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Abstract

We consider the problem of asymptotic convergence to invariant sets in intercon-
nected nonlinear dynamic systems. Standard approaches often require that the invari-
ant sets be uniformly attracting. e.g. stable in the Lyapunov sense. This, however, is
neither a necessary requirement, nor is it always useful. Systems may, for instance, be
inherently unstable (e.g. intermittent, itinerant, meta-stable) or the problem statement
may include requirements that cannot be satisfied with stable solutions. This is often
the case in general optimization problems and in nonlinear parameter identification
or adaptation. Conventional techniques for these cases rely either on detailed knowl-
edge of the system’s vector-fields or require boundeness of its states. The presently
proposed method relies only on estimates of the input-output maps and steady-state
characteristics. The method requires the possibility of representing the system as an in-
terconnection of a stable, contracting, and an unstable, exploratory part. We illustrate
with examples how the method can be applied to problems of analyzing the asymptotic
behavior of locally unstable systems as well as to problems of parameter identification
and adaptation in the presence of nonlinear parametrizations. The relation of our
results to conventional small-gain theorems is discussed.

Keywords: non-uniform convergence, weakly attracting sets, small-gain theorems, input-
output stability

1 Notation

Throughout the paper we use the following notational conventions. Symbol R denotes the
field of real numbers, symbol R+ stands for the following subset of R: R+ = {x ∈ R| x ≥
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0}; N and Z denote the set of natural numbers and its extension to the negative domain
respectively.

Let Ω be a set, by symbol S{Ω} we denote the set of all subsets of Ω. Symbol Ck denotes
the space of functions that are at least k times differentiable; K denotes the class of all strictly
increasing functions κ : R+ → R+ such that κ(0) = 0. If, in addition, lims→∞ κ(s) = ∞
we say that κ ∈ K∞. Further, Ke (or Ke,∞) denotes the class of functions of which the
restriction to the interval [0,∞) belongs to K (or K∞). Symbol KL denotes the class of
functions β : R+ × R+ → R+ such that β(·, 0) ∈ K and β(0, ·) is monotonically decreasing.

Let x ∈ R
n and x can be partitioned into two vectors x1 ∈ R

q, x1 = (x11, . . . , x1q)
T ,

x2 ∈ R
p, x2 = (x21, . . . , x2p)

T with q+p = n, then⊕ denotes their concatenation: x = x1⊕x2.
The symbol ‖x‖ denotes the Euclidian norm in x ∈ R

n. By Ln
∞[t0, T ] we denote the

space of all functions f : R+ → R
n such that ‖f‖∞,[t0,T ] = sup{‖f(t)‖, t ∈ [t0, T ]} < ∞, and

‖f‖∞,[t0,T ] stands for the L
n
∞[t0, T ] norm of f(t). Let A be a set in R

n and ‖ · ‖ be the usual
Euclidean norm in R

n. By the symbol ‖·‖
A
we denote the following induced norm:

‖x‖
A
= inf

q∈A
{‖x− q‖}

Let ∆ ∈ R+ then the notation ‖x‖
A∆

stands for the following equality:

‖x‖
A∆

=

{

‖x‖
A
−∆, ‖x‖

A
> ∆

0, ‖x‖
A
≤ ∆

The symbol ‖·‖
A∞,[t0,t]

is defined as follows:

‖x(τ)‖
A∞,[t0,t]

= sup
τ∈[t0,t]

‖x(τ)‖
A

2 Introduction

In many fields of science, from systems and control theory to physics, chemistry, and biology,
it is of fundamental importance to analyze the asymptotic behavior of dynamical systems.
Most of these analyses are based around the concept of Lyapunov stability [15], [32], [31], i.e.
continuity of the flow x(t,x0) : R+×R

n → Ln
∞[t0,∞] with respect to x0 [18], in combination

with the standard notion of an attracting set [9]:

Definition 1 A set A is an attracting set iff it is
i) closed, invariant, and
ii) for some neighborhood V of A and for all x0 ∈ V the following conditions hold:

x(t,x0) ∈ V ∀ t ≥ 0; (1)

lim
t→∞

‖x(t,x0)‖A = 0 (2)

Condition (1) in Definition 1 stipulates the existence of a trapping region V which is a
neighborhood ofA. Condition (2) ensures attractivity, or convergence to S. Due to condition
(1), convergence to A is uniform with respect to x0 in the neighborhood of A, i.e. every
trajectory which starts in V remains in V for t ≥ 0 and converges to A at t→ ∞.

Although the conventional concepts of attracting set and Lyapunov stability are a power-
ful tandem in various applications, some problems cannot be solved within this framework.
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Condition (1), for example, could be violated in systems with intermittent, itinerant, or
meta-stable dynamics. In general the condition does not hold when the system dynamics,
loosely speaking, is exploring rather than contracting. Such systems appear naturally in the
context of global optimization. For instance, in [22] finding the global minimum of a differ-
entiable cost function Q : Rn → R+ in a bounded subset Ωx ⊂ R

n is achieved by splitting
the search procedure into a locally attracting gradient Sa, and a wandering part Sw:

Sa : ẋ = −µx

∂Q(x)

∂x
+ µtT (t), µx, µt ∈ R+

Sw : T (t) = h{t,x(t)}, h : R+ × Ln
∞[t0, t] → Ln

∞[t0, t]
(3)

The trace function, T (t), in (3) is supposed to cover (i.e. be dense in) the whole searching
domain Ωx. Even though the results in [22] are purely simulation studies, they illustrate
the superior performance of algorithms (3) in a variety of benchmark problems compared
to standard local minimizers and classical methods of global optimization. Abandoning
Lyapunov stability is likewise advantageous in problems of identification and adaptation in
the presence of general nonlinear parameterization [28], in manoeuvring and path searching
[25], and in decision making in intelligent systems [29], [30]. Systems with attracting, yet
unstable invariant sets are relevant for modelling complex behavior in biological and physical
systems [2]. Last but not least, Lyapunov-unstable attracting sets are relevant in problems
of synchronization [5], [19], [26]1.

Even when it is appropriate to consider a system as stable, we may be limited in our
success in meeting the requirement to identify a proper Lyuapunov function.This is the
case, for instance, when the system’s dynamics is only partially known. Trading stability
requirements for the sake of convergence might be a possible remedy. Known results in this
direction can be found in [11], [21]2.

In all the cases that are problematic under condition (1) of Definition 1, condition (2) –
convergence of x(t,x0) to an invariant set A, is still a requirement that has to be met. In
order to treat these cases analytically we shall, first of all, move from the standard concept
of attracting sets in Definition 1 to one that does not assume that the basin of attraction is
necessarily a neighborhood of the invariant set A. In other words we shall allow convergence
which is not uniform in initial conditions. This requirement is captured by the concept of
weak, or Milnor attraction [17]:

Definition 2 A set A is weakly attracting, or Milnor attracting set iff
i) it is closed, invariant and
ii) for some set V (not necessarily a neighborhood of A) with strictly positive measure

and for all x0 ∈ V limiting relation (2) holds

Conventional methods such as La Salle’s invariance principle [14] or center manifold
theory [7] can, in principle, address the issue of convergence to weak equilibria. They do so,
however, at the expense of requiring detailed knowledge of the vector-fields of the ordinary
differential equations of the model. When such information is not available the system can

1See also [20] where the striking difference between stable and ”almost stable” synchronization in terms
of the coupling strengthes for a pair of the Lorenz oscillators is demonstrated analytically.

2In the Examples section, we demonstrate how explorative dynamics can solve the problem of simultaneous
state and parameter observation for a system which cannot be transformed into a canonical adaptive observer
form [3].
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be thought of as a mere interconnection of input-output maps. Small-gain theorems [33],[12]
are usually efficient in this case. These results, however, apply only under the assumption
of stability of each component in the interconnection.

In the present study we aim to find a proper balance between the generality of input-
output approaches [33], [12] in the analysis of convergence and the specificity of the funda-
mental notions of limit sets and invariance that play a central role in [14], [7]. The object
of our study is a class of systems that can be decomposed into an attracting, or stable,
component Sa and an exploratory, generally unstable, part Sw. Typical systems of this class
are nonlinear systems in cascaded form

Sa : ẋ = f(x, z),

Sw : ż = q(z,x)
(4)

where the zero solution of the x-subsystem is asymptotically stable in the absence of input z,
and the state of the z-subsystem are functions of

∫ t

t0
‖x(τ)‖dτ . Even when both subsystems

in (4) are stable and the x-subsystem does not depend on state z, the cascade can still
be unstable [1]. We show, however, that for unstable interconnections (4), under certain
conditions that involve only input-to-state properties of Sa and Sw, there is a set V in
the system state space, such that trajectories starting in V remain bounded. The result is
formally stated in Theorem 1. In case an additional measure of invariance is defined for
Sa (in our case a steady-state characteristic), a weak, Milnor attracting set emerges. Its
location is completely determined by the zeros of the steady-state response of system Sa.

We demonstrate how this basic result can be used in problems of design and analysis
of control systems and identification/adaptation algorithms. In particular, we present an
adaptive observer of state and parameter values for uncertain systems which cannot be
transformed into a canonic adaptive observer form [3]. In the Examples section we present
an application of this result to the problem of reconstructing a dynamic model of neuronal
cell activity.

The paper is organized as follows. In Section 3 we formally state the problem and provide
specific assumptions for the class of systems under consideration. Section 4 contains the main
results of our present study. In Section 5 we provide several corollaries of the main result
that apply to specific problems. Section 6 contains examples, and Section 7 concludes the
paper.

3 Problem Formulation

Consider a system that can be decomposed into two interconnected subsystems, Sa and Sw:

Sa : (ua,x0) 7→ x(t)

Sw : (uw, z0) 7→ z(t)
(5)

where ua ∈ Ua ⊆ L∞[t0,∞], uw ∈ Uw ⊆ L∞[t0,∞] are the spaces of inputs to Sa and Sw,
respectively x0 ∈ R

n, z0 ∈ R
m represent initial conditions, and x(t) ∈ X ⊆ Ln

∞[t0,∞],
z(t) ∈ Z ⊆ Lm

∞[t0,∞] are the system states.
System Sa represents the contracting dynamics. More precisely, we require that Sa is

input-to-state stable3 [23] with respect to a compact set A:

3In general, as will be demonstrated with examples, our analysis can be carried out for (integral) input-
to-output/state stable systems as well.
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Assumption 1 (Contracting dynamics)

Sa : ‖x(t)‖
A
≤ β(‖x(t0)‖A , t− t0) + c‖ua(t)‖∞,[t0,t], ∀t0 ∈ R+, t ≥ t0 (6)

where the function β(·, ·) ∈ KL, and c > 0 is some positive constant.

The function β(·, ·) in (6) specifies the contraction property of the unperturbed dynamics of
Sa. In other words it models the rate with which the system forgets its initial conditions x0,
if left unperturbed. Propagation of the input to output is estimated in terms of a continuous
mapping, c‖ua(t)‖∞,[t0,t], which, in our case, is chosen for simplicity to be linear. Notice that
this mapping should not necessarily be contracting. In what follows we will assume that the
function β(·, ·) and constant c are known or can be estimated a-priori.

For systems Sa, of which a model is given by a system of ordinary differential equations

ẋ = fx(x, ua), fx(·, ·) ∈ C1, (7)

Assumption 1 is equivalent, for instance, to the combination of the following properties4:

1. let ua(t) ≡ 0 for all t, then set A is Lyapunov stable and globally attracting for (7);

2. for all ua ∈ Ua and x0 ∈ R
n there exists a non-decreasing function κ : R+ → R+ :

κ(0) = 0 such that
inf

t∈[0,∞)
‖x(t)‖

A
≤ κ(‖ua(t)‖∞,[t0,∞))

The system Sw stands for the searching or wandering dynamics. We will consider Sw

subject to the following conditions:

Assumption 2 (Wandering dynamics) The system Sw is forward-complete:

uw(t) ∈ Uw ⇒ z(t) ∈ Z, ∀ t ≥ t0, t0 ∈ R+

and there exists an ”output” function h : Rm → R, and two ”bounding” functions γ0 ∈ K∞,e,
γ ∈ K∞,e such that the following integral inequality holds:

Sw :

∫ t

t0

γ1(uw(τ))dτ ≤ h(z(t0))− h(z(t)) ≤

∫ t

t0

γ0(uw(τ))dτ, ∀ t ≥ t0, t0 ∈ R+ (8)

In case system Sw is specified in terms of vector-fields

ż = fz(z, uw), fz(·, ·) ∈ C1, (9)

Assumption 2 can be viewed, for example, as postulating the existence of a function h :
R

m → R+ of which the evolution in time is a mere integration of the input uw(t). In general,
for uw : uw(t) ≥ 0 ∀ t ∈ R+, inequality (8) implies monotonicity of function h(z(t)) in t.
Regarding the function γ0(·) in (8), we assume that for any M ∈ R+ there exist functions
γ0,1 : R+ → R+ and γ0,2 : R+ → R+, such that

γ0(a · b) ≤ γ0,1(a) · γ0,2(b), ∀ a, b ∈ [0,M ]. (10)

4For a comprehensive characterization of the input-to-state stability and detailed mathematical arguments
we refer to the paper by E.D. Sontag and Y. Wang [24].
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a
b

Figure 1: a. The class of interconnected systems Sa and Sw. System Sa, the “contracting system”,
has an attracting invariant setA in its state space, system Sw does not necessarily have an attracting
set. It represents the “wandering” dynamics. A typical example of such behavior is the dynamics
of the flow in a neighborhood of a saddle point in three-dimensional space (diagram b).

Requirement (10) is a technical assumption which will be used in the formulation and proof
of the main results of the paper. Yet, it is not too restrictive; it holds, for instance, for a
wide class of locally Lipschitz functions γ0(·) : γ0(a · b) ≤ L0(M) · (a · b), L0(M) ∈ R+.
Another example for which the assumption holds is the class of polynomial functions γ0(·) :
γ0(a · b) = (a · b)p = ap · bp, p > 0. No further restrictions will be imposed a-priori on Sa, Sw.

Now consider the interconnection of (6), (8) with coupling ua(t) = h(z(t)), and us(t) =
‖x(t)‖

A
. Equations for the combined system can be written as:

‖x(t)‖
A
≤β(‖x(t0)‖A , t− t0) + c‖h(z(t))‖∞,[t0,t]

∫ t

t0

γ1(‖x(τ)‖A)dτ ≤h(z(t0))− h(z(t)) ≤

∫ t

t0

γ0(‖x(τ)‖A)dτ,
(11)

A diagram illustrating the general structure of the entire system (11) is given in figure 1.
Equations (11) capture the relevant interplay between contracting, Sa, and wandering,

Sw, dynamics inherent to a variety of searching strategies in the realm of optimization, (3),
and interconnections (4) in general systems theory. In addition, this kind of interconnection
describes the behavior of systems which undergo transcritical or saddle-node bifurcations.
Consider for instance the following system:

ẋ1 = −x1 + x2

ẋ2 = ε+ γx21, γ > 0
(12)

where the parameter ε varies from negative to positive values. At ε = 0 stable and unstable
equilibria collide leading to the cascade satisfying equations (11). An alternative bifurcation
scenario could be represented by system:

ẋ1 = −x1 + x2

ẋ2 = ε+ γx22, γ > 0,
(13)

In this case, however, the dynamics of the variable x2 is independent of x1, and analysis of
asymptotic behavior of (13) reduces to the analysis of each equation separately. Thus systems
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like (13) are easier to deal with than (12). This constitutes an additional motivation for the
present approach.

When analyzing the asymptotic behavior of interconnection (11) we will address the
following set of questions: is there a set (a weak trapping set in the system state space) such
that the trajectories which start in this set are bounded? It is natural to expect that the
existence of such a set depends on the specific functions γ0(·), γ1(·) in (11), on properties of
β(·, ·), and on values of c. In case such a set exists and could be defined, the next questions
are therefore: where will the trajectories converge and how can these these domains be
characterized?

4 Main Results

In this section we provide a formal statement of the main results of our present study. In
Section 4.1, we formulate conditions ensuring that there exists a point x0⊕ z0 such that the
ω-limit set of x0 ⊕ z0 is bounded in the following sense:

‖ωx(x0 ⊕ z0)‖A <∞, |h(ωz(x0 ⊕ z0))| <∞ (14)

These conditions and also a specification of the set Ωγ of points x′⊕ z′ for which the ω-limit
set satisfies property (14) are provided in Theorem 1.

In order to verify whether an attracting set exists in ω(Ωγ) that is a subset of ω(Ωγ) we
use an additional characterization of the contracting system Sa. In particular, we introduce
the intuitively clear notion of the input-to state steady-state characteristics5 of a system. It
is possible to show that in case system Sa has a steady-state characteristic, then there exists
an attracting set in ω(Ωγ) and this set is uniquely defined by the zeros of the steady-state
characteristics of Sa. A diagram illustrating the steps of our analysis is provided in Fig. 2,
as well as the sequence of conditions leading to the emergence of the attracting set in (11).

4.1 Emergence of the trapping region. Small-gain conditions

Before we formulate the main results of this subsection let us first comment briefly on the
machinery of our analysis. First of all we introduce three sequences

S = {σi}
∞

i=0, Ξ = {ξi}
∞

i=0, T = {τi}
∞

i=0

The first sequence, S, partitions the interval [0, h(z0)], h(z0) > 0 into the union of shrinking
subintervals Hi:

[0, h(z0)] = ∪∞

i=0Hi, Hi = [σih(z0), σi+1h(z0)] (15)

For the sake of transparency, let us define this property formally in the form of Condition 1

Condition 1 (Partition of z0) The sequence S is strictly monotone and converging

{σn}
∞

n=0 : lim
n→∞

σn = 0, σ0 = 1 (16)

Sequences Ξ and T will specify the desired rates ξi ∈ Ξ of the contracting dynamics (6)
in terms of function β(·, ·) and time Ti > τi ∈ T . Let us, therefore, impose the following
constraint on the choice of Ξ, T .

5A more precise definition of the steady-state characteristics is given in Section 4.2
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Figure 2: Emergence of a weak (Milnor) attracting set Ω∞. Panel a depicts the target invariant
set Ω∞ as a filled circle. First (Theorem 1), we investigate whether a domain Ωγ ⊂ Rn×Rm exists
such that ‖x(t)‖

A
, h(z(t)) are bounded for all x0 ⊕ z0 ∈ Ωγ . In the text we refer to this set as a

weak trapping region or simply a trapping region. The trapping region is shown as a grey domain in
panel b. In principle, the system’s states can eventually leave the domain Ωγ . They must, however,
satisfy equation (14), ensuring boundedness of ‖x(t)‖

A
, h(z(t)). As a result they will dwell within

the region shown as a circle in panel b. Notice that neither this domain, nor the previous, need be
neighborhoods of Ω∞. Second (Lemma’s 1, 2, Corollary 1), we provide conditions which lead to
the emergence of a weak attracting set in the trapping region Ωγ . This is illustrated in panel c.

Condition 2 (Rate of contraction, Part 1) For the given sequences Ξ, T and function
β(·, ·) ∈ KL in (6) the following inequality holds:

β(·, Ti) ≤ ξiβ(·, 0), ∀ Ti ≥ τi (17)

Condition 2 states that for the given, yet arbitrary, factor ξi and time instant t0, the amount
of time τi is needed for the state x in order to reach the domain:

‖x‖
A
≤ ξiβ(‖x(t0)‖A , 0)

In order to specify the desired convergence rates ξi, it will be necessary to define another
measure in addition to (17). This is a measure of the propagation of initial conditions x0

and input h(z0) to the state x(t) of the contracting dynamics (6) when the system travels
in h(z(t)) ∈ [0, h(z0)]. For this reason we introduce two systems of functions, Φ and Υ:

Φ :
φj(s) = φj−1 ◦ ρφ,j(ξi−j · β(s, 0)), j = 1, . . . , i
φ0(s) = β(s, 0)

(18)

Υ :
υj(s) = φj−1 ◦ ρυ,j(s), j = 1, . . . , i
υ0(s) = β(s, 0)

(19)

where the functions ρφ,j , ρυ,j ∈ K satisfy the following inequality

φj−1(a+ b) ≤ φj−1 ◦ ρφ,j(a) + φj−1 ◦ ρυ,j(b) (20)

Notice that in case β(·, 0) ∈ K∞ the functions ρφ,j(·), ρυ,j(·) will always exist [12]. The
properties of sequence Ξ which ensure the desired propagation rate of the influence of initial
condition x0 and input h(z0) to the state x(t) are specified in Condition 3.

Condition 3 (Rate of contraction, Part 2) The sequences

σ−1
n · φn(‖x0‖A), σ−1

n ·

(

n
∑

i=0

υi(c|h(z0)|σn−i)

)

, n = 0, . . . ,∞

8



are bounded from above, e.g. there exist functions B1(‖x0‖), B2(|h(z0)|, c) such that

σ−1
n · φn(‖x0‖A) ≤ B1(‖x0‖A) (21)

σ−1
n ·

(

n
∑

i=0

υi(c|h(z0)|σn−i)

)

≤ B2(|h(z0)|, c) (22)

for all n = 0, 1, . . . ,∞

For a large class of functions β(s, 0), for instance those that are Lipschitz in s, these condi-
tions reduce to more transparent ones which can always be satisfied by an appropriate choice
of sequences Ξ and S. This case is considered in detail as a corollary of our main results in
section 4.3.

The main differences between the standard and the presently proposed approaches for
the analysis of asymptotic behavior of dynamical systems are illustrated with figure 3. In
order to prove the emergence of the trapping region we consider the following collection of
volumes induced by the sequence Si and the corresponding partition (15) of the interval
[0, h(z0)]:

Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi} (23)

For the given initial conditions x0 ∈ X , z0 ∈ Z two alternative possibilities exist. First, the
trajectory x(t,x0) ⊕ z(t, z0) stays in some Ω′ ⊂ Ω0 for all t > t′, t′ ≥ t0. Hence for t → ∞
the state will converge into

Ωa = {x ∈ X , z ∈ Z| ‖x‖
A
≤ c · h(z0), z : h(z) ∈ [0, h(z0)]} (24)

Second, the trajectory x(t,x0)⊕ z(t, z0) subsequently enters the volumes Ωj , and tj are the
time instances when it hits the hyper-surfaces h(z(t)) = h(z0)σj. Then the state of the
coupled system stays in Ω0 only if the sequence {ti}

∞
i=0 diverges. Theorem 1 provides the

conditions specifying the latter case in terms of properties of sequences S, Ξ, T and function
γ0(·) in (11).

Theorem 1 (Non-uniform Small-gain Theorem) Let systems Sa, Sw be given and sat-
isfy Assumptions 1, 2. Consider their interconnection (11) and suppose there exist sequences
S, Ξ, and T satisfying Conditions 1–3. In addition, suppose that the following conditions
hold:

1) There exists a positive number ∆0 > 0 such that

1

τi

(σi − σi+1)

γ0,1(σi)
≥ ∆0 ∀ i = 0, 1, . . . ,∞ (25)

2) The set Ωγ of all points x0, z0 satisfying the inequality

γ0,2(B1(‖x0‖A) +B2(|h(z0)|, c) + c|h(z0)|) ≤ h(z0)∆0 (26)

is not empty.
3) Partial sums of elements from T diverge:

∞
∑

i=0

τi = ∞ (27)
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Standard Proposed

1) Domain of attraction is a neighbor-
hood

1) Domain of attraction is a set of
positive measure (not necessarily a
neighborhood)

2) Implies Lyapunov stability
2) Allows to analyze convergence in

Lyapunov-unstable systems

Given: a sequence of diverging time in-
stances ti

Given: a sequence of sets Ωi whose dis-
tance ∆i to A is converging to zero

Prove: convergence of norms ‖x(ti) ⊕
z(ti)‖ = ∆i to zero

Prove: divergence of {ti}, where ti :
x(ti)⊕ z(ti) ∈ Ωi

Figure 3: Key differences between the conventional concept of convergence (left panel) and the
concept of weak, non-uniform, convergence (right panel). In the uniform case, trajectories which
start in a neighborhood of A remain in a neighborhood of A (solid and dashed lines). In the
non-uniform case, only a fraction of the initial conditions in a neighborhood of A will produce
trajectories which remain in a neighborhood of A (solid black line). In the most general case a
necessary condition for this to happen is that the sequence {ti} diverges. In our current problem
statement divergence of {ti} implies boundedness of ‖x(t)‖

A
. To show state boundedness and

convergence of x(t) to A an additional information on the system dynamics will be required.

Then for all x0, z0 ∈ Ωγ the state x(t, z0) ⊕ z(t, z0) of system (11) converges into the set
specified by (24)

Ωa = {x ∈ X , z ∈ Z| ‖x‖
A
≤ c · h(z0), z : h(z) ∈ [0, h(z0)]}

The proof of the theorem is provided in Appendix 1.
The major difference between the conditions of Theorem 1 and those of conventional

small-gain theorems [33],[12] is that the latter involve only input-output or input-state map-
pings. Formulating conditions for state boundedness of the interconnection in terms of
input-output or input-state mappings is possible in the traditional case because the inter-
connected systems are assumed to be input-to-state stable. Hence their internal dynamics
can be neglected. In our case, however, the dynamics of Sw is generally unstable in the

10



Lyapunov sense. Hence, in order to ensure boundedness of x(t,x0) and h(z(t, z0)), the
rate/degree of stability of Sa should be taken into account. Roughly speaking, system Sa

should ensure a sufficiently high degree of contraction in x0 while the input-output response
of Sw should be sufficiently small. The rate of contraction in x0 of Sa, according to (6), is
specified in terms of the function β(·, ·). Properties of this function that are relevant for
convergence are explicitly accounted for in Condition 3 and (27). The domain of admissible
initial conditions and actually the small-gain condition (input-state-output properties of Sw

and Sa) are defined by (25), (26) respectively. Notice also that Ωγ is not necessarily a neigh-
borhood of Ωa, thus the convergence ensured by Theorem 1 is allowed to be non-uniform in
x0, z0.

4.2 Characterization of the attracting set

Even for interconnections of Lyapunov-stable systems, small-gain conditions usually are
effective merely for establishing boundedness of states or outputs. Yet, even in the setting of
Theorem 1 it is still possible to derive estimates (such as, for instance (24)) of the domains
to which the state will converge. These estimates, however, are often too conservative. If
a more precise characterization of these domains is required, additional information on the
dynamics of systems Sa and Sw will be needed. The question, therefore, is how detailed
this information should be? It appears that some additional knowledge of the steady-state
characteristics of system Sa is sufficient to improve the estimates (24) substantially.

Let us formally introduce the notion of steady-state characteristic as follows:

Definition 3 We say that system (6) has steady-state characteristic χ : R → S{R+} with
respect to the norm ‖x‖

A
if and only if for each constant ūa the following holds:

∀ ua(t) ∈ Ua : lim
t→∞

ua(t) = ūa ⇒ lim
t→∞

‖x(t)‖
A
∈ χ(ūa) (28)

The key property captured by Definition 3 is that there exists a limit of ‖x(t)‖
A
as t→ ∞,

provided that the limit for ua(t), t→ ∞ is defined and constant. Notice that the mapping χ is
set-valued. This means that for each ūa there is a set χ(ūa) ⊂ R+ such that ‖x(t)‖

A
converges

to an element of χ(ūa) as t → ∞. Therefore, our definition allows a fairly large amount of
uncertainty for Sa. It will be of essential importance, however, that such characterization
exists for the system Sa.

Clearly, not every system obeys a steady-state characteristic χ(·) of Definition 3. There
are relatively simple systems of which the state does not converge even in the ”norm” sense
for constant converging inputs (condition (28)). In mechanics, physics, and biology such
systems encompass the large class of nonlinear oscillators which can be excited by constant
inputs. In order to take such systems into consideration, we introduce a weaker notion, that
of steady-state characteristic on average:

Definition 4 We say that system (6) has steady-state characteristic on average χT : R →
S{R+} with respect to the norm ‖x‖

A
if and only if for each constant ūa and some T > 0

the following holds:

∀ ua(t) ∈ Ua : lim
t→∞

ua(t) = ūa ⇒ lim
t→∞

∫ t+T

t

‖x(τ)‖
A
dτ ∈ χT (ūa) (29)

11



Steady-state characterizations of system Sa allow to further specify the asymptotic behavior
of interconnection (11). These results are summarized in Lemmas 1 and 2 below.

Lemma 1 Let system (11) be given and h(z(t, z0)) be bounded for some x0, z0. Let, fur-
thermore, system (6) have steady-state characteristic χ(·) : R → S{R+}. Then the following
limiting relations hold6

lim
t→∞

‖x(t,x0)‖A = 0, lim
t→∞

h(z(t, z0)) ∈ χ−1(0) (30)

As follows from Lemma 1, in case the steady-state characteristic of Sa is defined, the asymp-
totic behavior of interconnection (11) is characterized by the zeroes of the steady-state
mapping χ(·). For the steady-state characteristics on average a slightly modified conclusion
can be derived.

Lemma 2 Let system (11) be given, h(z(t, z0)) be bounded for some x0, z0, h(z(t, z0)) ∈
[0, h(z0)], and system (6) have steady-state characteristic χT (·) : R → S{R+} on average.
Furthermore, let there exist a positive constant γ̄ such that the function γ1(·) in (8) satisfies
the following constraint:

γ1(s) ≥ γ̄ · s, ∀s ∈ [0, s̄], s̄ ∈ R+ : s̄ > c · h(z0), (31)

In addition, suppose that χT (·) has no zeros in the positive domain, i.e. 0 /∈ χT (ūa) for all
ūa > 0. Then

lim
t→∞

‖x(t,x0)‖A = 0, lim
t→∞

h(z(t, z0)) = 0 (32)

An immediate outcome of Lemmas 1 and 2 is that in case the conditions of Theorem
1 are satisfied and system (6) has steady-state characteristics χ(·) or χT (·) the domain of
convergence Ωa becomes

Ωa = {x ∈ X , z ∈ Z| ‖x‖
A
= 0, z : h(z) ∈ [0, h(z0)]} (33)

It is possible, however, to improve estimate (33) further under additional hypotheses on
system Sa and Sw dynamics. This result is formulated in the corollary below.

Corollary 1 Let system (11) be given and satisfy the assumptions of Theorem 1. Let, in
addition,

C1) the flow x(t,x0)⊕ z(t, z0) be generated by a system of autonomous differential equa-
tions with locally Lipschitz right-hand side;

C2) subsystem Sw be practically integral-input-to-state stable:

‖z(τ)‖∞,[t0,t] ≤ Cz +

∫ t

0

γ1(uw(τ))dτ (34)

and let function h(·) ∈ C0 in (8)
C3) system Sa have steady-state characteristic χ(·).

Then for all x0, z0 ∈ Ωγ the state of the interconnection converges to the set

Ωa = {x ∈ X , z ∈ Z| ‖x‖
A
= 0, h(z) ∈ χ−1(0)} (35)

6The symbol χ−1(0) in equation (30) denotes the set: χ−1(0) =
⋃

ūa∈R+
ūa : χ(ūa) ∋ 0.

12



Figure 4: Control of the attracting set by means of the system’s steady-state characteristics

As follows from Corollary 1 zeros of the steady state characteristic of system Sa actually
”controls” the domains to which the state of interconnection (11) might potentially converge.
This is illustrated in Fig. 4. Notice also that in case condition C3 in Corollary 1 is replaced
with the alternative:

C3’) system Sa has a steady-state characteristic on average χT (·),
then it is possible to show that the state converges to

Ωa = {x ∈ X , z ∈ Z| ‖x‖
A
= 0, h(z) = 0} (36)

The proof follows straightforwardly from the proof of Corollary 1 and is therefore omitted.

4.3 Systems with contracting dynamics separable in space-time

In the previous sections we have presented convergence tests and estimates of the trapping
region, and also characterized the attracting sets of interconnection (11) under assumptions
of uniform asymptotic stability of Sa and input-output properties (8), (34) of system Sw.
The conditions are given for rather general functions β(·, ·) ∈ KL in (6) and γ0(·), γ1(·) in
(8). It appears, however, that these conditions can be substantially simplified if additional
properties of β(·, ·) and γ0(·) are available. This information is, in particular, the separability
of function β(·, ·) or, equivalently, the possibility of factorization:

β(‖x‖
A
, t) ≤ βx(‖x‖A) · βt(t), (37)

where βx(·) ∈ K and βt(·) ∈ C0 is strictly decreasing7 with

lim
t→∞

βt(t) = 0 (38)

In principle, as shown in [8], factorization (37) is achievable for a large class of uniformly
asymptotically stable systems under an appropriate coordinate transformation. An immedi-
ate consequence of factorization (37) is that the elements of sequence Ξ in Condition 2 are
independent of ‖x(ti)‖A. As a result, verification of Conditions 2, 3 becomes easier. The
most interesting case, however, occurs when the function βx(·) in the factorization (37) is
Lipschitz. For this class of functions the conditions of Theorem 1 reduce to a single and
easily verifiable inequality. Let us consider this case in detail.

7If βt(·) is not strictly monotone, it can always be majorized by a strictly decreasing function
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Without loss of generality, we assume that the state x(t) of system Sa satisfies the
following equation

‖x(t)‖
A
≤ ‖x(t0)‖A · βt(t− t0) + c · ‖h(z(τ, z0))‖∞,[t0,t], (39)

where βt(0) is greater or equal to one. Given that βt(t) is strictly decreasing, the mapping
βt : [0,∞] 7→ [0, βt(0)] is injective. Moreover βt(t) is continuous, then it is surjective and,
therefore, bijective. In the other words there is a (continuous) mapping β−1

t : [0, βt(0)] 7→ R+:

β−1
t ◦ βt(t) = t, ∀ t > 0 (40)

Conditions for emergence of the trapping region for interconnection (11) with dynamics of
system Sa governed by equation (39) are summarized below:

Corollary 2 Let the interconnection (11) be given, system Sa satisfy (39) and function γ0(·)
in (8) be Lipschitz:

|γ0(s)| ≤ Dγ,0 · |s| (41)

and domain

Ωγ : Dγ,0 ≤

(

β−1
t

(

d

κ

))−1
κ− 1

κ

h(z0)

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|
(

1 + κ
1−d

)

+ c|h(z0)|
(42)

is not empty for some d < 1, κ > 1. Then for all initial conditions x0 z0 ∈ Ωγ the state
x(t,x0) ⊕ z(t, z0) of interconnection (11) converges into the set Ωa specified by (24). If, in
addition, conditions C1)–C3) of Corollary 1 hold then the domain of convergence is given by
(33).

A practically important consequence of this corollary concerns systems Sa which are
exponentially stable:

‖x(t)‖
A
≤ ‖x(t0)‖ADβ exp(−λt) + c · ‖h(z(t, z0))‖∞,[t0,t], λ > 0, Dβ ≥ 1 (43)

In this case the domain (42) of initial conditions ensuring convergence into Ωa is defined as

Dγ,0 ≤ max
κ>1, d∈(0,1)

−λ

(

ln
d

κ

)−1
κ− 1

κ

h(z0)

Dβ ‖x0‖A +Dβ · c · |h(z0)|
(

1 + κ
1−d

)

+ c|h(z0)|

5 Discussion

In this section we discuss some practically relevant outcomes of the results of Theorem 1
and Corollaries 1, 2 and their potential applications to problems of analysis of asymptotic
behavior in nonlinear dynamic systems.

First, in Subsection 5.1 we specify conditions for existence of a trapping region of nonzero
volume in R

n ⊕R
m in terms of the parameters of system (11) without invoking dependence

on x(t0), z(t0) as was done in Theorem 1. The resulting criterion has a form similar to the
standard small-gain conditions [33]. The differences and similarities between this new result
and standard small-gain theorems are illustrated with an example.

Second, in Subsection 5.2 we demonstrate how the results of our present contribution
can be applied to address the problem of output nonlinear identification for systems which
cannot be transformed into a canonic observer form or/and with nonlinear parametrization.
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5.1 Relation to conventional small-gain theorems

Conditions specifying state boundedness formulated in Theorem 1 and Corollaries 1, 2 de-
pend explicitly on initial conditions x(t0), z(t0). Such dependence is inevitable when the
convergence is allowed to be non-uniform. But if mere existence of a trapping region is asked
for, dependence on initial conditions may be removed from the statements of the results. The
next corollary presents such modified conditions.

Corollary 3 Consider interconnection (11) where the system Sa satisfies inequality (39) and
the function γ0(·) obeys (41). Then there exists a set Ωγ of initial conditions corresponding
to the trajectories converging to Ωa if the following condition is satisfied

Dγ,0 · c · G < 1, (44)

where

G = β−1
t

(

d

κ

)

k

k − 1

(

βt(0)

(

1 +
κ

1− d

)

+ 1

)

for some d ∈ (0, 1), κ ∈ (1,∞). In particular, Ωγ contains the following domain

‖x(t0)‖A ≤
1

βt(0)

[

1

Dγ,0

(

β−1
t

(

d

κ

))−1
k − 1

k
− c

(

βt(0)

(

1 +
κ

1− d

)

+ 1

)

]

h(z(t0)).

In case the function h(z) in (11) is continuous, the volume of the set Ωγ is nonzero in
R

n ⊕ R
m.

Notice that in case the dynamics of the contracting subsystem Sa is exponentially stable,
i.e. it satisfies inequality (43), the term G in condition (44) reduces to

G =
1

λ
· ln
(κ

d

) k

k − 1

(

Dβ

(

1 +
κ

1− d

)

+ 1

)

(45)

For Dβ = 1 the minimal value of G in (45) can be estimated as

G∗ =
1

λ
· min
d∈(0,1), κ∈(1,∞)

ln
(κ

d

) k

k − 1

(

2 +
κ

1− d

)

≈
15.6886

λ
<

16

λ
, (46)

which leads to an even more simple formulation of (45):

Dγ,0 ·
c

λ
≤

1

16

Corollary 3 provides an explicit and easy-to-check condition for existence of a trapping
region in the state space of a class of Lyapunov unstable systems. In addition, it allows to
specify explicitly points x(t0), z(t0) which belong to the emergent trapping region. Notice
also that the existence condition, inequality (44), has the flavor of conventional small-gain
constraints. Yet, it is substantially different from these classical results. This is because the
input-output gain for the wandering subsystem, Sw, may not be finite or need not even be
defined.
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To elucidate these differences as well as the similarities between conditions of conventional
small-gain theorems and those formulated in Corollary 3 we provide an example. Consider
the following systems

{

ẋ1 = −λ1x1 + c1x2

ẋ2 = −λ2x2 − c2|x1|
(47a)

{

ẋ1 = −λ1x1 + c1x2

ẋ2 = −c2|x1|
(47b)

System (47a) can be viewed as an interconnection of two input-to-state stable systems, x1
and x2, with input-output L∞-gains c1/λ1 and c2/λ2 respectively. Therefore, in order to
prove state boundedness of (47a) we can, in principle, invoke the conventional small-gain
theorem. The small-gain condition in this case is as follows:

c1
λ1

·
c2
λ2

< 1 (48a)

The theorem, however, does not apply to system (47b) because the input-output gain of its
second subsystem, x2, is infinite. Yet, by invoking Corollary 3 it is still possible to show
existence of a weak attracting set in the state space of system (47b) and specify its basin of
attraction. As follows from Corollary 3, condition

c1
λ1

·
c2
λ1

<
1

16
(48b)

ensures existence of the trapping region, and the trapping region itself is given by

|x1(t0)| ≤

[

1

c2
λ1

(

ln
κ

d

)−1 k − 1

k
−
c1
λ1

(

2 +
κ

1− d

)]

x2(t0).

5.2 Output nonlinear identification problem

In the literature on adaptive control, observation, and identification a few classes of systems
are referred to as canonic forms because they guarantee existence of a solution to the problem
and because a large variety of physical models can be transformed into this class. Among
these, perhaps the most widely known is the adaptive observer canonical form [3]. Necessary
and sufficient conditions for transformation of the original system into this canonical form can
be found, for example, in [16]. These conditions, however, include restrictive requirements
of linearization of uncertainty-independent dynamics by output injection, and they also
require linear parametrization of the uncertainty. Alternative approaches [4] heavily rely on
knowledge of the proper Lyapunov function for the uncertainty-independent part and still
assume linear parametrization.

We now demonstrate how these restrictions can be lifted by application of our result
to the problem of state and parameter observation. Let us consider systems which can be
transformed by means of static or dynamic feedback8 into the following form:

ẋ = f0(x, t) + f(ξ(t), θ)− f(ξ(t), θ̂) + ε(t), (49)

8Notice that conventional observers in control theory could be viewed as dynamic feedbacks.

16



where
ε(t) ∈ Lm

∞[t0,∞], ‖ε(τ)‖∞,[t0,t] ≤ ∆ε

is an external perturbation with known ∆ε, and x ∈ R
n. The function ξ : R+ → R

ξ

is a function of time, which possibly includes available measurements of the state, and
θ, θ̂ ∈ Ωθ ⊂ R

d are the unknown and estimated parameters of function the f(·), respectively,
and the set Ωθ is bounded. We assume that the function f(ξ(t), θ) is locally bounded in θ

uniformly in ξ:
‖f(ξ(t), θ)− f(ξ(t), θ̂)‖ ≤ Df‖θ − θ̂‖+∆f

and the values of Df ∈ R+, ∆f are available. The function f0(·) in (49) is assumed to satisfy
the following condition.

Assumption 3 The system
ẋ = f0(x, t) + u(t) (50)

is forward-complete. Furthermore, for all u(t) such that

‖u(t)‖∞,[t0,t] ≤ ∆u + ‖u0(τ)‖∞,[t0,t], ∆u ∈ R+

there exists a bounded set A, c > 0 and a function ∆ : R+ → R+ satisfying the following
inequality

‖x(t)‖
A∆(∆u)

≤ β(t− t0) ‖x(t0)‖A∆(∆u)
+ c‖u0(τ)‖∞,[t0,t]

where β(·) : R+ → R+, limt→∞ β(t) = 0 is a strictly decreasing function

Consider the following auxiliary system

λ̇ = S(λ), λ(t0) = λ0 ∈ Ωλ ⊂ R
λ (51)

where Ωλ ⊂ R
n is bounded and S(λ) is locally Lipschitz. Furthermore, suppose that the

following assumption holds for system (51).

Assumption 4 System (51) is Poisson stable in Ωλ that is

∀ λ′ ∈ Ωλ, t
′ ∈ R+ ⇒ ∃t′′ > t : ‖λ(t′′,λ′)− λ′‖ ≤ ǫ,

where ǫ is an arbitrary small positive constant. Moreover, the trajectory λ(t,λ0) is dense in
Ωλ:

∀λ′ ∈ Ωλ, ǫ ∈ R>0 ⇒ ∃ t ∈ R+ : ‖λ′ − λ(t,λ0)‖ < ǫ

Now we are ready to formulate the following statement

Corollary 4 Consider system (49) and suppose that the following conditions hold
C4) the vector-field f0(x, t) in (49) satisfies Assumption 3;
C5) there exists a (known) system (51) satisfying Assumption 4;
C6) there exists a locally Lipschitz η : Rλ → R

d:

‖η(λ′)− η(λ′′)‖ ≤ Dη‖λ
′ − λ′′‖

such that the set η(Ωλ) is dense in Ωθ;
C7) system (49) has steady-state characteristic with respect to the norm

‖·‖
A∆(M)

, M = 2∆f +∆ε + δ
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and input θ̂, where δ is some positive (arbitrary small) constant.
Consider the following interconnection of (49), (51):

ẋ = f0(x, t) + f(ξ(t), θ)− f(ξ(t), θ̂) + ε(t)

θ̂ = η(λ)

λ̇ = γ ‖x(t)‖
A∆(M)

S(λ),

(52)

where γ > 0 satisfies the following inequality

γ ≤

(

β−1
t

(

d

κ

))−1
κ− 1

κ

1

Dλ

(

βt(0)
(

1 + κ
1−d

)

+ 1
)

Dλ = c ·Df ·Dη · max
λ∈Ωλ

‖S(λ)‖

(53)

for some d ∈ (0, 1), κ ∈ (1,∞). Then, for λ(t0) = λ0, some θ′ ∈ Ωθ and all x(t0) = x0 ∈ R
n

the following holds

lim
t→∞

‖x(t)‖
A∆(M)

= 0, lim
t→∞

θ̂(t) = θ′ ∈ Ωθ (54)

Notice that, as has been pointed out in the previous section, in case the dynamics of (50) is
exponentially stable with rate of convergence equal to ρ and β(0) = Dβ, condition (53) will
have the following form

γ ≤ −ρ

(

ln
d

κ

)−1
κ− 1

κ

1

Dλ

(

Dβ

(

1 + κ
1−d

)

+ 1
)

According to Corollary 4, for the rather general class of systems (49) it is possible to
design an estimator θ̂(t) which guarantees that not only the ”error” vector x(t) reaches a
neighborhood of the origin, but also that the estimates θ̂(t) converge to some θ′ in Ωθ. Both
these facts, together with additional nonlinear persistent excitation conditions [6],[27]

∃T > 0, ρ ∈ K : ∀ T = [t, t+T ], t ∈ R+ ⇒ ∃τ ∈ T : |f(ξ(τ), θ)− f(ξ(τ), θ′)| ≥ ρ(‖θ−θ′‖),

in principle allow us to estimate the domain of convergence for θ̂(t).
Concluding this section we mention that statements of Theorem 1 and Corollaries 1–4

constitute additional theoretical tools for the analysis of asymptotic behavior of systems in
cascaded form. In particular they are complementary to the results of [1] where asymptotic
stability of the following type of systems

ẋ = f(x),

ż = q(x, z), f : Rn → R
n, q : Rn × R

m → R
m

was considered under assumption that the x-subsystem is globally asymptotically stable and
the z-subsystem is integral input-to-state stable. In contrast to this, our results apply to
establishing asymptotic convergence for systems with the following structure

ẋ = f(x, z),

ż = q(x, z), f : Rn × R
m → R

n

where the x-subsystem is input-to-state stable, and the z-subsystem could be practically
integral input-to-state stable (see Corollary 1), although in general no stability assumptions
are imposed on it.
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6 Examples

In this section we provide two examples of parameter identification in nonlinearly parame-
terized systems that cannot be transformed into the canonical adaptive observer form.

The first example is merely an academical illustration of Corollary 4, where only one
parameter is unknown and the system itself is a first-order differential equation. The second
example illustrates a possible application of our results to the problem of identifying the
dynamics in living cells.

Example 1. Consider the following system

ẋ = −kx+ sin(xθ + θ) + u, k > 0, θ ∈ [−a, a] (55)

where θ is an unknown parameter and u is the control input. Without loss of generality we
let a = 1, k = 1. The problem is to estimate the parameter θ from measurements of x and
steer the system to the origin. Clearly, the choice u = − sin(xθ̂ + θ̂) transforms (55) into

ẋ = −kx+ sin(xθ + θ)− sin(xθ̂ + θ̂) (56)

which satisfies Assumption 3. Moreover, the system

λ̇1 = λ1

λ̇2 = −λ2, λ
2
1(t0) + λ22(t0) = 1

with mapping η = (1, 0)Tλ satisfies Assumption 4 and therefore

λ̇1 = γ|x|λ1

λ̇2 = −γ|x|λ2, λ
2
1(t0) + λ22(t0) = 1

(57)

would be a candidate for the control and parameter estimation algorithm. According to
Corollary 4, the goal will be reached if the parameter γ in (57) obeys the following constraint

γ ≤ −ρ

(

ln
d

κ

)−1
κ− 1

κ

1

Dλ

(

Dβ

(

1 + κ
1−d

)

+ 1
) , ρ = k = 1, Dβ = 1, Dλ = 1

for some d ∈ (0, 1), κ ∈ (1,∞). Hence, choosing, for example, d = 0.5, κ = 2 we obtain that
choice

0 < γ < − ln

(

0.5

2

)−1
1

2
·
1

6
= 0.0601

suffices to ensure that
lim
t→∞

x(t) = 0, lim
t→∞

θ̂(t) = θ

We simulated system (56), (57) with θ = 0.3, γ = 0.05 and initial conditions x(t0)
randomly distributed in the interval [−1, 1]. Results of the simulation are illustrated with
Figure 5, where the phase plots of system (56), (57) as well as the trajectories of θ̂(t) are
given.

Example 2. Consider the problem of modelling electrical activity in biological cells from
the input-output data in current clamp experiments. The simplest mathematical model,
which captures a fairly large variety of phenomena like periodic bursting in response to
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Figure 5: Trajectories of system (56), (57) (left panel) and the family of estimates θ̂(t) of
parameter θ as functions of time t (right panel)

constant stimulation is the classical Hindmarsh and Rose model neuron without adaptation
currents [10]:

ẋ1 = −ax31 + bx21 + x2 + αu

ẋ2 = c− βx2 − dx21
(58)

where variable x1 is the membrane potential, x2 stands for the ionic currents in the cell, u
is the input current, and a, b, c, d, α, β ∈ R are parameters. While the parameters of the
first equation can, in principle, be identified experimentally by blocking the ionic channels
in the cells and measuring the membrane conductance, identification of parameters β, d is a
difficult problem, as information about ionic currents x2 is rarely available.

Conventional techniques [3] cannot be applied directly to this problem as the model (58)
is not in canonical adaptive observer form. Let us illustrate how our results can be used to
derive the unknown parameters of (58) such that the reconstructed model fits the observed
data. Assume, first, that parameters a, b, c, α in the first equation of (58) are known, whereas
parameters β, d in the second equation are unknown. This corresponds to the realistic case
where the time constant of current x2 and coupling between x1 and x2 are uncertain. In our
example we assumed that

β ∈ Ωβ = [0.3, 0.7], d ∈ Ωd = [2, 3], a = 1, b = 3, α = 0.7, c = 0.5

As a candidate for the observer we select the following system

˙̂x = ρ(x1 − x̂)− ax31 + bx21 + αu+ f(β̂, d̂, t), ρ ∈ R>0 (59)

where β̂, d̂ are parameters to be adjusted and the function f(β̂, d̂, t) is specified as

f(β̂, d̂, t) =

∫ t

0

e−β̂(t−τ)(d̂x21(τ) + c)dτ

Then the dynamics of x̃(t) = x(t)− x̂(t) satisfies the following differential equation

˙̃x = −ρx̃+ f(β, d, t)− f(β̂, d̂, t)
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The function f(β, d, t) satisfies the following inequality

|f(β, d, t)− f(β̂, d̂, t)| ≤ |f(β, d, t)− f(β̂, d, t)|+ |f(β̂, d, t)− f(β̂, d̂, t)|

≤ Df,β|β − β̂|+Df,d|d− d̂|+ ǫ(t),

where ǫ(t) is an exponentially decaying term, and

Df,β = max
β̂,β∈Ωβ , d∈Ωd

{

1

ββ̂
(d‖x1(τ)‖∞,[t0,∞] + c)

}

, Df,d = max
β̂∈Ωβ

{

1

β̂
‖x1(τ)‖∞,[t0,∞]

}

(60)

Furthermore, Assumption 3 is satisfied for system

˙̃x = −ρx̃ + υ(t), (61)

with

∆(∆u) =
∆u

ρ
.

In particular, for all υ(t) : ‖υ(τ)‖∞,[t0,t] ≤ ∆u+ ‖υ0(τ)‖∞,[t0,t] the following inequality holds:

‖x(t)‖∆(∆u) ≤ e−ρ(t−t0)‖x(t0)‖∆(∆u) +
1

ρ
‖υ0(τ)‖∞,[t0,t]. (62)

To see this consider the general solution of (61):

x(t) = e−ρ(t−t0)x(t0) + e−ρt

∫ t

t0

eρτυ(τ)dτ

and derive an estimate of |x(t)|. This estimate has the following form:

|x(t)| ≤ e−ρ(t−t0)|x(t0)|+
1

ρ

(

1− e−ρ(t−t0)
)

‖υ(τ)‖∞,[t0,t]

≤ e−ρ(t−t0)

(

|x(t0)| −
1

ρ
∆u

)

+
1

ρ

(

‖υ0(τ)‖∞,[t0,t] +∆u

)

≤ e−ρ(t−t0)‖x(t0)‖∆(∆u) +
1

ρ

(

‖υ0(τ)‖∞,[t0,t] +∆u

)

Hence

|x(t)| −
1

ρ
∆u ≤ e−ρ(t−t0)‖x(t0)‖∆(∆u) +

1

ρ
‖υ0(τ)‖∞,[t0,t],

which automatically implies (62).
Let us define subsystem (51). Consider the following system of differential equations

λ̇1 = λ2

λ̇2 = −ω2
1λ1

λ̇3 = λ4

λ̇4 = −ω2
2λ3, λ0 = (1, 0, 1, 0)T

(63)
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where Ωλ is the ω-limit set of the point λ0, and ω1, ω2 ∈ R. System (63), therefore, satisfies
Assumption 4. Given that domains Ωβ, Ωd are known, select

η : Rn → R
2, η = (η1(λ), η2(λ))

β̂ = η1(λ) =
1

2

(

2 arcsin(λ1)

π
+ 1

)

· 0.4 + 0.3, d̂ = η2(λ) =
1

2

(

2 arcsin(λ3)

π
+ 1

)

+ 2
(64)

Choosing
ω1

ω2
= π

we ensure that η(Ωλ) is dense in Ωβ × Ωd. Given that β̂, d̂ are bounded and β̂ ≥ 0.3, Df,β

and Df,d in (60) are also bounded because for the given range of parameters signal x1(t) is
always bounded. Hence, according to Corollary 4, interconnection of (59), (64) and

λ̇1 = γ‖x̃(t)‖∆(δ) · λ2

λ̇2 = −γ‖x̃(t)‖∆(δ) · ω
2
1λ1

λ̇3 = γ‖x̃(t)‖∆(δ) · λ4

λ̇4 = −γ‖x̃(t)‖∆(δ) · ω
2
2λ3, λ0 = (1, 0, 1, 0)T

with arbitrary small δ > 0 and properly chosen γ > 0 ensures that

lim
t→∞

‖x̃(t)‖∆(δ) = 0, lim
t→∞

β̂(t) = β ′ ∈ Ωβ, lim
t→∞

d̂(t) = d′ ∈ Ωd

This in turn implies a successful fit of the model to the observations.
We simulated the system with ρ = 10 and γ = 3 · 10−4 for β = 0.5, d = 2.5. The

results of the simulations are provided in figure 6. It can be seen from this figure that the
reconstruction is successful and the parameters converge into a small neighborhood of the
actual values.

7 Conclusion

We proposed tools for the analysis of asymptotic behavior of a class of dynamical systems. In
particular, we consider an interconnection of an input-to-state stable system with an unstable
or integrally input-to-state dynamics. Our results allow to address a variety of problems in
which convergence may not be unform with respect to initial conditions. It is necessary
to notice that the proposed method does not require complete knowledge of the dynamical
systems in question. Only qualitative information like, for instance, characterization of
input-to-state stability of is necessary for application of our results. We demonstrated how
our analysis can be used in the problems of synthesis and design – in particular to problems
of nonlinear regulation and parameter identification of nonlinear parameterized systems.
The examples show the relevance of our approach in those domains where application of the
standard techniques is either not possible or too complicated.
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Figure 6: Left panel – trajectories x1(t), x2(t) of system (58) plotted for the nominal values
of parameters β = 0.5, d = 2.5 (model), and for the values β = β̂(t0 + T ), d = d̂(t0 + T ),
where T is the total simulation time (reconstruction). Input u(t) is a rectangular impulse
with amplitude 0.7 starting at t = 100 and ending at t = 300. Right panel – searching
dynamics in the bounded parameter space (a segment of the trajectory β̂(t), d̂(t) towards
the end of the simulation).

9 Appendix

Proof of Theorem 1. Let the conditions of the theorem be satisfied for given t0 ∈ R+:
x(t0) = x0, z(t0) = z0. Notice that in this case h(z0) ≥ 0, otherwise requirement (26) will
be violated. Consider the sequence (23) of volumes Ωi induced by S:

Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi}

To prove the theorem we show that 0 ≤ h(z(t)) ≤ h(z0) for all t ≥ t0. For the given partition
(23) we consider two alternatives.

First, in the degenerative case, the state x(t)⊕z(t) enters some Ωj, j ≥ 0 and stays there
for all t ≥ t0 which automatically guarantees that 0 ≤ |h(z)| ≤ h(z0). Then, according to
(6) the trajectory x(t) satisfies the following inequality:

‖x(t)‖
A
≤ β(‖x0‖A , t− t0) + c‖h(z(t))‖∞,[t0,t] ≤ β(‖x0‖A , t− t0) + c|h(z0)| (65)

Taking into account that β(·, ·) ∈ KL we can conclude that (65) implies that

lim sup
t→∞

‖x(t)‖
A
= c|h(z0)| (66)

Therefore the statements of the theorem hold.
Let us consider the second alternative, where the state x(t)⊕ z(t) does not belong to Ωj

for all t ≥ t0. Given that h(z(t)) is monotone and non-increasing in t, this implies that there
exists an ordered sequence of time instants tj :

t0 > t1 > t2 · · · tj > tj+1 · · · (67)

such that
h(z(ti)) = σih(z0) (68)
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Hence in order to prove the theorem we must show that the sequence {ti}
∞
i=0 does not

converge. In other words, the boundary σ∞h(z0) = 0 will not be reached in finite time.
In order to do this let us estimate the upper bounds for the following differences

Ti = ti+1 − ti

Taking into account inequality (8) and the fact that γ0(·) ∈ Ke we can derive that

h(z(ti))− h(z(ti+1)) ≤ Ti max
τ∈[ti,ti+1]

γ0(‖x(τ)‖A) ≤ Tiγ0(‖x(τ)‖A∞,[ti,ti+1]
) (69)

According to the definition of ti in (68) and noticing that the sequence S is strictly decreasing
we have

h(z(ti))− h(z(ti+1)) = (σi − σi+1)h(z0) > 0

Hence h(z0) > 0 implies that γ0(‖x(τ)‖A∞,[ti,ti+1]
) > 0 and, therefore, (69) results in the

following estimate of Ti

Ti ≥
h(z(ti))− h(z(ti+1))

γ0(‖x(τ)‖A∞,[ti,ti+1]
)
=

h(z0)(σi − σi+1)

γ0(‖x(τ)‖A∞,[ti,ti+1]
)

(70)

Taking into account that h(z(t)) is non-increasing over [ti, ti+1] and using (6) we can bound
the norm ‖x(τ)‖

A∞,[ti,ti+1]
as follows

‖x(τ)‖
A∞,[ti,ti+1]

≤ β(‖x(ti)‖A , 0) + c‖h(z(τ))‖∞,[ti,ti+1] ≤ β(‖x(ti)‖A , 0) + c · σih(z0) (71)

Hence, combining (70) and (71) we obtain that

Ti ≥
h(z0)(σi − σi+1)

γ0(σi(σ
−1
i β(‖x(ti)‖A , 0) + c · h(z0)))

Then, using property (10) of function γ0 we can derive that

Ti ≥
h(z0)(σi − σi+1)

γ0,1(σi)

1

γ0,2(σ
−1
i β(‖x(ti)‖A , 0) + c · h(z0)))

(72)

Taking into account condition (27) of the theorem, the theorem will be proven if we assure
that

Ti ≥ τi (73)

for all i = 0, 1, 2, . . . ,∞. We prove this claim by induction with respect to the index i =
0, 1, . . . ,∞. We start with i = 0, and then show that for all i > 0 the following implication
holds

Ti ≥ τi ⇒ Ti+1 ≥ τi+1 (74)

Let us prove that (73) holds for i = 0. To this purpose consider the term (σi − σi+1)/γ0,1(σi).
As follows immediately from the conditions of the theorem, equation (25), we have that

σi − σi+1

γ0,1(σi)
≥ τi∆0 ∀ i ≥ 0 (75)

In particular
σ0 − σ1
γ0,1(σ0)

≥ τ0∆0
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Therefore, inequality (72) reduces to

T0 ≥ τ0∆0
h(z0)

γ0,2(σ
−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

(76)

Moreover, taking into account Condition 3 and (18), (19) we can derive the following esti-
mate:

σ−1
0 β(‖x(t0)‖A , 0) ≤ σ−1

0 φ0(‖x(t0)‖A) + σ−1
0 υ0(c · |h(z0)|σ0) ≤ B1(‖x0‖A) +B2(|h(z0)|, c)

According to the theorem conditions x0 and z0 satisfy inequality (26). This in turn implies
that

γ0,2(σ
−1
0 β(‖x(t0)‖A , 0) + c · h(z0)) ≤ γ0,2(B1(‖x0‖A) +B2(|h(z0)|, c) + c · h(z0)) ≤ ∆0 · h(z0)

(77)
Combining (76) and (77) we obtain the desired inequality

T0 ≥ τ0∆0
h(z0)

γ0,2(σ
−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

≥ τ0
∆0h(z0)

∆0h(z0)
= τ0

Thus the basis of induction is proven.
Let us assume that (73) holds for all i = 0, . . . , n, n ≥ 0. We shall prove now that

implication (74) holds for i = n+ 1. Consider the term β(‖x(tn+1)‖A , 0):

β(‖x(tn+1)‖A , 0) ≤ β(β(‖x(tn)‖A , Tn) + c‖h(z(τ))‖∞,[tn,tn+1], 0)

≤ β(β(‖x(tn)‖A , Tn) + c · σn · h(z0), 0)

Taking into account Condition 2 (specifically, inequality (17)) and (18)–(20) we can derive
that

β(‖x(tn+1)‖A , 0) ≤ β(ξn ·β(‖x(tn)‖A), 0)+c ·σn ·h(z0), 0) ≤ φ1(‖x(tn)‖A)+υ1(c · |h(z)0| ·σn)
(78)

Notice that, according to the inductive hypothesis (Ti ≥ τi), the following holds

‖x(ti+1)‖A ≤ β(‖x(ti)‖A , Ti) + c · σi · h(z0) ≤ ξiβ(‖x(ti)‖A , 0) + c · σi · h(z0) (79)

for all i = 0, . . . , n. Then (78), (79), (18)–(20) imply that

β(‖x(tn+1)‖A , 0) ≤ φ1(ξiβ(‖x(tn−1)‖A , 0) + c · σn−1 · h(z0)) + υ1(c · |h(z)0| · σn)

≤ φ2(‖x(tn−1)‖A) + υ2(c · |h(z0)| · σn−1) + υ1(c · |h(z0)| · σn)

≤ φn+1(‖x0‖A) +

n+1
∑

i=1

υi(c · |h(z0)|σn+1−i) ≤ φn+1(‖x0‖A) +

n+1
∑

i=0

υi(c · |h(z0)|σn+1−i)

(80)

According to Condition 3, term

σ−1
n+1

(

φn+1(‖x0‖A) +

n+1
∑

i=0

υi(c · |h(z0)|σn+1−i)

)

is bounded from above by the sum

B1(‖x0‖A) +B2(|h(z0)|, c)
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Therefore, monotonicity of γ0,2, estimate (80), and inequality (26) lead to the following
inequality

γ0,2(σ
−1
n+1β(‖x(tn+1‖A), 0)+ c ·h(z0)) ≤ γ0,2(B1(‖x0‖A)+B2(|h(z0)|, c)+ c ·h(z0)) ≤ h(z0)∆0

Hence, according to (72), (75) we have:

Tn+1 ≥
(σn+1 − σn+2)

γ0,1(σn+1)

h(z0)

γ0,2(σ
−1
n+1β(‖x(tn+1)‖A , 0) + c · h(z0))

≥ τn+1
∆0h(z0)

∆0h(z0)
= τn+1

Thus implication (74) is proven. This implies that h(z(t)) ∈ [0, h(z0)] for all t ≥ t0 and,
consequently, that (66) holds. The theorem is proven.

Proof of Lemma 1. As follows from the assumptions, h(z(t, z0)) is bounded. Assume it
belongs to the following interval [a, h(z0)], a ≤ h(z0). Therefore, as follows from (8) we can
conclude that

0 ≤

∫ ∞

t0

γ1(‖x(τ,x0)‖A)dτ ≤ h(z0)− h(z(t, z0)) ≤ ∞ (81)

On the other hand, taking into account that h(z(t, z0)) is bounded and monotone in t
(every subsequence of which is this is again monotone) and applying the Bolzano-Weierstrass
theorem we can conclude that h(z(t, z0)) converges in [a, h(z0)]. In particular, there exists
h̄ ∈ [a, h(z0)] such that

lim
t→∞

h(z(t, z0)) = h̄ (82)

According to the lemma assumptions, system Sa has steady-state characteristics. This means
that there exists a constant x̄ ∈ R+ such that

lim
t→∞

‖x(t,x0)‖A = x̄ (83)

Suppose that x̄ > 0. Then it follows from (83) that there exists time instant t1 < ∞ and
some constant 0 < δ < x̄ such that

‖x(t)‖
A
≥ δ ∀t ≥ t1

Hence using (81) and noticing that γ1 ∈ Ke we obtain

∞ > h(z0)− h(z0) ≥ lim
T→∞

∫ T

t1

γ1(δ)dτ = ∞

Thus we obtained a contradiction. Hence, x̄ = 0 and, consequently,

lim
t→∞

‖x(t)‖
A
= 0

Then, according to the notion of steady-state characteristic in Definition 3 this is only
possible if h̄ ∈ χ−1(0). The lemma is proven.

Proof of Lemma 2. Analogously to the proof of Lemma 1 we notice that (81) holds. This,
however, implies that for any constant and positive T the following limit

lim
t→∞

∫ t+T

t

γ1(‖x(τ)‖A)dτ
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exists and equals zero. Furthermore, h(z(t, z0)) ∈ [0, h(z0)] for all t ≥ t0. Hence, there exists
a time instant t′ such that

‖x(t)‖
A
≤ c · h(z0) + ε, ∀ t ≥ t′,

where ε > 0 is arbitrary small. Then taking into account (31) we can conclude that

lim
t→∞

∫ t+T

t

γ1(‖x(τ)‖A)dτ ≥ γ̄

∫ t+T

t

‖x(τ)‖
A
dτ = 0 (84)

Given that (82) holds, system (6) has the steady-state characteristic on average and that
χT (·) has no zeros in the positive domain, limiting relation (84) is possible only if h̄ = 0.
Then, according to (6), limt→∞ ‖x(t)‖

A
= 0. The lemma is proven.

Proof of Corollary 1. As follows from Theorem 1, state x(t,x0) ⊕ z(t, z0) converges to
the set Ωa specified by (24). Hence h(z(t, z0)) is bounded. Then, according to (8), estimate
(81) holds. This, in combination with condition (34), implies that z(t, z0) is bounded. In
other words

x(t,x0)⊕ z(t, z0) ∈ Ω′ ∀ t ≥ t0

where Ω′ is a bounded subset in R
n × R

m. Applying the Bolzano-Weierstrass theorem we
can conclude that for every point x0 ⊕ z0 ∈ Ωγ there is an ω-limit set ω(x0 ⊕ z0) ⊆ Ω′

(non-empty).
As follows from C3) and Lemma 1 the following holds:

lim
t→∞

h(z(t, z0)) ∈ χ−1(0)

Therefore, given that h(·) ∈ C0, we can obtain that

lim
ti→∞

h(z(ti, z0)) = h( lim
ti→∞

z(ti, z0)) = h(ωz(x0 ⊕ z0)) ∈ χ−1(0)

In other words:

ωz(x0 ⊕ z0) ⊆ Ωh = {x ∈ R
n, z ∈ R

m| h(z) ∈ χ−1(0)}

Moreover
ωx(x0 ⊕ z0) ⊆ Ωa = {x ∈ R

n, z ∈ R
m| ‖x‖

A
= 0}

According to assumption C1, the flow x(t,x0) ⊕ z(t, z0) is generated by a system of au-
tonomous differential equations with locally Lipschitz right-hand side. Then, as follows from
[13] (Lemma 4.1, page 127)

lim
t→∞

dist(x(t,x0)⊕ z(t, z0), ω(x0 ⊕ z0)) = 0

Noticing that

dist(x(t,x0)⊕ z(t, z0), ω(x0 ⊕ z0)) ≥ dist(x(t,x0),Ωa) + dist(z(t, z0),Ωh)

we can finally obtain that

lim
t→∞

dist(x(t,x0),Ωa) = 0, lim
t→∞

dist(z(t, z0),Ωh) = 0
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The corollary is proven.

Proof of Corollary 2. As follows from Theorem 1, the corollary will be proven if Condi-
tions 1 – 3 are satisfied and also (25), (26), and (27) hold. In order to satisfy Condition 1
we select the following sequence S:

S = {σi}
∞

i=0, σi =
1

κi
, κ ∈ R+, κ > 1 (85)

Let us chose sequences T and Ξ as follows:

T = {τi}
∞

i=0, τi = τ ∗, (86)

Ξ = {ξi}
∞

i=0, ξi = ξ∗, (87)

where τ ∗, ξ∗ are positive constants yet to be defined. Notice that choosing T as in (86)
automatically fulfills condition (27) of Theorem 1. On the other hand, taking into account
(17), (39) and that βt(t) is monotonically decreasing in t, this choice defines a constant ξ∗

as follows:
βt(τ

∗) ≤ ξ∗βt(0) < βt(0), 0 ≤ ξ∗ < 1 (88)

Given that the inverse β−1
t exists, (40), this choice is always possible. In particular, (88) will

be satisfied for the following values of τ ∗:

τ ∗ ≥ β−1
t (ξ∗βt(0)) (89)

Let us now find the values for τ ∗ and ξ∗ such that Condition 3 is also satisfied. To this
purpose consider systems of functions Φ, Υ specified by equations (18), (19). Notice that
function β(s, 0) in (18), (19) is linear for system (39)

β(s, 0) = s · βt(0),

and therefore the functions ρφ,j(·), ρυ,j are identity maps. Hence, Φ, Υ reduce to the following

Φ :
φj(s) = φj−1 · ξ

∗ · β(s, 0) = ξ∗ · βt(0) · φj−1(s), j = 1, . . . , i
φ0(s) = βt(0) · s

(90)

Υ :
υj(s) = φj−1(s), j = 1, . . . , i
υ0(s) = βt(0) · s

(91)

Taking into account (85), (90), (91) let us explicitly formulate requirements (21), (22) in
Condition 3. These conditions are equivalent to the boundedness of the following functions

‖x(t0)‖A · βt(0) · κ
n(ξ∗ · βt(0))

n; (92)

κn

(

βt(0)
c|h(z0)|

κn
+
βt(0)c|h(z0)|

κn−1
+ βt(0)

n
∑

i=2

c|h(z0)|
1

kn−i
(ξ∗ · βt(0))

i−1

)

= βt(0)c|h(z0)|+ βt(0)c|h(z0)|κ

(

1 +

n
∑

i=2

κi−1(ξ∗ · βt(0))
i−1

) (93)

Boundedness of the functions B1(‖x0‖A) and B2(|h(z0)|, c) is ensured if ξ∗ satisfies the fol-
lowing inequality

ξ∗ ≤
d

κ · βt(0)
(94)
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for some 0 ≤ d < 1. Notice that κ > 1, βt(0) ≥ 1 imply that ξ∗ ≤ 1 and therefore constant τ ∗

satisfying (89) will always be defied. Hence, according to (92), (93), the functions B1(‖x0‖A)
and B2(|h(z0)|, c) satisfying Condition 3 can be chosen as

B1(‖x0‖A) = βt(0) ‖x0‖A ; B2(|h(z0)|, c) = βt(0) · c · |h(z0)|

(

1 +
κ

1− d

)

(95)

In order to apply Theorem 1 we have to check the remaining conditions (25) and (26).
This requires the possibility of factorization (10) for the function γ0(·). According to as-
sumption (41) of the corollary the function γ0(·) is Lipschitz:

|γ0(s)| ≤ Dγ,0 · |s|

This allows us to choose function γ0,1(·) and γ0,2(·) as follows:

γ0,1(s) = s, γ0,2(s) = Dγ,0 · s (96)

Condition (25), therefore, is equivalent to solvability of the following inequality:

(

1

κi
−

1

κi+1

)

κi

τ ∗
≥ ∆0 (97)

Taking into account inequalities (89), (94) we can derive that solvability of

∆0 =

(

β−1
t

(

d

κ

))−1
κ− 1

κ
(98)

implies existence of ∆0 > 0 satisfying (97) and, consequently, condition (25) of Theorem 1.
Given that d < 1, κ > 1 and βt(0) ≥ 1 a positive solution to (98) is always defined. Hence,
the proof will be complete and the claim is non-vacuous if the domain

Dγ,0 ≤

(

β−1
t

(

d

κ

))−1
κ− 1

κ

h(z0)

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|
(

1 + κ
1−d

)

+ c|h(z0)|
(99)

is not empty. The corollary is proven.

Proof of Corollary 3. It follows from Corollary 2 that state of the interconnection con-
verges into Ωa for all initial conditions x0, z0 satisfying (99). In other words the following
inequality should hold:

Dγ,0

(

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|

(

1 +
κ

1− d

)

+ c|h(z0)|

)

≤

(

β−1
t

(

d

κ

))−1
κ− 1

κ
· h(z0)

(100)

Hence, assuming that h(z0) > 0 we can rewrite (100) in the following way:

Dγ,0 · βt(0) ‖x0‖A ≤
(

(

β−1
t

(

d

κ

))−1
κ− 1

κ
−Dγ,0 · c

(

βt(0) ·

(

1 +
κ

1− d

)

+ 1

)

)

h(z0)

(101)
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Solutions to (101) exist, however, if the inequality

(

β−1
t

(

d

κ

))−1
κ− 1

κ
≥ Dγ,0 · c

(

βt(0) ·

(

1 +
κ

1− d

)

+ 1

)

or, equivalently

Dγ,0 · c ·

(

βt(0) ·

(

1 +
κ

1− d

)

+ 1

)

· β−1
t

(

d

κ

)

κ

κ− 1
< 1 (102)

is satisfied. The estimate of the trapping region follows from (101).
Let us finally show that continuity of h(z) implies that the volume of Ωγ is nonzero in

R
n ⊕ R

m. For the sake of compactness we rewrite inequality (101) in the following form:

‖x0‖A ≤ Cγh(z0), (103)

where Cγ is a constant depending on d, κ, βt(0), and Dγ,0. Given that (102) holds we can
conclude that Cγ > 0. According to (103), domain Ωγ contains the following set:

{x0 ∈ R
n, z0 ∈ R

m| h(z0) > Dz ∈ R+, ‖x0‖A ≤ CγDz}

Consider the following domain: Ωx,γ = {x0 ∈ R
n| ‖x0‖A ≤ CγDz}. Clearly, it contains

a point x0,1 ∈ R
n : ‖x0,1‖A = CγDz

2
. For the point x0,1 and for all ε1 ∈ R

n : ‖ε1‖ ≤ CγDz

4
we

have that ‖x0,1 + ε1‖A = infq∈A ‖x0,1 + ε1 − q‖ ≤ infq∈A{‖x0,1 − q‖ + ‖ε1‖} ≤ 3CγDz

4
. On

the other hand ‖x0,1 + ε1‖A = infq∈A ‖x0,1 + ε1 − q‖ ≥ infq∈A{‖x0,1 − q‖ − ‖ε1‖} ≥ CγDz

4
.

This implies that there exists a set of points x0,2 = x0,1 + ε1 ∈ R
n: ‖x0,1 − x0,2‖ ≤ CγDz

4
,

x0,2 /∈ A, ‖x0,2‖A ≤ CγDz.
Consider now the following domain: Ωz,γ = {z0 ∈ R

m| h(z0) > Dz}. Let us pick
z0,1 ∈ Ωz,γ: h(z0,1) = 2Dz. Because h(·) is continuous we have that

∀ ε > 0, ∃ δ > 0 : ‖z0,1 − z0,2‖ < δ ⇒ |h(z0,1)− h(z0,2)| < ε

Let ε = Dz, then −Dz < h(z0,1) − h(z0,2) < Dz and therefore h(z0,2) > Dz. Hence there
exists a set of points z0,2 ∈ R

m: ‖z0,1 − z0,2‖ < δ, z0,2 ∈ Ωz,γ .
Consider the following set

Ωxz,γ =

{

x′ ∈ R
n, z′ ∈ R

m| ‖x0,1 − x′‖2 + ‖z0,1 − z′‖2 ≤ r2, r = min

{

δ,
CγDz

4

}}

For all x0, z0 ∈ Ωxz,γ we have that x0 ∈ Ωx,γ, z0 ∈ Ωz,γ . Hence, inequality (103) holds, and
x0⊕z0 ∈ Ωγ . The volume of the set Ωxz,γ is defined by the volume of the interior of a sphere
in R

n+m with nonzero radius. Thus the volume of Ωγ ⊃ Ωxz,γ is also nonzero. The corollary
is proven.

Proof of Corollary 4. Let λ(τ, λ0) be a solution of system (51). Consider it as a function of
variable τ . Let us pick some monotone, strictly increasing function σ such that the following
holds

τ = σ(t), σ : R+ → R+

Given that η(Ωλ) is dense in Ωθ, for any θ ∈ Ωθ there always exists a vector λθ ∈ Ωλ such
that η(λθ) = θ+ ǫθ, where ‖ǫθ‖ is arbitrary small. Furthermore, λ(τ) is dense in Ωλ, hence
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there is a point λ∗ = λ(τ ∗,λ0), which is arbitrarily close to λθ. Consider the following
difference

f(ξ(t), θ)− f(ξ(t), θ̂) = f(ξ(t), θ)− f(ξ(t),η(λ∗)) + f(ξ,η(λ∗))− f(ξ,η(λ(σ(t))))

The function f(·) is locally bounded and η(·) is Lipschitz, then

‖f(ξ, θ)− f(ξ,η(λ∗))‖ ≤ Df‖ǫθ‖+∆f = ∆θ +∆f

where ∆θ is arbitrary small. Hence

‖f(ξ,η(λ∗))− f(ξ,η(λ(σ(t))))‖ ≤ Df‖η(λ
∗)− η(λ(σ(t)))‖+∆f +∆θ

≤ Df ·Dη‖λ
∗ − λ(σ(t))‖+∆f +∆θ

(104)

Noticing that λ∗ = λ(τ ∗,λ0) = λ(σ(t∗),λ0) and taking into account the Poisson stability of
(51), we can always choose λ∗(σ∗,λ0) such that σ∗ > σ(t0) = τ0 for any τ0 ∈ R+. Hence,
according to (104) the following estimate holds:

‖f(ξ,η(λ∗))− f(ξ,η(λ(σ(t))))‖ ≤ Df ·Dη‖

∫ σ∗

σ(t)

S(λ(σ(τ)))dτ‖+∆f +∆θ

≤ Df ·Dη · max
λ∈Ωλ

‖S(λ)‖|σ∗ − σ(t)| = D · |σ∗ − σ(t)|+∆f +∆θ, D = Df ·Dη · max
λ∈Ωλ

‖S(λ)‖

(105)

Denoting u(t) = f(ξ(t), θ)− f(ξ(t), θ̂) + ε(t) we can now conclude that

‖u(t)‖ ≤ ∆ǫ +∆f + ‖f(ξ(t), θ)− f(ξ(t),η(λ∗))‖+D · |σ∗ − σ(t)|

≤ ∆ǫ + 2∆f +∆θ +Df‖θ − η(λ∗)‖+D · |σ∗ − σ(t)|
(106)

Notice that due to the denseness of λ(t,λ0) in Ωλ it is always possible to choose λ∗ such
that

Df‖θ − η(λ∗)‖ = Df‖η(λθ)− η(λ∗)‖ ≤ DfDη‖λθ − η(λ∗)‖ ≤ ∆λ

Hence, according to (106), we have

‖u(t)‖∞,[t0,t] ≤ 2∆f +∆ε + δ +D · ‖σ∗ − σ(t)‖∞,[t0,t]

where the term δ > ∆θ +∆λ can be made arbitrary small.
Therefore Assumption 3 implies that the following inequality holds:

‖x(t)‖
A∆(M)

≤ β(t− t0) ‖x(t0)‖A∆(M)
+ c · D · ‖σ∗ − σ(t)‖∞,[t0,t] (107)

Let us now define σ(t) as follows

σ(t) =

∫ t

t0

γ ‖ψ(x(τ))‖
A∆(M)

dτ (108)

Moreover, let us introduce the following notation

h(t) = σ∗ − σ(t) = σ∗ −

∫ t

t0

γ ‖ψ(x(τ))‖
A∆(M)

dτ
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then for all t′, t ≥ t0, t ≥ t′ we have that

h(t′)− h(t) =

∫ t

t′
γ ‖ψ(x(τ))‖

A∆(M)
dτ

Taking into account equation (104), (105), equality

∂λ(σ(t),λ0)

dt
=
∂σ(t)

dt
S(λ(σ(t),λ0)) = γ ‖ψ(x(τ))‖

A∆(M)
S(λ(σ(t),λ0)),

equation (107), and denoting Dλ = cD, we can conclude that the following holds along the
trajectories of (52):

‖x(t)‖
A∆(M)

≤ β(t− t0) ‖x(t0)‖A∆(M)
+Dλ‖h(τ)‖∞,[t0,t]

h(t0)− h(t) =

∫ t

t0

γ ‖ψ(x(τ))‖
A∆(M)

dτ
(109)

Hence, according to Corollary 1, the limit relation (54) holds for all |h(t0)|, ‖x(t0)‖A∆(M)

which belong to the domain

Ωγ : γ ≤

(

β−1
t

(

d

κ

))−1
κ− 1

κ

h(t0)

βt(0) ‖x(t0)‖A∆+δ
+ βt(0) ·Dλ · |h(t0)|

(

1 + κ
1−d

)

+Dλ|h(t0)|

for some d < 1, κ > 1. Notice, however, that ‖x(t)‖
A∆+δ

is always bounded as f(·) is

Lipschitz in θ and both θ and θ̂ are bounded (η(·) is Lipschitz and λ(t,λ0) is bounded
according to assumptions of the corollary). Moreover, due to the Poisson stability of (51) it
is always possible to choose a point λ∗ such that h(t0) = σ∗ is arbitrary large. Hence the
choice of γ in (109) as (53) suffices to ensure that h(t) is bounded. Moreover, it follows that
h(t) converges to a limit as t → ∞. This implies that γ

∫ t

t0
‖x(τ)‖

A∆(M)
also converges as

t→ ∞, and, consequently, λ(t,λ0) converges to some λ′ ∈ Ωλ. Hence the following holds

lim
t→∞

ˆθ(t) = θ′

for some θ′ ∈ Ωθ. According to the corollary conditions, system (50) has steady state
characteristics with respect to θ̂. Then, in the same way as in the proof of Lemma 1, we can
show that (54) holds. The corollary is proven.
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