (t, j + 1) ∈ dom η,

η(t, j) ∈ D, η(t, j + 1) = g(η(t, j)).

Conditions on the data (f, C, g,D), which we refer to as

hybrid basic conditions, of a hybrid system H with state

space R
m guaranteeing good structural properties of its

solutions are continuity of the flow map f and jump map

g, and closedness of the flow set C and jump set D; see

[19]. Now, we are ready to give the definition of stability for

a hybrid system; also see [19, Section VI].

Definition 1: For a hybrid system H on a state space R
m,

a compact set A ⊂ R
m is said to be: stable if for each ǭ > 0

there exists δ > 0 such that each solution η to H starting

at η0 ∈ A + δB satisfies |η(t, j)|A ≤ ǭ for all (t, j) ∈
dom η; attractive if there exists µ > 0 so that every maximal

solution to H starting in A + µB is complete and satisfies

limt+j→∞ |η(t, j)|A = 0; and asymptotically stable if it is

both stable and attractive. We denote the domain of attraction

of A, the set of all points from which all maximal solutions

are complete and converge to A, by BA.

For hybrid systems satisfying the hybrid basic conditions,

the conditions that guarantee local existence of solutions are:

(VC) For each point η0 ∈ C\D, there exists a solution with

a nontrivial hybrid time domain, i.e., there exists a solution

η and t > 0 such that (t, 0) ∈ dom η.

(VD) g(D) ⊂ C ∪ D.

Condition (VC) guarantees that flow is possible from

points in C while (VD) guarantees that jumps do not leave

C ∪ D; see [19, Proposition 2.1] for more details.

The following results are derived from the results in [24,

Theorem 7.6 and Corollary 7.7].

Proposition 1: Given a hybrid system H = (f, C, g,D),
suppose it satisfies the hybrid basic conditions, (VC) and

(VD). Let A ⊂ R
m be compact. If there exists a locally

Lipschitz function V : R
m → R≥0 and α1, α2 ∈ K∞ such

that

α1(|η|A) ≤ V (η) ≤ α2(|η|A), ∀η ∈ C ∪ D (8a)

max
w∈∂V (η)

〈w, f(η)〉 < 0, ∀η ∈ C \ A (8b)

V (g(η)) − V (η) < 0, ∀η ∈ D \ A (8c)

g(A ∩D) ⊂ A (8d)

then A is globally asymptotically stable.

Proposition 2: Given a hybrid system H = (f, C, g,D),
suppose it satisfies the hybrid basic conditions, (VC) and

(VD). Let A ⊂ U ⊂ R
m be such that A is compact

and contained in the interior of U . If there exists a locally

Lipschitz function V : R
m → R≥0 and α1, α2 ∈ K∞ such

that

α1(|η|A) ≤ V (η) ≤ α2(|η|A),∀η ∈ (C ∪ D) ∩ U (9a)

max
w∈∂V (η)

〈w, f(η)〉 < 0, ∀η ∈ (C \ A) ∩ U (9b)

V (g(η)) − V (η) < 0,∀η ∈ (D \ A) ∩ U (9c)

g(A ∩D) ⊂ A (9d)

then A is locally asymptotically stable. The domain of

attraction contains every sublevel set of V that is a subset of

U .

B. The construction of Lyapunov function

Following the ideas of constructing Lyapunov function

given in the Introduction, an initial guess of a Lyapunov

function candidate for H would be a quadratic function

Ṽ(ξ) = ξT Q−1ξ (10)

where Q = QT > 0, Q ∈ R
n×n. However, such a quadratic

function does not necessary decrease along jumps for H.

We consider a way to construct a Lyapunov function for

H is to take the combination of a jump Lyapunov term and

a flow Lyapunov function. We consider the locally Lipschitz

Lyapunov function V : R
n+1 7→ R≥0 given by

V (ξ, q) = ρ(ξ, q)
√

ξT Q−1ξ exp(
√

ξT Q−1ξ), (11)

with

ρ(ξ, q) := exp(−λ · max (0, min (2a, a − ǫ − Kξq))) (12)

where λ > 0 and ρ : R
n+1 7→ [exp(−2λa), 1] is locally

Lipschitz.

In the form of the Lyapunov function we construct, ρ(ξ, q)
is the jump Lyapunov term. This term may increase during

flows, but more slowly than the flow Lyapunov function
√

Ṽ(ξ) · exp(
√

Ṽ(ξ)) decreases, and it decreases during

jumps, more so than the flow Lyapunov function

√

Ṽ(ξ) ·
exp(

√

Ṽ(ξ)) increases. (The idea of constructing the ρ(·)
function is proposed in [3], see the proof of [3, Theorem 7]

for details).
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For a fixed threshold a and parameter λ, the following

inequality always holds

e−2λa

√

Ṽ(ξ)exp

√

Ṽ(ξ) ≤ V (ξ, q) ≤
√

Ṽ(ξ)exp

√

Ṽ(ξ)
(13)

Furthermore, the quadratic function Ṽ(ξ) satisfies

Σmin(Q−1)|ξ|2 ≤ Ṽ(ξ) ≤ Σmax(Q
−1)|ξ|2

where Σmin(Q−1) and Σmax(Q
−1) correspond to the min-

imum and maximum eigenvalues of Q−1, respectively. We

define

α1(s) := e−2λa
√

Σmin(Q−1) s es
√

Σmin(Q−1)

α2(s) :=
√

Σmax(Q−1) s es
√

Σmax(Q−1)

so that (8a) and (9a) hold when A = {(ξ, q) : ξ = 0, q ∈ Q′}
is defined for the hybrid system in Section II.

C. Sufficient conditions on stability for the hybrid system

It is easy to verify that the hybrid basic conditions hold

for system (1)-(5), since the flow map f and jump map g are

continuous, and the flow set C and jump set D are closed in

R
n+1. The local existence of solutions follows from C∪D =

R
n × Q′ and g(D) ⊂ C ∪ D. In the following content, we

start by asserting that Proposition 1 and 2 can be applied to

formulate statements about the stability of the compact set

A for the hybrid system defined in Section II.

Based on Proposition 1 and Proposition 2, we are ready to

state our main results by using the Lyapunov function (11).

Theorem 1: Let Assumption 1 hold for the hysteresis

width ǫ and the threshold a. Consider the hybrid system H
in (1)-(5) with σ(Kξ) = Kξ in the flow map and ū = a− ǫ
in the flow and jump sets. Then A is locally exponential

stable if A + BK is Hurwitz. Furthermore, given V (ξ, q) in

(11), if there exists matrix Q = QT > 0, and parameters

β, λ, b, c > 0, such that the following matrix inequalities are

feasible

(A + BK)Q + Q(A + BK)T ≤ −βQ (14a)
[

β2

λ2 Q 2Q(A + BK)T KT

2K(A + BK)Q I

]

≥ 0 (14b)

[

(b − 1 − 2ǫ)Q
√

4ǫ2+2ǫ
|a−ǫ| QKT ΘT

√
4ǫ2+2ǫ
|a−ǫ| ΘKQ Q

]

≥ 0 (14c)

[

c2Q 2
√

ǫΘ
2
√

ǫΘT 1

]

> 0,

[

c2 2
√

ǫΘT

2
√

ǫΘ Q

]

> 0 (14d)

4aλ − 2
√

ǫc ≥ logeb (14e)

then A is globally asymptotically stable.

Remark 1: When ǫ = 0 and Q = QT > 0 satisfies (A +
BK)Q+Q(A+BK)T < 0 then the matrix conditions (14a)-

(14e) are guaranteed to be satisfied for this Q and some

parameters β, λ, b, c > 0. In particular, β and λ are taken

sufficiently small, b is taken bigger than but sufficiently close

to one, and c > 0 can be arbitrary. ¥

Theorem 2: Let Assumption 1 hold for the hysteresis

width ǫ and the threshold a. Consider the hybrid system H in

(1)-(5) with σ(Kξ) = sat(Kξ) in the flow map and ū = a−ǫ
in the flow and jump sets. Then A is locally exponential

stable if A + BK is Hurwitz. Furthermore, given V (ξ, q) in

(11), if there exists matrix Q = QT > 0, diagonal matrices

T, U > 0, matrices Y, Z with appropriate dimensions, and

parameters β, λ, b, c > 0, such that the following matrix

inequalities are feasible

He

[

(A + BK)Q + 1
2βQ −BT

KQ − Y −T

]

≤ 0 (15a)

He





− β2

2λ2 Q 0 0
KQ − Z −U 0

K(A + BK)Q −KBU − 1
2I



 < 0 (15b)

[

1 Y
Y T Q

]

≥ 0,

[

1 Z
ZT Q

]

≥ 0 (15c)

(14c), (14d), (14e) (15d)

then every trajectory starting from LV (c∗) converges to A
where c∗ = exp(−2λa + 1) such that

LV (c∗) ⊂ (E(Q−1) ×Q′). (16)

The set LV (c∗) gives an estimate of the domain of at-

traction. The domain of attraction contains points in D if

D ∩ LV (c∗) 6= ∅.

Remark 2: The estimate of the domain of attraction is

derived from the structure of the Lyapunov function. Since

V (ξ, q) satisfies (13), then V (ξ, q) ≤ e−2λae implies
√

ξT Q−1ξe
√

ξT Q−1ξ ≤ e for each ξ such that ξT Q−1ξ ≤ 1.

Therefore, the level set LV (c∗) ⊂ (E(Q−1) × Q′) gives an

estimate of the domain of attraction BA of the hybrid system

H. Every trajectory starting from this set will converge to A.

¥

Remark 3: When ǫ = 0, the matrix inequalities in (15a)-

(15d) reduce to Theorem 3 in [10] for the same choice of

β, λ, b, c in Remark 1, where Theorem 3 in [10] is derived

by using a quadratic Lyapunov function as (10). ¥

Remark 4: Theorem 1 and Theorem 2 are conservative

especially for large ǫ. This partially results from the fact

that the matrix inequalities (14c-14e) and (15c) are sufficient

conditions for (8c) and (9c), correspondingly, not necessary

ones. They impose unnecessary restrictions for the points

which are outside of D. When ǫ = 0, those restrictions

vanish for some trivial b, c, λ, but it becomes more difficult

to choose b, c, λ, β and get feasible solutions when ǫ gets

larger. We can image no feasible solutions would be found

from (14) or (15) when the system is stable but with large

enough ǫ. That will be further discussed in Section IV by

using a numerical example. ¥

Remark 5: The choice of parameters b, c, λ, β is normally

by trial and error. In practice, we can always choose c =
4aλ−log

e
b

2
√

ǫ
to satisfy (14e). By observing the relationship

among them, we can see larger ǫ implies larger c from (14d)

so as larger λ, and also implies larger b for feasibility of

(14c). When λ gets larger, β tends to be larger followed from

(14b), so that the volume of E(Q−1) tends to be smaller from

(14a). Overall, larger ǫ requires larger b, λ, β and results in

a smaller domain of attraction estimate LV (c∗). ¥

IV. EXAMPLE

Consider a type I system, H(s) = 1
s(s+0.5) , with the state-

space description ẋ1 = x2, ẋ2 = −0.5x2, and y = x1.
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The control objective is to achieve exact tracking of

constant references r = 2/3 and the closed-loop poles are

all located at s = −1.

To implement the integral control for exact tracking (see

e.g., [2, page 552]), denote e = x1−r and xI =
∫

edt. Then

y = e + r and the system is




ė
ẋ2

ẋI



 =





0 1 0
0 −0.5 0
1 0 0









e
x2

xI



 +





0
1
0



u. (17)

The control law is given by u = −3e − 2.5x2 − xI so as

to stabilize the system (17) and achieve exact tracking for

the original system. However, if such a system is subject to

actuator nonlinearity as shown in Fig. 1, and Fig. 2, then the

closed-loop performance will be affected. As in Section II,

we describe this system with a hybrid model as follows.

States: [ξ1 := e, ξ2 := x2, ξ3 := xI + ǫq, q ]
T

. The flow

map is given as:

f(ξ, q) = [ξ2, −0.5ξ2 + σ(ũ), ξ1, 0]
T

,

where ũ = u−ǫq =
[

−3 −2.5 −1
]

ξ. In section IV-A,

we will discuss the case σ(ũ) = ũ, while in section IV-B,

we will discuss the case σ(ũ) = sat(ũ).
The jump map is:

g(ξ, q) = [ξ1, ξ2, ξ3 − 2ǫq, −q]
T

.

The flow set and the jump set are:

C :=
{

[

ξ
q

]

: [−3 − 2.5 − 1] ξq ≤ 1 − ǫ, q ∈ Q′
}

,

D :=
{

[

ξ
q

]

: [−3 − 2.5 − 1] ξq ≥ 1 − ǫ, q ∈ Q′
}

,

and

A :=
{

[

ξ
q

]

: ξ = 0, q ∈ Q′
}

.

A. Simulation for linear system with hysteresis

Table 1: Global stability test for ǫ

Stability ǫ ≤ 0.24 0.25 ≤ ǫ ≤ 0.8 ǫ ≥ 0.9
Theorem 1 Yes No No

Simulation Yes Yes No

As shown in the table above, we use the method in

Theorem 1 to test the global stability of the system with

hysteresis. In this table, we present the stability results

confirmed from Theorem 1 by comparing with the stability

results we observe from the simulation. By trial and error, we

can find feasible solutions from Theorem 1 for the hysteresis

width ǫ up to 0.24 which indicate A is globally asymptotic

stable, while the simulations show the stability for ǫ up

to 0.8. We observe the oscillation in the simulation when

ǫ is larger than 0.9. All simulations are generated with

randomly chosen initial conditions. The simulations indicate

that Theorem 1 can be conservative for large ǫ as pointed

out in Remark 4.

If the hysteresis width is ǫ = 0.1, we can find a feasible

solution from Theorem 1, which confirms A is globally

asymptotically stable. The system response is shown in Fig. 3

based on the initial condition ξ0 =
[

−1 40 55
]T

and

q0 = −1. In Fig. 3, the two subplots on the left show the

system output y and the state ξ2 which has a fix amount

of shift along jumps. In the two subplots on the right,

we observe that the system is stabilized after two jumps,

and along jumps the Lyapunov function is decreasing. The

evolution of the Lyapunov function is shown in the form of

natural logarithm loge(V ), where V is explicitly determined

by Theorem 1.
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Fig. 3. The response of the linear system with hysteresis: globally stable
with ǫ = 0.1; ∗ shows the status right before jumps.

B. Simulation for saturated system with hysteresis

Table 2: Test on the domain of attraction

LV (c∗) ∩ D 6= ∅ LV (c∗) ∩ D = ∅
Theorem 2 0 ≤ ǫ ≤ 0.21 0.21 < ǫ ≤ 0.9
Simulation 0 ≤ ǫ ≤ 0.9 0.9 < ǫ ≤ 1

In Table 2, Theorem 2 is used to test whether or not

the domain of attraction contains points in D, namely,

if trajectories starting from the domain of attraction have

jumps. By trial and error, we can find feasible solutions from

Theorem 2 such that LV (c∗) ∩ D 6= ∅ for the hysteresis

width ǫ up to 0.21. According to (16), for feasible solutions

of matrix inequalities (15) we have the set E(Q−1), and the

estimate of the domain of attraction LV (c∗) is a subset of

E(Q−1)×Q′. We also observe that the larger ǫ is, the smaller

E(Q−1) × Q′ and so would be the estimate of the domain

of attraction.

However, the simulation shows that the domain of at-

traction contains points in D for 0 ≤ ǫ ≤ 0.9. When ǫ
is larger than 0.9, the system has oscillations if starting

from points in D. From Table 2, we can see Theorem 2

is conservative especially for larger ǫ, due to the reason

explained in Remark 4.

Furthermore, to better illustrate how Theorem 2 works in

the analysis of saturated system with hysteresis, we use ǫ =
0.2 as the hysteresis width and do the following simulations.

For hysteresis width given as ǫ = 0.2, we find β = 0.89,

λ = 0.41, and b = 2.67 by trial and error, such that

the matrix inequalities (15) give a feasible solution for the

variable Q. Please note that we set c = 4λ−log
e
b

2
√

ǫ
.
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By using the Lyapunov function V (ξ, q) in (11) and (16),

an estimate of the domain of attraction is given as

LV (1.197) =
{

(ξ, q)| V (ξ, q) ≤ 1.197, q ∈ Q′}, (18)

where Q−1 =





4.9017 3.6617 1.7744
3.6617 2.9504 1.2528
1.7744 1.2528 0.6711



.

Case 1: Choose ξ0 =
[

−1.5404 1.5268 1.6365
]T

and q0 = −1 such that (ξ0, q0) ∈ LV (1.197). Hence, the

initial condition is in the domain of attraction. The response

of the hybrid system is shown in the Fig. 4 for tracking

the reference r = 2/3. In Fig. 4, we observe that the

system jumps at t = 0, and along this jump the Lyapunov

function decreases with V + = 0.88 (right after jump) and

V = 1.182 (right before jump), while the function Ṽ(ξ) does

not decrease since Ṽ+ = 0.7262 and Ṽ = 0.3966.
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Fig. 4. The response of the saturated system with hysteresis: the initial
condition in the domain of attraction; ∗ shows the status right before jumps.

Case 2: Choose ξ0 =
[

−2 −2 −1
]T

and q0 = −1
such that (ξ0, q0) /∈ LV (1.197). Since the initial condition is

outside of the domain of attraction, the Lyapunov function

fails to verify stability, even in the case that the simulation

shows the system is stable along flows and jumps. The

function V increases along the flow in a certain time period,

while the response of the system still converges to desired

values. This case shows that Theorem 2 is conservative in

some situations.

V. CONCLUSION

In this paper, we study a class of hybrid systems where the

flow and jump maps are linear (or linear plus saturated linear)

and jumps are state triggered. One motivation for considering

this class of systems is that they model control systems with

a relay-type hysteresis element. Motivated by the Lyapunov

theorems for hybrid systems, a Lyapunov function is con-

structed that effectively incorporates the feature of the jumps.

Global stability analysis is conducted when the flow map

is linear, and local stability condition is conducted when

the flow map is linear plus saturated linear. The stability

conditions are derived as matrix inequalities. A numerical ex-

ample is presented to illustrate the hybrid modeling process

for a system experiencing hysteresis. Simulations confirm

the effectiveness of the analysis and show some interesting

simulation results.
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