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Abstract. A common method for constructing a function from a finite set of moments is to
solve a constrained minimization problem. The idea is to find, among all functions with the given
moments, that function which minimizes a physically motivated, strictly convex functional. In the
kinetic theory of gases, this functional is the kinetic entropy; the given moments are macroscopic
densities; and the solution to the constrained minimization problem is used to formally derive a
closed system of partial differential equations which describe how the macroscopic densities evolve
in time. Moment equations are useful because they simplify the kinetic, phase-space description of
a gas, and with entropy-based closures, they retain many of the fundamental properties of kinetic
transport. Unfortunately, in many situations, macroscopic densities can take on values for which the
constrained minimization problem does not have a solution. Essentially, this is because the moments
are not continuous functionals with respect to the L1 topology. In this paper, we give a geometric
description of these so-called degenerate densities in the most general possible setting. Our key tool
is the complementary slackness condition that is derived from a dual formulation of a minimization
problem with relaxed constraints. We show that the set of degenerate densities is a union of convex
cones and, under reasonable assumptions, that this set is small in both a topological and a measure-
theoretic sense. This result is important for further assessment and implementation of entropy-based
moment closures.
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1. Introduction. In gas dynamics, the kinetic description of a gas is often sim-
plified by using moment equations. In this reduced setting, a gas is characterized by
a finite-dimensional vector ρ of densities that are moments of the kinetic distribu-
tion function F with respect to polynomials of the microscopic velocity. Evolution
equations for ρ are derived by taking moments of the Boltzmann equation which
governs the evolution of F . The derivation requires that an approximation for F be
reconstructed from the densities ρ, giving what is called a closure.

One well-known method for prescribing a closure is to find a function that min-
imizes the kinetic entropy subject to the constraint that its moments agree with ρ.
Such closures are called entropy-based closures. In recent years, they have generated
substantial interest due to important structural properties which they inherit from
the Boltzmann equation. These properties were first brought to light in [24].
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In cases where the moments are continuous with respect to the relevant topology,
there is always an entropy minimizer [6,21]. Unfortunately, in classical gas dynamics,
this is not usually the case. As a result, there are often physically relevant densities
for which the constrained entropy minimization problem does not have a solution. In
such cases, entropy-based closures are not well-defined, and these densities are called
degenerate. In this paper, we provide a geometric description for the set of degenerate
densities in the most general possible setting. We believe that this description is an
important step in assessing the practical usefulness of entropy-based closures.

1.1. Moment systems and entropy-based closures. Consider a gas that is
enclosed in a container, represented mathematically by the set Ω ⊂ Rd (typically
d = 3). The kinetic distribution function F = F (v, x, t) which describes the kinetic
state of the gas is a nonnegative function that is defined for positions x ∈ Ω, velocities
v ∈ Rd, and times t ≥ 0 so that, for any measurable set Λ ⊂ Ω × Rd,

(1)

∫
Λ

F (v, x, t) dvdx

gives the number of particles at time t with positions x and velocities v such that
(v, x) ∈ Λ. The evolution of F is governed by the Boltzmann transport equation

(2) ∂tF + v · ∇xF = C(F ) ,

where C is an integral operator that describes the collisions between particles which
drive the system to local thermal equilibrium.

Solutions of (2) formally satisfy the local balance law [9]

(3) ∂tH(F ) + ∇x · J (F ) = S(F ) ,

where the functionals

(4) H(g) ≡ 〈g log(g) − g〉 and J (g) ≡ 〈v(g log(g) − g)〉

are the kinetic entropy and kinetic entropy flux, respectively, and

(5) S(g) ≡ 〈log(g)C(g)〉

is the kinetic entropy dissipation. Here and throughout this paper, 〈·〉 denotes Lebesgue
integration over all v ∈ Rd, and we assume for the moment that the integrals in (4)
and (5) are well-defined. According to Boltzmann’s “H-theorem” [9],

(6) S(g) ≤ 0 ,

with equality if and only if C(g) = 0. In such cases, g is said to be in a state of local
thermal equilibrium, and it takes the form of a Maxwellian distribution

(7) Mρ,u,θ(v) ≡
ρ

(2πθ)
d/2

exp

(
−|v − u|2

2θ

)
,

where ρ and θ are positive scalars and u ∈ Rd. In this way, H acts as a Lyapunov
functional for (2).

In order to reduce computational cost, the kinetic description of a gas provided
by F is often simplified by retaining only a finite number of its velocity averages,
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or moments. Equations which govern the evolution of these moments are derived by
integrating (2) with respect to a vector

(8) m = (m0, . . . ,mn−1)
T

whose components are polynomials in v. Since v commutes with the spatial gradient,
these equations take the form

(9) ∂tρ + ∇x · 〈vmF 〉 = 〈mC(F )〉 ,

where the moments

(10) ρ = ρ(x, t) ≡ 〈mF 〉

are the spatial densities associated with F . Here again, we assume that the integrals
in (9) and (10) are well-defined.

In general, (9) is not a closed system because there is no way to express the
flux terms 〈vmF 〉 and collision terms 〈mC(F )〉 in terms of ρ. Furthermore, in a
moment description, an exact expression for F is not available. An alternative is to
approximate F by an ansatz of the form

(11) F [ρ] = F(v,ρ(x, t)).

By substituting F for F in (9), the evolution of ρ can be approximated by the closed
system of balance laws

(12) ∂tρ + ∇x · f(ρ) = c(ρ),

where the flux term f and collision term c are given by

(13) f(ρ) = 〈vmF [ρ]〉 and c(ρ) = 〈mC(F [ρ])〉 .

One way to specify F is to invoke the principle of entropy minimization (or max-
imization in the physics community, where the term “entropy” refers to −H and has
been widely used for over a century). The probabilistic interpretation of entropy dates
back to Boltzmann [4,5], who argued that the entropy of a system of identical particles
depends on the number of microstates (particle arrangements in phase space) that are
consistent with the macroscopic state of the system. This dependence is expressed by
the famous logarithmic relationship known as Boltzmann’s entropy formula [8] (and
also as Boltzmann’s equation, although distinct from (2)) and was first presented in
its popular form by Planck [28, 29]. The practical application of entropy as a tool
for statistical inference was championed by Jaynes although, in [19], Jaynes himself
attributes the original mathematical concepts to Gibbs, who generalized Boltzmann’s
entropy formula [16]. Jaynes also credits Shannon [32] for illuminating the central
role that entropy plays in the theory of information. The relationship between statis-
tics and information theory was further pursued by Kullback [23]. Many of the first
rigorous results concerning entropy minimization can be found in [10] and references
therein.

Closures which are based on the entropy minimization principle use the ansatz

(14) F [ρ] = arg min
g∈Fm

{H(g) : 〈mg〉 = ρ}
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at each x and t to formally close (9). Here

(15) Fm ≡
{
g ∈ L1(Rd) : g � 0 and |mg| ∈ L1(Rd)

}
,

and | · | is the standard Euclidean norm.
It is readily checked that H is strictly convex over Fm. Thus if the minimizer

in (14) exists, it is unique and the closure is well-defined. In such cases, (12) is a
hyperbolic system of PDEs whose solutions satisfy the local dissipation law

(16) ∂th(ρ) + ∇x · j(ρ) = s(ρ),

where

(17) h(ρ) ≡ H(F [ρ])

is a strictly convex function of ρ and

(18) j(ρ) ≡ J (F [ρ]) , s(ρ) ≡ S(F [ρ]) ≤ 0.

Although any choice for the ansatz F [ρ] will yield a system of the form (12), the
entropy ansatz ensures that s(ρ) ≤ 0 and that h is strictly convex. These conditions
are important for two reasons. First, the dissipation law for a strictly convex function
of ρ, as given by (16), implies the existence of a well-posed linear L2 (Hilbert space)
theory for (12) [33]. Second, h acts as a Lyapunov function for (12). To see this, note
that (16) is simply (3) evaluated at F = F [ρ]; and like in Boltzmann’s H-theorem,
s(ρ) vanishes if and only if C(F [ρ]) = 0, in which case F [ρ] takes the form of a
Maxwellian distribution [24].

The entropy minimization procedure yields an entire hierarchy of systems with
the aforementioned properties whose members are generated by appending an initial
choice of m with additional polynomial components. For this reason, entropy-based
closures have been applied to other areas of kinetic theory such as radiation transport
[12, 13] and charge transport in semiconductors [1, 11, 22]. (Additional references for
charge transport can be found in [1].) In the case of gas dynamics, the moment
hierarchy begins with the canonical choice m = (1, v, 1

2 |v|2)T . For this choice, F [ρ] is
always a Maxwellian, and the entropy-based closure generates Euler’s equations for a
compressible gas.

1.2. Realizability and degenerate densities. A density ρ is said to be real-
ized by a function g ∈ Fm if ρ = 〈mg〉. The set of all such realizable densities will be
denoted by Rm. An entropy-based closure is applicable only to those realizable densi-
ties for which the minimization problem (14) with equality constraints has a solution.
If the moments in (14) were continuous with respect to the L1 topology, then there
would always be a minimizer. Indeed, for such cases, Borwein and Lewis have shown
in [6] that a constrained minimizer exists for a large class of convex functionals that
include the classical entropy H. However, in gas dynamics, the moments are typically
not continuous in the L1 topology. As a result, there are realizable densities for which
the minimizer in (14) does not exist. For such densities, which we term degenerate,
modifications must be made to the entropy-based procedure. There are essentially
two approaches:

1. Show that the set of nondegenerate densities is invariant under the dynamics
of the balance law (12) with the entropy-based closure (as discussed in [20])
or impose such a condition in a way that is physically reasonable and math-
ematically justifiable.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVEX DUALITY AND ENTROPY-BASED MOMENT CLOSURES 1981

2. Develop a modified closure that (i) is well-posed for all physically realizable
values of ρ, (ii) recovers the minimum entropy-based closures whenever the
minimizer in (14) exists, and (iii) generates systems of hyperbolic PDEs that
dissipate a physically meaningful, convex entropy. This is the approach taken
in [31].

We define Dm to be the set of all degenerate densities. In general, the set Dm

depends on m, and understanding its geometry is critical to determining whether
entropy-based closures can be used in practice. In either of the modified approaches
listed above, it is important—at the very least—to show that Dm is small in some
sense, thereby minimizing the number of physically realizable spatial densities which
require special treatment. In the first approach, this means limiting the number
of initial conditions which must be discarded; in the second, it means limiting the
number of physically realizable densities which require a modified closure.

Another reason to study Dm is that the equilibrium densities, i.e., those densities
which are moments of a Maxwellian distribution (7), lie on its boundary [20,21,24,31].
Because the kinetic entropy drives solutions of (3) toward local thermal equilibrium,
we expect that trajectories defined by solutions to (16) will, at times, come very close
to Dm. Thus it is very important to have a detailed understanding of its geometry.

Previous studies of the set Dm can be found in [20, 21, 31]. In [20], Junk pro-
vides a geometric description for Dm in a one-dimensional setting (d = 1) with
m = (1, v, v2, v3, v4)T . In turns out in this case that Dm is a codimension one man-
ifold. This result was discovered, in part, by extending the definition of h given by
(18) to include cases where the minimizer in (14) does not exist. This is done simply
by replacing the minimum in (14) with an infimum, viz.,

(19) hJ(ρ) ≡ inf
g∈Fm

{H(g) : 〈mg〉 = ρ} .

Later, in [21], Junk considers a more general case in which m consists of a radial
component |v|N , for some even integer N ≥ 2, plus polynomial components of lower
degree. For such cases, he provides an integrability condition to determine whether
Dm is nonempty. In practice, this condition is easily checked and extensible to more
general choices of m. However, a description of the geometry of Dm, as given in [20],
is still lacking for the general setting.

In [31], Schneider introduces a different extension for h by relaxing the constraints
in (14):

(20) hS(ρ) ≡ min
g∈Fm

{H(g) : 〈mg〉 
◦ ρ} .

Here the notation 〈mg〉 
◦ ρ means—roughly speaking—that inequalities between
certain components are allowed. (See section 3.2 for a precise definition.) The key
difference between (14) and (20) is that the constraint set of the latter is closed in the
weak-L1(Rd) topology, whereas the constraint set of the former is not. Schneider uses
this fact to prove that the minimizer in (20) with relaxed constraints always exists and
is equal to the minimizer with equality constraints (14) when that minimizer exists
(see our Theorem 3 and Corollary 4 below). In doing so, he provides a necessary
and sufficient condition to determine whether a given density ρ is an element of Dm.
However, this condition gives little insight into the geometry of Dm.

The main contribution of the present paper is a geometrical description of the set
Dm in the most general possible setting. Our results are based on a dual formulation
of (20) and are summarized in the following theorems.
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• In Theorems 14 and 16, we prove strong duality for both the equality con-
straint problem (19) and the relaxed constraint problem (20). One conse-
quence of these theorems is that hS = hJ, even when the infimum in (20) is
not attained. In Theorem 14, we also prove complementary slackness condi-
tions which relate the density ρ in (20) to the dual variable and serve as the
basis of our geometrical description.

• In Theorem 25, we show that the set Dm is a union of convex cones. The
vertices of these cones are nondegenerate densities that lie on the boundary
between the degenerate and nondegenerate densities in Rm. This conical
description is based on the complementary slackness condition from Theorem
14.

• In Theorem 28, we show that, under reasonable assumptions, the set Dm is a
nowhere dense subset of Rm that has Lebesgue measure zero and is restricted
to the boundary of the nondegenerate, realizable densities. The assumptions
we employ hold in all known cases. Whether they hold in general is an
interesting and (to our knowledge) open question in analysis and algebraic
geometry.

In the process of investigating Dm, we also recover and extend many previous results
from both [20,21] and [31].

The organization of the paper is as follows. In section 2 we introduce some no-
tation and background information. In section 3 we review the entropy minimization
problem. In section 4 we give a dual formulation of the minimization problem with
relaxed constraints (20) and prove duality theorems for both (19) and (20). We use
these theorems to show that hS = hJ (even when the infimum in (19) is not attained)
and to establish a complementary slackness condition. In section 5 we review the
formal structure of entropy-based closures for nondegenerate densities and determine
how that structure differs for degenerate cases. In section 6 we use the complementary
slackness condition to describe the geometry of Dm. We then introduce the assump-
tions that allow us to make further assertions about the “smallness” of Dm. At the
end of the section, we present two examples. In section 7 we give conclusions and
discuss future work. Finally, in the appendix we provide a diagram and tables to
assist the reader with notation.

2. Preliminaries. In this section, we introduce notation and present prelimi-
nary results. We refer the reader to the appendix for help in recalling the notation
and useful properties for sets and mappings given throughout the paper.

2.1. Admissible spaces. For a given moment system, the choice of m must
satisfy criteria based on physical considerations. We require that components of m
form a basis for an n-dimensional linear space M of multivariate polynomials over the
field of real numbers that satisfies the following conditions:

I. M ⊃ span{1, v1, . . . vd, |v|2} ;

II. M is invariant under translation and rotation;(21)

III. the set Mc ≡ {p ∈ M : 〈|p| exp (p)〉 < ∞} has a nonempty interior.

Our definition of Mc is slightly different than the original definition given in [24].
However, its interior is the same under both definitions.

Spaces that satisfy conditions I–III are called admissible. According to condi-
tion I, any set of moment equations will incorporate the conservation laws for mass,
momentum, and energy which are given by the moments of the kinetic distribution
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function with respect to 1, v, and 1
2 |v|2, respectively. In condition II, invariance under

translation and rotation means that, for every u ∈ Rd and every orthogonal matrix
O, the mappings v 
→ v − u and v 
→ OT v map M onto itself. These properties will
ensure that the moment equations are Galilean invariant—that is, invariant under
the transformations x 
→ x − ut and x 
→ OTx. Condition III applies specifically to
entropy-based closures. It turns out that the minimizer (14), if it exists, has the form
ep, where p ∈ Mc. Hence a nonempty interior for Mc is a necessary requirement for
any practical applications.

Typically an admissible space M is generated by the span of polynomial func-
tions whose moments are physical quantities of specific interest. (Here the canonical
examples are the polynomials 1, v, and 1

2 |v|2.) It may be that additional polynomial
components are added to m to ensure that M is admissible. It should be noted that
the vector m that generates a given M is not unique.

For convenience, we will assume, without loss of generality, that the components
of m are homogeneous. We decompose m into subvectors:

(22) m = (mT
0 ,m

T
1 ,m

T
2 , . . . ,m

T
N )T ,

where the nj components of mj are the jth degree polynomial components of m.

Consistency requires that
∑N

j=0 nj = n. Any polynomial p ∈ M can be expressed as
the sum of its homogeneous components:

(23) p = αTm =

N∑
j=1

αT
j mj ,

where α ∈ Rn is a vector of constant coefficients that decomposes into subvectors

(24) α =
(
αT

0 ,α
T
1 ,α

T
2 , . . . ,α

T
N

)T
.

We briefly outline how one can generate a space M. Given the even integer
N ≥ 2 and j < N , let Qj be the space of all homogeneous polynomials from Rd to R
of degree j. For each j, Qj can be composed into rotationally invariant subspaces in
the following way [15, Corollary 2.60]:

(25) Qj =

{
Hj ⊕ |v|2Hj−2 ⊕ |v|4 Hj−4 ⊕ · · · ⊕ |v|jH0 , j even,

Hj ⊕ |v|2Hj−2 ⊕ |v|4 Hj−4 ⊕ · · · ⊕ |v|j−1H1 , j odd.

Here Hk is the space of harmonic polynomials of degree k given by

(26) Hk = |v|k span

{
Y k

(
v

|v|

)}
,

and Y k maps vectors on the unit sphere Sd−1 to the k-fold spherical harmonic tensor,
which is unique modulo constant multiples. (Here the term “span” refers to all real
linear combinations of the scalar components of the tensor.)

The decomposition in (25) is unique in the sense that no proper subset of the sub-
spaces in (25) is rotationally invariant [15]. Thus, in order to be rotationally invariant,
an admissible space M must be a direct sum of some combination of the subspaces in
(25) taken from each Qj , j ≤ N . In addition, the condition of translational invariance
implies that choices for larger values of j will directly affect choices for smaller values



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1984 C. D. HAUCK, C. D. LEVERMORE, AND A. L. TITS

of j. For example, inclusion of the term |v|j requires inclusion of the lower degree
terms in the expansion of |v − u|j .

To satisfy condition III, M must include polynomials from QN which dominate
the behavior of odd degree polynomials of lower degree for large |v|. In particular,

M must include multiples of |v|N . This is because spherical harmonics (both odd
and even) other than Y 0 ≡ 1 take on both positive and negative values on the unit

sphere. Excluding |v|N would therefore lead to polynomials p, all of which satisfy
limr→∞ p(rω) = ∞ for all ω contained in some subset of Sd−1 with positive Lebesgue
measure. In such cases exp(p) is not integrable for any p ∈ M, and condition III is
violated.

In applications it is sometimes convenient to represent components of m in tensor
format. There are two reasons for this. The first reason is the convenience with which
one can express m given (25) and (26). The second reason is that the evolution of
the moment of 〈TF 〉 for any j-fold tensor T = T (v) depends on the divergence of the
(j + 1)-fold tensor 〈vTF 〉 (refer to (9)).

The tensors in which we are interested are often symmetric and sometimes trace-
less. For example, the Gaussian closure which will be described in section 5.3 is based
on the vector

(27) m =

⎛
⎝ m0

m1

m2

⎞
⎠ =

⎛
⎝ 1

v
v ∨ v

⎞
⎠ =

⎛
⎝ 1

v(
v ∨ v − 1

3 |v|2I
)

+ 1
3 |v|2I

⎞
⎠ ,

where v ∨ v is the symmetric tensor product of v with itself.1 In the strict vector
representation, m2 is composed only of the d(d+1)/2 linearly independent components
of the tensor v∨v. The components have the form vivj , where 1 ≤ i ≤ d and i ≤ j ≤ d.

Vectors α ∈ Rn can also be represented by tensors, in which case the product in
(23) is interpreted as a sum of tensor inner products.2 For a given a polynomial p,
the tensor form of α in (23) is unique under the additional requirement that it has
the same symmetry properties as m.

2.2. Cones. Many of the sets that we will encounter in this paper are cones
[3, 30]. A subset C of Rk is a cone if, for all real numbers λ > 0, y ∈ C if and only if
λy ∈ C. A cone is solid if it has a nonempty interior. A closed cone C is pointed if
−C ∩C is the origin. A closed cone that is convex, pointed, and solid is called proper.
For example, the set Fm is a solid, convex cone, whose closure in L1(Rd) is proper.
Several other cones will be introduced in the subsections that follow, and eventually
we will see that the set Dm is also a cone.

Associated with every cone C is its polar cone3

(28) C◦ ≡
{
z ∈ Rk : zT y ≤ 0 ∀ y ∈ C

}
.

It is readily checked that the polar of a proper cone is proper.
A vector z ∈ Rk is tangent to a subset Ω ⊂ Rk at a point y ∈ Ω if z = 0 or if

(29) lim
j→∞

yj − y

|yj − y| =
z

|z|

1Given a symmetric j-fold tensor S and a symmetric k-fold tensor T , the symmetric tensor
product of S and T is S ∨ T = T ∨ S ≡ 1

(j+k)!

∑
π∈Π Siπ(1),...iπ(j)

Tiπ(j+1),...iπ(j+k)
, where Π is the

set of all permutation of the integers 1, . . . , j + k.
2For k > j, the symmetric inner product (or contraction) of a symmetric j-fold tensor S and a

symmetric k-fold tensor T is (S · T )ij+1,...,ij+k
≡

∑
i1,...,ij

Si1,...,ijTi1,...,ij ,ij+1,...,ij+k
.

3The polar cone is the negative of the dual cone C∗ ≡
{
z ∈ R

k : zT y ≥ 0 ∀ y ∈ C
}
.
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for some sequence {yj}∞j=1 ⊂ Ω such that yj → y, but yj �= y for all j. The tangent
cone of Ω at y, which we denote T C(Ω, y), is the set of all vectors that are tangent to
Ω at y. A vector w ∈ Rk is normal to Ω at y ∈ Ω if there exist sequences {yj}∞j=1 ⊂ Ω

and {wj}∞j=1 ⊂ Rk such that

(30) yj → y , wj → w , wj ∈ (T C(Ω, yj))
◦ ∀ j.

The normal cone of Ω at y, which we denote NC(Ω, y), is the set of all vectors that
are normal to Ω at y. For the important case that Ω is convex,

(31) NC(Ω, y) =
{
z ∈ Rk : zT (y′ − y) ≤ 0 ∀ y′ ∈ Ω

}
.

In particular, NC(Ω, y) is convex. If ∂Ω is a C1 (continuously differentiable) manifold
containing y, then NC(Ω, y) is a ray with base point at the origin that points in
the outward normal direction to ∂Ω at y. More generally, given any C1 manifold
M � y of dimension j, NC(M,y) is a subspace of dimension n − j. If M ⊂ Ω, then
NC(Ω, y) ⊂ NC(M,y). In sections 5.4 and 6.4, we will use the notation NC0(Ω, y) to
denote the normal cone without the origin:

(32) NC0(Ω, y) ≡ NC(Ω, y)\{0} .

A particularly useful application of cones is to provide a partial ordering of ele-
ments in Rk (or, more generally, in any vector space). Given a pointed, convex cone
C and y1 and y2 in Rk, we say that y1 ≤C y2, or y2 ≥C y1, if and only if y2 − y1 ∈ C.

2.3. Realizable densities. Our motivation for solving (14), (19), or (20) is to
find a closure for the moment equations (9). Thus we are interested only in constraints
based on densities which are realizable, i.e., elements of the set

(33) Rm ≡ {ρ ∈ Rn : ρ = 〈mg〉 , g ∈ Fm} .

With this notation we formally define the set Dm:

(34) Dm ≡ {ρ ∈ Rm : the minimizer in (14) does not exist} .

A density ρ ∈ Rm has a natural decomposition based on the decomposition of m in
(22):

(35) ρ =
(
ρT

0 ,ρ
T
1 ,ρ

T
2 , . . . ,ρ

T
N

)T
,

where ρj = 〈mjg〉 for some g ∈ Fm. The set Rm has several important properties,
one of which is its relation to the cone

(36) Am ≡
{
α ∈ Rn : αTm ≤ 0

}
.

It is straightforward to verify that Am is a proper cone.
Theorem 1 (Junk [21]). The set Rm is an open, convex, solid cone, and its

closure is proper. In fact, Rm = int A◦
m, and every vector in Rm is realized by a

bounded, nonnegative function with compact support.
Proof. We refer the reader to Theorem A.2 of [21] for a proof (which applies

to the case mN = |v|N but can be modified to the general case with little effort).
However, to provide the reader with some intuition, we show here that Rm ⊂ int A◦

m.
Let ρ ∈ Rm. Then ρ = 〈mg〉 for some g ∈ Fm and according to (36)

(37) αTρ =
〈
αTmg

〉
≤ 0

for all α ∈ Am. Further, since αTm is a polynomial, it can be zero only on a set of
zero Lebesgue measure. Hence αTρ < 0, which proves that ρ ∈ int A◦

m.
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2.4. Exponentially realizable densities. We will see below that the mini-
mizer of (20) has the form

(38) Gα ≡ exp(αTm),

where α solves the dual problem to (20). The integral of Gα is the density potential

(39) h∗(α) ≡ 〈Gα〉 ,

which was introduced in [25] as a tool for elucidating the formal structure of entropy-
based closures. As the notation suggests, h∗ is the Legendre dual of h. In section
5, we will discuss this relationship in more detail. The name “density potential” is
derived from the fact that its formal derivative r generates the moments of Gα. Given
the set

(40) Am ≡ {α ∈ Rn : Gα ∈ Fm} ,

r : Am → Rn is defined by

(41) r(α) ≡ 〈mGα〉 .

It should be noted in (40) that the condition α ∈ Am is stronger than Gα ∈ L1
(
Rd

)
,

since the latter can still yield moments that are infinite. The image of Am under r is
the set of exponentially realizable densities:

(42) Rexp
m ≡ r(Am).

The set Rexp
m is a solid cone. It need not be convex, nor is it necessarily open.

Since r(Am) = Rexp
m , it is important to understand the structure of Am. Its

interior has a rather simple expression:

(43) intAm =
{
α ∈ Rn : αT

NmN (v) < 0 ∀ v �= 0
}

= {α ∈ Rn : αN ∈ intAmN
} ,

where

(44) Amj
≡

{
αj ∈ Rnj : αT

j mj ≤ 0
}
, 1 ≤ j ≤ N,

is a proper cone for j even. (It can be checked that condition III of section 2.1 is
equivalent to intAm being nonempty.) If α ∈ intAm, then the behavior of p = αTm
is dominated for large |v| by the homogeneous component pN = αT

NmN , and

(45) lim
|v|→∞

p(v) = lim
|v|→∞

pN (v) = lim
|v|→∞

|v|NpN (v/|v|) = −∞.

For such α, Gα decays exponentially, and the moments r(α) are finite.
From (43), one can easily show that

(46) clAm = {α ∈ Rn : αN ∈ AmN
} and ∂Am ⊂ {α ∈ Rn : αN ∈ ∂AmN

} .

Even so, the boundary component Am ∩ ∂Am is, in general, very complicated. If
α ∈ ∂Am, then αN ∈ ∂AmN

and pN (λv) = 0 for some v �= 0 and all λ ∈ R, and it
may be that there are unbounded sequences {vi}∞i=1 such that limi→∞ p(vi) > −∞. In
such cases, it is not clear whether the moments r(α) are finite, i.e., whether α ∈ Am.
We will revisit this issue in section 6.3. For now, we turn our attention to the entropy
minimization problem (20).
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3. Entropy minimization. Most of this section reproduces and discusses the
main result from [31]. In this setting, we then state Theorem 9, which is the basis for
our new results.

3.1. The entropy functional. Recall that the strictly convex entropy func-
tional H : Fm 
→ R ∪ {∞} is given by

(47) H(g) ≡ 〈g log g − g〉 .

By employing the convention 0 log 0 = 0—which is consistent with the fact that
limz→0 z log z = 0—one can make sense of the integrand for those values of v where
g(v) = 0. There are functions g ∈ Fm such that H(g) = +∞; however, in order
for H(g) to be well-defined, the negative contribution to the integral H−(g) must be
finite. We show that this is indeed the case.

Lemma 2. For each g ∈ Fm, let Kg =
{
v ∈ Rd : g (v) log(g (v)) − g (v) < 0

}
.

Then

(48) H− (g) ≡ −
∫
Kg

(g(v) log(g(v)) − g(v)) dv ≤
∫

Rd

(
|v|2g(v) + e−|v|2

)
dv.

In particular, H− (g) is finite.
The proof of this lemma is based on Young’s inequality: For all z, y > 0,

(49) z log z − z ≥ y log y − y + (log y) (z − y)

or, equivalently,

(50) z log z − z ≥ z log y − y.

These two inequalities follow immediately from the convexity of the mapping z 
→
z log z − z.

Proof. Letting z = g (v) and y = e−|v|2 in (50) gives, after integration over Kg,

(51) H− (g) ≤
∫
Kg

(
|v|2g(v) + e−|v|2

)
dv ≤

∫
Rd

(
|v|2g(v) + e−|v|2

)
dv,

which is finite since |v|2 ∈ M.

3.2. Schneider’s problem. Given ρ = (ρ0, . . . ,ρN ) ∈ Rm, we seek a solution
of (20), where the relation 〈mg〉 
◦ ρ (or, equivalently, ρ �◦ 〈mg〉) is shorthand for

〈mjg〉 = ρj , 0 ≤ j ≤ N − 1 ,(52a)

〈mNg〉 ≤A◦
mN

ρN ,(52b)

and A◦
mN

≡ (AmN
)◦. Note that (52b) means that

(53) αT
N 〈mNg〉 ≤ αT

NρN whenever αT
NmN ≥ 0.

The components of 〈mjg〉, 0 ≤ j < N , will be referred to as lower-order moments,
and the components of 〈mNg〉 will be referred to as higher-order moments.

The main result from [31] concerning the minimization problem with relaxed
constraints (20) is the following theorem.
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Theorem 3 (Schneider [31]). For any ρ ∈ Rm, there is a unique minimizer for
the minimization problem (20). This minimizer has the form Gα given by (38), where
α ∈ Am. Conversely, for each α ∈ Am,

(54) H(Gα) = min
g∈Fm

{H(g) : 〈mg〉 
◦ r(α)} ,

where r(α) is given by (41). Moreover, Gα also satisfies the equality constraint prob-
lem (14) with ρ = r(α).

We define a : Rm → Am as the mapping which assigns to ρ ∈ Rm the vector
α ∈ Am such that Gα solves (20)—that is,

(55) Ga(ρ) ≡ arg min
g∈Fm

{H(g) : 〈mg〉 
◦ ρ} .

The converse statement of Theorem 3 implies the following.
Corollary 4. Let ρ ∈ Rexp

m . Then Ga(ρ) is the unique minimizer of the entropy
minimization problem with equality constraints (14).

To help the reader’s intuition, we provide a proof for Theorem 3 with the use of
three lemmas. The first lemma is used to prove the existence of a minimizer for the
minimization problem with relaxed constraints (20), and the first item of this lemma
is a direct consequence of Lemma 2.

Lemma 5 (Schneider [31]). The entropy functional H satisfies the following:
1. H(g) > −∞ for all g ∈ Fm.
2. H is convex and lower semicontinuous with respect to the norm ||g||L1

m(Rd) ≡
〈|mg|〉 .

3. Subsets of Fm which are bounded in the L1
m(Rd) topology and on which H is

bounded are weakly relatively compact in L1(Rd).
The second lemma is a statement about the constraint set

(56) Cm(ρ) ≡ { g ∈ Fm : 〈mg〉 
◦ ρ} .

Lemma 6. For each ρ ∈ Rm, the set Cm(ρ) is closed in the weak-L1 topology.
Proof. Let {gk}∞k=1 be any sequence in Cm(ρ) that converges in weak-L1(Rd) to a

function g∗. For the highest-order moments, Fatou’s lemma implies that if αT
NmN ≥

0, then

(57) αT
N 〈mNg∗〉 ≤ lim

k→∞
αT

N 〈mNgi〉 = αT
NρN .

For j < N , more can be said. We break up the integral 〈mjgk〉 into two pieces:

(58) ρj = 〈mjgk〉 =

∫
|v|<R

mjgk dv +

∫
|v|>R

mjgk dv,

where R > 0 is an arbitrary constant. For the first term in (58), weak-L1(Rd) con-
vergence implies that

(59)

∫
|v|<R

mjgk dv
k→∞→

∫
|v|<R

mjg∗ dv , 0 ≤ j ≤ N.

Meanwhile, in the second term

(60)
|mj |
|v|N <

C0

RN−j
, |v| > R , 0 ≤ j < N,
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for some constant C0 that is independent of R. Hence

(61)

∫
|v|>R

mjgk dv ≤
∫
|v|>R

|mj |
|v|N |v|Ngk dv <

C0

RN−j
sup
k

∣∣〈|v|Ngk
〉∣∣ .

Since {gk}∞k=1 ⊂ Cm, the sequence
{〈

|v|Ngk
〉}∞

k=1
is uniformly bounded in k, and it

follows from (59) and (61) that

(62)

lim
k→∞

∣∣ρj − 〈mjgk〉
∣∣ ≤ lim

k→∞

∫
|v|>R

|mjgk − mjg∗| dv

≤ C0

RN−j

(
sup
k

〈
|v|Ngk

〉
+
〈
|v|Ng∗

〉)
<

C1

RN−j

for some constant C1 > 0 that is independent of R. Since R can be arbitrarily large,
we conclude that 〈mjg∗〉 = ρj for all j < N . Hence g∗ ∈ Cm(ρ).

The third lemma is used to prove the form of the minimizer. For any bounded
measurable set K ⊂ Rd and any locally integrable function g, let

(63)
〈g〉K ≡

∫
K

g(v) dv and FK
m ≡

{
g ∈ L1

(
Rd

)
: g � 0

and 〈|mig|〉K < ∞, i = 0, . . . , n− 1} .

On FK
m, we define

(64) HK(g) ≡ 〈g log g − g〉K .

As with H, the negative contribution to HK must be finite (see Lemma 2) in order
for it to be well-defined, and restricting Dom(HK) to FK

m ensures that this will be the
case.

Lemma 7 (Junk [20, 21], Borwein and Lewis [6]). For any bounded set K ⊂ Rd

and any function f ∈ FK
m, the problem

(65) min
g∈FK

m

{
HK(g) : 〈mg〉K = 〈mf〉K

}
has a unique minimizer, which takes the form Gα for some α ∈ Rn.

Proof of Theorem 3. The proof has three parts.
1. Existence and uniqueness. Let ρ ∈ Rm. By Theorem 1, the set

(66) Cm(ρ) ≡ { g ∈ Fm : 〈mg〉 
◦ ρ}

contains bounded functions with compact support. Because such functions
have finite entropy, the subset of Cm(ρ) on which H is finite is nonempty.
Moreover, by Lemma 2, H is bounded below on Cm(ρ). Hence hS(ρ) is finite,
and there exists {gi}∞i=1 ⊂ Cm(ρ) such that H(gi) → hS(ρ). By Lemma 5,
there is a subsequence {gik}

∞
k=1 that converges in weak-L1 to a function ĝρ,

and since Cm(ρ) is closed (Lemma 6), ĝρ ∈ Cm(ρ). Finally, since H is lower
semicontinuous (Lemma 5),

(67) H(ĝρ) ≤ lim
k→∞

H(gik) = hS(ρ).

Thus ĝρ attains the minimum in (20), and strict convexity of H implies that
the minimizer is unique.
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2. Form of the minimizer. According to Lemma 7, for any bounded set K ⊂ Rd,

(68) min
{
HK(g) : 〈mg〉K = 〈mĝρ〉K

}
has a solution of the form Gα. We conclude then that ĝρ = Gα on K;
otherwise, the function

(69) g∗ρ(v) =

{
Gα(v), v ∈ K,
ĝρ, v �∈ K,

would satisfy H(g∗ρ) ≤ H(ĝρ), an obvious contradiction. Since K is arbitrary,
we conclude that ĝρ = Ga and, in order to satisfy to constraints in (20), that
α ∈ Am.

3. Converse statement. Applying Young’s inequality (49) to z = g and y = Gα

and integrating over all velocity space gives

(70) H(g) ≥ H(Gα) + αT 〈m(g −Gα)〉 .

By hypothesis, α ∈ Am, which implies that αN ∈ AmN
. Thus if g ∈ Fm

satisfies 〈mg〉 
◦ 〈mGα〉, then according to (52) and (53),

(71) αT 〈m(g −Gα)〉 =

N∑
j=1

αT
j 〈mj(g −Gα)〉 = αT

N 〈mN (g −Gα)〉 ≥ 0.

Thus, from (70), H(g) ≥ H(Gα). This concludes the proof.
The existence part of this proof provides some intuition as to why the optimization

problem with equality constraints (14) may not always have a minimizer. Suppose
that the minimizing sequence {gik}

∞
k=1 were restricted to the set

(72) C0
m(ρ) ≡ {g ∈ Fm : 〈mg〉 = ρ}

rather than merely lying in Cm(ρ). Then {gik}
∞
k=1 would still converge in the weak-

L1(Rd) topology to ĝρ, with 〈mj ĝρ〉 = ρj for j < N . However, the bound in (61)
does not help when j = N . Hence there is no way to ensure that 〈mN ĝρ〉 = ρN—
only that 〈mN ĝρ〉 ≤A◦

m
ρN . This is precisely why Schneider introduces the inequality

constraint: Cm(ρ) is closed in the weak-L1 topology, whereas C0
m(ρ) is not.

Such behavior begs the following question: For what values of ρ does a minimizing
sequence for (14) not converge inside C0

m(ρ)? These will be the densities which make
up the set Dm. In [31], Schneider attempts to address this question in the following
corollary to Theorem 3.

Corollary 8 (Schneider [31]). Given ρ ∈ Rm, the minimizer in (14) exists if
and only if there is no function of the form Gα in Cm(ρ)\C0

m(ρ).
Unfortunately, this result provides little understanding of the geometry of Dm.

A more insightful point of view is given by the following theorem.
Theorem 9. Given ρ ∈ Rm, the minimization problem with equality constraints

(14) has a minimizer if and only if ρ ∈ Rexp
m . In other words,

(73) Dm = Rm\Rexp
m .

Proof. The “if” part of this theorem is just Corollary 4. The “only if” part will
be proved at the end of section 4.3.
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An immediate consequence of Theorem 9 is that Dm is a cone. However, the
essential point of the theorem is that when Dm is nonempty there are realizable
densities ρ that cannot be realized by a functions of the form Gα. In other words,
ρ /∈ Rexp

m even though a(ρ) ∈ Am. It is this idea which lays the foundation for
the results in [20, 21], where a description of Dm is given for the case mN = |v|N .
Theorem 9 will also be the basis for the new results of this paper. However, for a
general admissible space M, we will need to formulate the dual for relaxed constraint
problem (20) and derive complementary slackness conditions in order to find a useful
geometric description for Dm. In the process, we will recover and extend many of the
results from [20,21,31].

4. Dual formulation. Because H is convex on Fm and the constraints in (20)
are linear, it is reasonable to apply a dual treatment to the relaxed-constraint problem,
e.g., [3, 7, 26]. In this section, we prove two important duality theorems and the
complementary slackness conditions that accompany them. We also give an alternate
proof of the form of the minimizer in Theorem 3 and a proof of the “only if” part of
Theorem 9.

4.1. The dual function. We define the Lagrangian function L : Fm × Rn ×
Rm → R ∪ {∞} associated to (20) by

(74) L (g,α,ρ) ≡ H(g) + αT (ρ − 〈mg〉)

and the dual function ψ : Rn ×Rm → R ∪ {−∞} by

(75) ψ(α,ρ) ≡ inf
g∈Fm

L (g,α,ρ) .

The dual function is closely related to the density potential h∗. In fact, we have the
following.

Theorem 10. For all α ∈ Am and ρ ∈ Rm,

(76) ψ(α,ρ) = L (Gα,α,ρ) = αTρ − h∗(α).

Proof. We apply Young’s inequality (50) and make the identification z = g and
y = Gα to derive the pointwise inequality

(77) (g log g − g) − αTmg ≥ −Gα.

Integration of (77) over Rd and addition of αTρ to both sides give a lower bound on
L and hence ψ:

(78) ψ(α,ρ) ≥ αTρ − h∗(α).

For α ∈ Am, the definitions of H, Gα, and h∗ (given in (47), (38), and (39), respec-
tively) imply that

(79) H (Gα) = αT 〈mGα〉 − 〈Gα〉 = αT 〈mGα〉 − h∗(α).

Thus by (74),

(80) L (Gα,α,ρ) = αTρ − h∗(α),

so that, from (75),

(81) ψ(α,ρ) ≤ αTρ − h∗(α).

Together (78), (80), and (81) imply (76).
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4.2. Smoothness properties of the dual function. The following smooth-
ness properties of ψ will be used throughout the remainder of the paper.

Theorem 11. Let ρ ∈ Rm. Then
1. ψ(·,ρ) is strictly concave on Am and infinitely Fréchet differentiable on intAm,

with derivatives

∂ψ

∂α
(α,ρ) = ρ − r(α),(82a)

∂(i)ψ

∂α(i)
(α,ρ) = −

〈
m∨(i)Gα

〉
, i > 1,(82b)

where m∨(i) is the ith tensor power of m;4

2. for any α,β ∈ Am, the function

(83) φ(τ) ≡ ψ(τα + (1 − τ)β,ρ)

is twice differentiable at each τ ∈ [0, 1] (one-sided at end points) with deriva-
tives

φ′(τ) = (α − β)
T

[ρ − r(τα + (1 − τ)β)] ,(84a)

φ′′(τ) = −
〈(

(α − β)
T

m
)2

Gτα+(1−τ)β

〉
.(84b)

In particular, the function φ′(τ) is a decreasing function of τ ;
3. the function ψ(·,ρ) is upper semicontinuous on Am.

Proof. For the proofs of the first two statements above, we refer the reader to
Lemmas 5.1 and 5.2 in [21] along with a few comments. First, the lemmas in [21]
refer to h∗ rather than to ψ(·,ρ). This makes little difference since the two functions
differ only by a linear factor (see Theorem 10). Also, the proofs in [21] are constructed
specifically for the special case when mN = |v|N ; however, modifications to the general
setting are straightforward. To prove the third statement we simply invoke Fatou’s
lemma. Given a sequence

{
α(i)

}∞
i=1

⊂ Am with limit α ∈ Am,

(85) 〈Gα〉 ≤ lim
i→∞

〈
Gα(i)

〉
.

Hence limi→∞ ψ(α(i),ρ) ≤ ψ(α,ρ).

Corollary 12. For all α ∈ intAm, h∗
α(α) = r(α) and h∗

αα(α) =
〈
mmTGα

〉
,

which is positive-definite on α ∈ intAm.
Several remarks should be made concerning Theorem 11. First, statement 1

implies statement 2, but only for α,β ∈ intAm. Second, for α,β ∈ Am ∩ ∂Am,
φ′′ need not be continuous and higher derivatives may not exist. Finally, in spite
of the smoothness properties given by Theorem 11, the dual function need not even
be continuous on Am ∩ ∂Am. Indeed, given a sequence

{
α(i)

}∞
i=1

∈ Am with limit
α ∈ Am∩∂Am, it is possible that h∗(α) < limi→∞ h∗(α(i)). As an example, consider
the one-dimensional case (d = 1) when m = (1, v, v2, v3, v4)T . This case has been
studied in detail in [20]. Given the following five points in the (v, w) plane:

(v0, w0) = (0, 0) , (v1, w1) = (1, 0) , (v2, w2) =
(
i,−i2

)
,

(v3, w3) = (2i, i) , (v4, w4) = (2i + 1, 0) ,

4The tensor power of a symmetric tensor S is defined recursively. For n > 1, S∨(n) ≡ S∨S∨(n−1)

while S∨(1) ≡ S.
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the unique degree-four polynomial interpolating these points is

(86) pi(v) = αT
(i)m(v) =

4∑
j=0

α(i)jv
j ,

where

α0(i) = 0 , α1(i) =
2i + 1

4i− 2
+

4i2 + 2i

i2 − 1
, α2(i) = −4i2 + 6i + 1

i2 − 1
− 2i2 + 4i + 1

4i2 − 2i
,

α3(i) =
4i + 2

i2 − 1
+

3i + 2

4i2 − 2i
, α4(i) = − 1

i2 − 1
− 1

4i2 − 2i
.

(The notation α(i) denotes a sequence of vectors rather than the usual notation αi,
which denotes the components of a single vector α corresponding to polynomials of
degree i.) As i → ∞,

(87) α(i) → α∗ =

(
0,

9

2
,−9

2
, 0, 0

)T

and Gα∗ = exp

(
−9

2
v2 +

9

2
v

)
.

The density potential h∗(α∗) moments r(α∗) are finite. Therefore α∗ ∈ Am, but
clearly α∗ �∈ intAm. Moreover, one may readily check that pi is positive and concave
on the interval [2i, 2i + 1], and hence

(88)

h∗(α(i)) =
〈
Gα(i)

〉
>

∫ 2i+1

2i

epi(v) dv >

∫ 2i+1

2i

(1 + pi(v)) dv > 1 +
i

2
→ ∞ as i → ∞.

Note that the second inequality above follows from the fact that ex > 1+x, while the
concavity of pi on [2i, 2i + 1] implies that the graph of pi lies above the line segment
� joining the points (2i, i) and (2i + 1, 0) in the (v, w) plane. Therefore the integral
of pi over [2i, 2i + 1] is bounded below by the area of the triangle formed by �, the
v-axis, and the line {v = 2i}. The area of this triangle is i/2. A similar argument
shows that, for any j ≥ 0,

〈
|v|jGα(i)

〉
→ ∞ as i → ∞ while

〈
vjGα∗

〉
is finite.

The reason that ψ(·,ρ) is discontinuous at the boundary of Am is the same reason
that the minimization problem (14) with equality constraints fails: because mass at
the tails of the functions escapes as i → ∞. In the example above, this is precisely
what happens to the mass of Gα(i)

that is supported on the interval [2i, 2i + 1]. The

same thing occurs with the minimizing sequence {gik}
∞
k=1 in the proof of Theorem 3.

The difference is that, for {gik}
∞
k=1, only the highest moments fail to converge in the

minimizing sequence, whereas none of the moments in this example converge. The
reason for this difference is that the moments 〈mgik〉 are all bounded. The moments
of {Gα(i)

}∞i=1 would converge if higher-order moments were controlled in some way.
Controlling the moments is, in effect, the same as requiring αi → α∗ along a specified
path. In fact, we will see at the very end of section 5.4 that the map ρ 
−→ ψ (a(ρ),ρ)
is continuous on Rm.

4.3. Duality theorems. The main results of this subsection are based on the
following strong duality theorem where, for a given cone C, the notations “ ≤C” and
“≥C” are defined in the last paragraph of section 2.2.

Theorem 13 (see [26]). Consider the problem

(89)
minimize f0(x)
subject to fi(x) ≤Ki 0, i = 1, . . . ,m ; Ax = b,
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where the functions f0, . . . , fm : X → R ∪ +∞ are convex over a vector space X,
A : X → Rk is a linear mapping, b ∈ Rk, and each Ki is a proper cone for i = 1, . . . ,m.
Let D be the intersection of the domains of f0, . . . , fm (i.e., D is a convex set over
which each fi is finite). Suppose there exists x̃ ∈ D, with fi(x̃) < 0, i = 1, . . . ,m, and
Ax̃ = b. Further suppose that the set {Ax− b : x ∈ D} contains a neighborhood of the
origin. Then strong duality holds, i.e.,

(90)

inf{f0(x) : fi(x) ≤Ki
0, i = 1, . . . ,m ; Ax = b}

= sup
λi≥K◦

i
0

ν∈R
k

inf
x∈D

{
f0(x) +

m∑
i=1

λifi(x) + νT (Ax− b)

}
,

and the dual optimal value is attained whenever it is not −∞.
Theorem 13 follows from [26, Exercise 8.7] and can be proven by using arguments

found in [26, Chapter 8]. It can also be proven along the lines of similar results found
in [7, sections 5.3.2 and 5.9.1]. However, whereas those results require the existence
of some x̃ in the relative interior of D, Theorem 13 requires only that x̃ ∈ D. A side
benefit of this is that there is no need to specify a topology on X. In return, our
condition that {Ax− b : x ∈ D} contains a neighborhood of the origin is not present
in the statements in [7].

To prove Theorem 13, one may repeat the arguments found in [7, section 5.3.2]
with the notation “≤” changed to curly “
.” The only difference from that proof
is in the contradiction argument showing (in the notation of [7]) that μ = 0 is not
possible. The proof in [7] first shows, with logic that remains valid under our weaker
assumptions on x̃, that if μ = 0, then there must exist ν �= 0 such that νT (Ax−b) ≥ 0
for all x ∈ D. At that point, our assumption that {Ax − b : x ∈ D} contains a
neighborhood of the origin immediately implies that ν = 0, which yields the requisite
contradiction.

The statement of Theorem 13 is of much interest in the present context for two
reasons: (i) Our primal decision variable g lies in an infinite-dimensional vector space,
and (ii) it is not straightforward to show that the relative interior condition on x̃ (or
in our case g̃) actually applies. (However, see [6, Definition 2.1], where the authors
introduce the notion of a pseudo relative interior.) On the other hand, that our
additional condition on {Ax−b : x ∈ D} holds is a direct consequence of the openness
of Rm.

Direct application of Theorem 13 leads to the following results.
Theorem 14. Let ρ ∈ Rm, and let hS and ψ be given by (20) and (75), respec-

tively. Then

(91) hS(ρ) = max
α∈Am

ψ(α,ρ),

where the maximum on the right is attained by a unique α̂ ∈ Am. If ĝρ solves (20),
then ĝρ = Gα̂. Furthermore, ĝρ and α̂ satisfy the complementary slackness condition

(92) α̂Tρ = α̂T 〈mĝρ〉 = α̂T 〈mGα̂〉 ,

and ĝρ minimizes L (g, α̂,ρ) over Fm, i.e.,

(93) ψ(α̂,ρ) = L (ĝρ, α̂,ρ) .
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Proof. Theorem 14 may be recast in the form of Theorem 13 by setting m = 1
and introducing the following mapping of notation:

X 
→ L1
m(Rd) ; f1(x) 
→ ρN − 〈mNg〉 ; Ax 
→ 〈mjg〉 , j = 1, . . . , N − 1;

x 
→ g ; K1 
→ A◦
mN

; b 
→ ρj , j = 1, . . . , N − 1;

f0 
→ H ; λ 
→ αN ; ν 
→ αj , j = 1, . . . , N − 1.

All of the conditions of Theorem 13 hold. However, we must be careful to en-
sure that H is restricted to a domain on which it is finite. Thus we consider the
minimization problem over the set

(94) F̃m = {g ∈ Fm : H(g) < ∞} .

This set is convex and includes all bounded functions in Fm with compact support.
Thus by Theorem 1, the moment mapping g 
→ 〈mg〉 maps F̃m onto Rm, and since
Rm is open, the set

(95)
{
〈mig〉 − ρi : g ∈ F̃m , i < N

}
contains a neighborhood of the origin. By the polar cone theorem [3, page 162],
(A◦

mN
)◦ = AmN

so that strong duality holds, i.e.,

(96) hs(ρ) = max
α∈Rn

{ψ(α,ρ) : αN ∈ AmN
} .

Moreover, because ψ is strictly concave, the maximum in (96) is attained by a unique
α̂ ∈ {α ∈ Rn : αN ∈ AmN

}. According to the constraint conditions in (52),

(97) 〈mj ĝρ〉 = ρ for j < N and α̂T
N 〈mN ĝρ〉 ≥ α̂T

NρN .

Thus α̂T (ρ − 〈mĝρ〉) ≤ 0 and

(98)
hs(ρ) = ψ(α̂,ρ) = inf

g∈Fm

{
H(g) + α̂T (ρ − 〈mg〉)

}
≤ H(ĝρ) + α̂T (ρ − 〈mĝρ〉) ≤ H(ĝρ) = hs(ρ).

Equations (92) and (93) follow immediately.
To finish the proof, we need only show that α̂ ∈ Am and ĝρ = Gα̂. For any

nonnegative function g, straightforward calculation verifies that

(99) g log g − g − α̂Tmg = φ(g) −Gα̂,

where

(100) φ(g) ≡
[
g log

(
g

Gα̂

)
+ (Gα̂ − g)

]
.

Applying (49) with z = g/Gα̂ and y = 1 shows that, for each v ∈ Rd, φ(g(v)) ≥ 0,
with equality if and only if Gα̂(v) = g(v). Now, for each R > 0, define the set
BR ≡

{
v ∈ Rd : |v| < R

}
. Setting g = ĝρ in (99) and integrating over BR gives

(101) HBR(ĝρ) −
〈
α̂Tmĝρ

〉
BR

= 〈φ(ĝρ)〉BR
− 〈Gα̂〉BR

.
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(Note that, since ĝρ ∈ Fm, all of the integrals above are well-defined.) From (74),
(101), (76), and (39), it follows that

L (ĝρ, α̂,ρ) = H(ĝρ) + α̂T (ρ − 〈mĝρ〉)

= HBR(ĝρ) + HR
d\BR(ĝρ) + α̂T

(
ρ − 〈mĝρ〉BR

− 〈mĝρ〉Rd\BR

)
= 〈φ(ĝρ)〉BR

− 〈Gα̂〉BR
+ HR

d\BR(ĝρ) + α̂T
(
ρ − 〈mĝρ〉Rd\BR

)
(102)

= L
(
GBR

α̂ , α̂,ρ
)

+ 〈φ(ĝρ)〉BR
+ HR

d\BR(ĝρ) − α̂T 〈mĝρ〉Rd\BR
,

where

(103) GBR

α̂ (v) =

{
Gα̂(v) , v ∈ BR,

0 , v /∈ BR.

Now since φ(g(v)) ≥ 0, the function R 
→ Φ(R) ≡ 〈φ(ĝρ)〉BR
is nonnegative and

nondecreasing, and Φ(R) = 0 if and only if Gα̂ and g agree on BR. On the other
hand, since H(ĝρ) and 〈mĝρ〉 are finite,

(104) HR
d\BR(ĝρ) − α̂T 〈mĝρ〉Rd\BR

→ 0 as R → ∞.

It follows then from (102) that, for R is sufficiently large,

(105) L (ĝρ, α̂,ρ) > L
(
GBR

α̂ , α̂,ρ
)

unless GBR

α̂ agrees with ĝρ on BR. Since ĝρ minimizes L (·, α̂,ρ), we conclude that this
exception is indeed the case. Moreover, since R is arbitrary, it follows that ĝρ = Gα̂.
Finally, the fact that ĝρ ∈ Fm implies that α̂ ∈ Am.

Several remarks are in order here.
1. If ρ ∈ Rexp

m , then Theorem 14 can be proven more directly using by Theorem
3. Indeed, weak duality is easy to show: If g ∈ Fm satisfies the constraint
conditions from (52), then

(106) L (g,α,ρ) = H(g) + αT (ρ − 〈mg〉) ≤ H(g)

for all α ∈ Am. By invoking the definitions of ψ (75) and hS (20), we find
that

(107)

ψ(α,ρ) = inf
g∈Fm

L(g,α,ρ) ≤ inf
g∈Fm

{L(g,α,ρ) : 〈mg〉 
◦ ρ}

≤ inf
g∈Fm

{H(g) : 〈mg〉 
◦ ρ} = hS(ρ).

On the other hand, if ρ = r(α̂) for some α̂ ∈ Am, then it follows from
Theorem 3, (76), and the definition of H (47) that

(108) hS(ρ) = H(Gα̂) = ψ(α̂,ρ).

From (107) and (108), one can easily deduce strong duality (91) and the
complementary slackness condition (92).

2. If it is known a priori that the maximum in (96) is attained by α̂ ∈ Am, then
the form of the minimizer follows almost immediately. In this case, Gα̂ ∈ Fm

(which is needed for L to be well-defined) so that (76) and (93) imply (108).
Because L is strictly convex in its first argument, its minimizer is unique, and
consequently ĝρ = Gα̂.
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3. Since ρj = 〈mjGα̂〉 for j < N , the only nontrivial part of the complementary
slackness condition (92) is

(109) α̂T
NρN = α̂T

N 〈mN ĝρ〉 = α̂T
N 〈mNGα̂〉 .

This relationship between α̂N and ρN will be the key to characterizing the
set Dm.

The following corollary will be used in section 6. It is an immediate consequence
of the complementary slackness condition.

Corollary 15. Let ρ ∈ Rm, and let α̂ ∈ Am solve (91). Then

(110) hS(ρ) = min
g∈Fm

{
H(g) : α̂T 〈mg〉 = α̂Tρ

}
,

and Gα̂ is the unique minimizer.
Proof. Let g ∈ Fm be given. Using Young’s inequality (49) with z = g and

y = Gα̂ gives

(111) H(g) ≥ H(Gα̂) + α̂T 〈m(g −Gα̂)〉 ,

which, given the complementary slackness condition (92), implies that

(112) H(g) ≥ H(Gα̂) + α̂T (〈mg〉 − ρ) .

Thus if g satisfies the constraints in (110), then H(g) ≥ H(Gα̂) = hS(ρ).
A duality theorem similar to Theorem 14 holds for the minimization problem in

(19) that defines hJ(ρ). Like Theorem 14, it is a consequence of Theorem 13, and its
proof is essentially the same.

Theorem 16. Let ρ ∈ Rm, and let hJ(ρ) and ψ be given by (19) and (75),
respectively. Then

(113) hJ(ρ) = max
α∈Am

ψ(α,ρ),

where the maximum on the right is attained by a unique α̃ ∈ Am. Furthermore, if
the infimum in (19) is attained by some function g̃ρ ∈ Fm which satisfies the equality
constraints of (19), then g̃ρ = Gα̃ and g̃ρ minimizes L (g, α̃,ρ), i.e., ψ(α̃,ρ) =
L (g̃ρ, α̃,ρ) .

The careful reader may note that application of Theorem 13 to proving Theorem
16 initially gives a statement similar to (96) but without any constraint on α. How-
ever, the arguments which follow (96) show that α ∈ Am independently of this initial
restriction.

Theorems 14 and 16 prove that the infima in (19) and (20) are equal—that is,

(114) hS(ρ) = hJ(ρ) = max
α∈Am

ψ(α,ρ),

even if the infimum in (19) is not attained. In light of (114), the definition of h given
in (17), which applies only to ρ ∈ Rexp

m , can be extended to all of Rm by setting

(115) h(ρ) ≡ max
α∈Am

ψ(α,ρ).

In addition, we can now complete the proof of Theorem 9.
Proof of Theorem 9. We have already proven the “if” statement in Theorem 9.

We now prove the “only if” statement. To this end, let ρ ∈ Rm be such that (14)
has a minimizer. According to (114) this minimizer is also the minimizer of (20) and
is therefore given by Ga(ρ). Hence, the equality constraint conditions in (14) imply

that ρ =
〈
mGa(ρ)

〉
, which means ρ ∈ Rexp

m .
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5. The relationship between α and ρ. The formal structure of entropy-based
closures depends heavily on the Legendre dual relationship between the functions h
and h∗ and their derivatives. In this section, we review this relationship for nonde-
generate densities and show how Legendre duality ensures that the resulting system
of PDEs is symmetric hyperbolic. We then discuss what aspects of the dual relation-
ship hold in degenerate densities. A similar analysis can be found in [21] for the case

mN = |v|N .

5.1. Properties for nondegenerate cases. Recall that the function a maps
each ρ ∈ Rm to the unique vector α̂ ∈ Am that solves (91). In particular,

(116) ĝρ = Ga(ρ) and h(ρ) = ψ(a(ρ),ρ).

It turns out that a, when restricted to Rexp
m , is the inverse of the function r defined

in (41).
Theorem 17. The function r is one-to-one from Am onto Rexp

m with inverse a.
It is a diffeomorphism between intAm and intRexp

m .
Proof. We first identify a as the inverse of r. Since r is (by definition) onto Rexp

m ,
we need only to show that a(r(α)) = α for each α ∈ Am. By the definition of a,

(117) H(Ga(r(α))) = min
g∈Fm

{H(g) : 〈mg〉 
◦ r(α)} .

However, Theorem 3 implies that

(118) H(Gα) = min
g∈Fm

{H(g) : 〈mg〉 
◦ r(α)} .

Since this minimizer is unique, it follows that a(r(α)) = α. If α ∈ intAm, then,
according to Corollary 12, r is the derivative of the density potential h∗ on intAm

and its Jacobian

(119)
∂r

∂α
(α) =

∂2h∗

∂α2
(α,ρ) =

〈
mmTGα

〉
is a positive-definite matrix. The inverse function theorem implies then that r is a
diffeomorphism from intAm onto intRexp

m .
The following corollary implies that Dm cannot divide Rexp

m into disjoint subsets.
Corollary 18. The set Rexp

m is pathwise-connected.
Proof. Given ρ(0),ρ(1) ∈ Rexp

m , we seek a continuous function Γ : [0, 1] → Rexp
m

such that

(120) Γ(0) = ρ(0) and Γ(1) = ρ(1).

Convexity of Am implies that

(121) αλ ≡ λa(ρ(0)) + (1 − λ)a(ρ(1)) ∈ Am ∀ λ ∈ [0, 1] .

Thus, in view of Theorem 11, the function Γ(λ) = r(αλ) satisfies (120).
An immediate consequence of Theorem 14 is that h (as the maximum of a family

of linear functions in ρ) is convex on Rm. However, more can be said if we restrict h
to convex subsets of intRexp

m .
Theorem 19. When restricted to intRexp

m and intAm, respectively, the functions
h and h∗ are locally strictly convex, Legendre duals of one another.
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Proof. We first show that h is the Legendre transform of h∗. From (76),

(122) h(r(α)) + h∗(α) = αT r(α) , α ∈ Am,

where, according to Corollary 12,

(123) r(α) = h∗
α(α) , α ∈ intAm.

We next show that the Legendre transform of h∗ recovers h. The inverse relationship
between a and r (Theorem 17) implies that (122) may be rewritten in terms of ρ =
r(α):

(124) h(ρ) + h∗(a(ρ)) = a(ρ)Tρ , ρ ∈ Rexp
m .

Differentiating (124) and using (123) again gives

(125) a(ρ) = hρ(ρ), ρ ∈ intRexp
m .

Finally, for ρ ∈ intRexp
m ,

(126) hρρ(ρ) =
∂a

∂ρ
(ρ) =

[
∂r

∂α
(a(ρ))

]−1

= [h∗
αα (a(ρ))]

−1
,

which, by Corollary 12, is positive-definite. Thus h and h∗ are strictly convex.

5.2. Application to kinetic moment closures. The dual relationship be-
tween h and h∗ is used in [24] to show that entropy-based closures formally produce
hyperbolic systems which dissipate a convex entropy and satisfy an H-theorem. In-
deed, if ρ ∈ intRexp

m and α̂ = a(ρ), then, according to (123), the moment system (12)
can be expressed in terms of α̂:

(127) ∂th
∗
α(α̂) + ∇x · j∗α(α̂) = c(h∗

α(α̂)) ,

where j∗(α) ≡ 〈vGα〉 is the flux potential and

(128) j∗α(α̂) = f(ρ).

Carrying out the time and space derivates in (127) gives

(129) h∗
αα(α̂)∂tα̂ + j∗αα(α̂) · ∇xα̂ = c(h∗

α(α̂)),

which has the form of a symmetric hyperbolic system [14]. Furthermore, by multi-
plying (12) by hρ and applying relations (125) and (128), we find that h(ρ) satisfies:

(130) ∂th(ρ) + ∇x · j(ρ) = a(ρ)T c(ρ),

where j(ρ) ≡ a(ρ)T f(ρ) − j∗(a(ρ)). Then by (5) and (6),

(131) a(ρ)T c(ρ) = S(Ga(ρ)) ≤ 0

with equality if and only if Ga(ρ) is a local Maxwellian (7). This is a direct analogue
of Boltzmann’s H-theorem for (2). (See [24] for details.)
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5.3. Nondegenerate examples. For N = 2, there are two possible closures:
Maxwellian and Gaussian. Both are well-known, and in both cases Am = intAm and
Rm = Rexp

m = intRexp
m . Traditionally, these closures are expressed by using so-called

fluid variables:

(132)

density: ρ = 〈F 〉 , temperature matrix: Θ =
〈(v − u) ∨ (v − u)F 〉

〈F 〉 ,

bulk velocity: u =
〈vF 〉
〈F 〉 , temperature: θ =

1

3
trace(Θ) =

〈
|v − u|2F

〉
3 〈F 〉 .

1. Maxwellian closure. If m = (1, v, 1
2 |v|2)T , the ansatz F [ρ] in (14) is a

Maxwellian distribution:

(133) Mρ,u,θ(v) ≡
ρ

(2πθ)
d/2

exp

(
−|v − u|2

2θ

)
.

The fluid variables are related to the densities ρi by

(134) ρ0 = ρ , ρ1 = ρu , ρ2 =
1

2
ρu2 +

3

2
ρθ

and to the vectors α̂i by

(135) α̂0 = log

(
ρ

(2πθ)
d/2

)
− |u|2

2θ
, α̂1 =

u

θ
, α̂2 = −1

θ
.

The moment equations in this case are the compressible Euler equations for
a gas of point particles:

∂tρ + ∇x · (ρu) = 0 ,(136a)

∂t (ρu) + ∇x · (ρu ∨ u + ρθI) = 0,(136b)

∂t

(
1

2
ρ|u|2 +

d

2
ρθ

)
+ ∇x ·

(
1

2
ρ|u|2u +

d + 2

2
ρθu

)
= 0.(136c)

The spatial entropy

(137) h(ρ) = 〈Mρ,u,θ logMρ,u,θ −Mρ,u,θ〉 = ρ

[
log

(
ρ

(2πθ)
d/2

)
− d + 2

2

]

is locally conserved by smooth solutions for (136) but is dissipated along
shocks.

2. Gaussian closure. If m = (1, v, v ∨ v)T , the ansatz F [ρ] in (14) is a Gaussian
distribution:

(138) Gρ,u,Θ(v) =
ρ√

det(2πΘ)
exp

(
−1

2
(v − u) · Θ−1 · (v − u)

)
.

The fluid variables are related to the densities ρi by

(139) ρ0 = ρ , ρ1 = ρu , ρ2 = ρu ∨ u + ρΘ
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and to the vectors α̂i by

(140)

α̂0 = log

(
ρ√

det(2πΘ)

)
− 1

2
u ·Θ−1 ·u , α̂1 = Θ−1 ·u , α̂2 = −1

2
Θ−1.

The moment equations in this case are

∂tρ + ∇x · (ρu) = 0,(141a)

∂t (ρu) + ∇x · (ρu ∨ u + ρΘ) = 0,(141b)

∂t (ρu ∨ u + ρΘ) + ∇x · (ρu ∨ u ∨ u + 3ρΘ ∨ u) = 〈v ∨ v C(Gρ,u,Θ)〉 ,(141c)

and solutions to this system satisfy a local dissipation law for the spatial
entropy

(142)

h(ρ) = 〈Gρ,u,Θ log Gρ,u,Θ − Gρ,u,Θ〉 = ρ

[
log

(
ρ√

det(2πΘ)

)
− d + 2

2

]
.

Note that, in both of the examples above, the expressions for α̂ and ρ can be
used to determine a(ρ) explicitly. However, generally speaking, an analytical solution
is not available, and a numerical solution must be computed via (91).

5.4. Properties for degenerate cases. If ρ ∈ Dm, then the minimizer with
equality constraints (14) does not exist, and the entropy-based closure is not well-
defined. Although it is possible to recover a well-defined closure by using the relaxed
constraints in (20), much of the formal structure is lost. For example, if ρ ∈ Dm, then
(123) and (126) no longer hold because r (a(ρ)) �= ρ and, as shown in Corollary 22
below, hS fails to be strictly convex on Rm whenever Dm is nonempty. Since many
of the properties of entropy-based closures require h to be strictly convex, this fact is
critical.

The situation for degenerate densities may be best understood via the projection
operator π : Rm → Rexp

m , which assigns to each vector ρ ∈ Rm the density which is
realized by the minimizer of (20):

(143) π(ρ) ≡ r(a(ρ)) =
〈
mGa(ρ)

〉
.

Before discussing π further, we introduce some notation that will be useful for the
remainder of the paper. First we have the natural decompositions for r, a, and π
based on the decomposition of m in (22):

(144) r =
(
rT0 , r

T
1 , . . . , r

T
N

)T
, a =

(
aT

0 ,a
T
1 , . . . ,a

T
N

)T
, π =

(
πT

0 ,π
T
1 , . . . ,π

T
N

)T
.

With this notation,

(145) Ga(ρ) = exp

⎛
⎝ N∑

j=1

aj(ρ)Tmj

⎞
⎠ , rj(α) = 〈mjGα〉 , πj(ρ) = rj(a(ρ)).

Next, for any ρ ∈ Rn and any ζ ∈ RnN , we define

(146) ρ +
N

ζ ≡ (ρT
0 ,ρ

T
1 , . . . ,ρ

T
N + ζT )T .

This notation will often be applied to subsets of Rn and RnN in the context of set
addition.
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Proposition 20. Let ρ̄ ∈ Rexp
m , and let ᾱ = a(ρ̄). Then for any ρ ∈ Rn, the

following are equivalent:

(i) ρN − ρ̄N ∈ NC(AmN
, ᾱN );(147a)

(ii) (αN − ᾱN )
T

(ρN − ρ̄N ) ≤ 0 ∀ αN ∈ AmN
;(147b)

(iii) ᾱT
N (ρN − ρ̄N ) = 0 and αT

N (ρN − ρ̄N ) ≤ 0 ∀ αN ∈ AmN
.(147c)

Proof. Here (i) ⇔ (ii) is just the definition of a normal cone (31), and the impli-
cation that (iii) ⇒ (ii) is clear. To prove that (ii)⇒(iii), we use the freedom to choose
any αN ∈ AmN

. Setting αN = 0 and then αN = 2ᾱN in (147b) gives

(148) ᾱT
N (ρN − ρ̄N ) ≥ 0 and ᾱT

N (ρN − ρ̄N ) ≤ 0,

respectively. We conclude that ᾱT
N (ρN − ρ̄N ) = 0, which, when substituted back

into (147b), gives the inequality in (iii).
Lemma 21. The projection π satisfies the following relations:

(i) πj(ρ) = ρj ∀ ρ ∈ Rm and j < N ;(149a)

(ii) aN (ρ)TπN (ρ) = aN (ρ)TρN ∀ ρ ∈ Rm;(149b)

(iii) π(ρ) = ρ if and only if ρ ∈ Rexp
m ;(149c)

(iv) π({ρ̄ +
N
NC(AmN

, ᾱN )} ∩O) = ρ̄

∀ ρ̄ ∈ Rexp
m and any O ⊂ Rm containing ρ̄;(149d)

(v) π(Dm) = r (Am ∩ ∂Am) = Rexp
m ∩ ∂Rexp

m ;(149e)

(vi) a(π(ρ)) = a(ρ) ∀ ρ ∈ Rm;(149f)

(vii) h(π(ρ)) = h(ρ) ∀ ρ ∈ Rm.(149g)

Proof. We prove each statement in order.
1. Equation (149a) follows from the constraint conditions in (52a).
2. Equation (149b) is just a restatement of the nontrivial component of the

complementary slackness condition (109) with α̂ = a(ρ).
3. By Theorem 17, π = r ◦ a is the identity map on Rexp

m . Thus π(ρ) = ρ if
ρ ∈ Rexp

m . However, the range of π is π(Rm) = r(Am) = Rexp
m . Thus if

ρ �∈ Rexp
m , then π(ρ) cannot equal ρ.

4. Let ρ̄ ∈ Rexp
m , let O ⊂ Rm be an open set containing ρ̄, and let ᾱ = a(ρ̄).

Choose any ρ ∈ {ρ̄ +
N
NC(AmN

, ᾱN )}. Then ρ = ρ̄ for j < N , so by
Proposition 20, ᾱTρ = ᾱT ρ̄ and αTρ ≤ αT ρ̄ for all α ∈ Am. Therefore

(150) ψ(ᾱ, ρ̄) = ψ(ᾱ,ρ) ≤ ψ(a(ρ),ρ) ≤ ψ(a(ρ), ρ̄) ≤ ψ(ᾱ, ρ̄).

Here the equality in (150) follows immediately from the definition of ψ (75)
and the fact that ᾱTρ = ᾱT ρ̄. The first inequality in (150) uses the fact
that ψ(a(ρ),ρ) maximizes ψ(·,ρ) over all α ∈ Am; the second uses the
fact that αTρ ≤ αT ρ̄ for all α ∈ Am; and the third uses the fact that
ψ(ᾱ, ρ̄) maximizes ψ(·, ρ̄) over all α ∈ Am. We conclude from (150) that
ψ(a(ρ), ρ̄) = ψ(ᾱ, ρ̄). Since ᾱ is the unique maximizer of ψ(·, ρ̄) over all
α ∈ Am, it follows that a(ρ) = ᾱ. Therefore π(ρ) = r(a(ρ)) = r(ᾱ) = ρ̄.

5. We first argue by contraction to show that π(Dm) ⊂ r (Am ∩ ∂Am). Thus,
suppose there exist ρ ∈ Dm and α ∈ intAm such that π(ρ) = r(α). We
know that

(151) ψ(π(ρ),a(π(ρ))) = max
α∈Am

ψ(π(ρ),α),
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and since ψ is differentiable on intAm, first order optimality conditions imply
that

(152)
∂ψ

∂α
(π(ρ),a(π(ρ))) = ρ − π(π(ρ)) = 0.

However, π is a projection; therefore, (152) implies that ρ = π(ρ). According
to (149c), this contradicts the assumption that ρ ∈ Dm.
We next show that r (Am ∩ ∂Am) ⊂ π(Dm). Let ᾱ ∈ Am ∩ ∂Am, and let
O ⊂ Rm be an open set containing r(ᾱ) ∈ Rexp

m . Then choose (see (32))

(153) ρ ∈ {r(ᾱ) +
N
NC0(AmN

, ᾱN )} ∩O.

Since ᾱ ∈ Am ∩ ∂Am, ᾱN ∈ ∂AmN
(see (46)), and this set is nonempty. By

(149d), π(ρ) = r(ᾱ). Thus we need only show that ρ ∈ Dm. If it is not, then
ρ ∈ Rexp

m and π(ρ) = ρ = r(ᾱ), which contradicts (153). Thus ρ ∈ Dm.
Finally, we show that r (Am ∩ ∂Am) = Rexp

m ∩∂Rexp
m . Because r is one-to-one

on Am (Theorem 17),

(154) r (Am ∩ ∂Am) = r(Am)\r(intAm) = Rexp
m \ intRexp

m = Rexp
m ∩∂Rexp

m .

6. Given that a ◦ r is the identity map on Am (Theorem 17), a(π(ρ)) = (a ◦
r)(a(ρ)) = a(ρ).

7. The proof is a simple calculation. For any ρ ∈ Rm, (149a), (149b), and (149f)
give
(155)

h(π(ρ)) = ψ(a(π(ρ)),π(ρ)) = ψ(a(π(ρ)),ρ) = ψ(a(ρ),ρ) = h(ρ).

Corollary 22. The set Dm is empty if and only if Am is open. If Dm is
nonempty, then h fails to be strictly convex.

Proof. The first statement is an immediate consequence of (149e). The sec-
ond statement is a consequence of (149d) and (149g), which together imply that
h is constant on the cone {ρ̄ +

N
NC(AmN

,aN (ρ̄))} for any ρ̄ ∈ Rexp
m . If Dm is

nonempty, then by (149e), Rexp
m ∩ ∂Rexp

m is also nonempty; if ρ̄ ∈ Rexp
m ∩ ∂Rexp

m ,
then a(ρ̄) ∈ Am ∩ ∂Am and, consequently, aN (ρ̄) ∈ ∂AmN

(see (46)). As a re-
sult, {ρ̄ +

N
NC(AmN

,a(ρ̄))} is nontrivial, and h cannot be strictly convex on all of
Rm.

It turns out that Am is open only for N = 2. (To see this fact, one need only realize
that, for N > 2, the vector α ∈ Am corresponding to any Maxwellian Mρ,u,θ lies
on the boundary ∂Am.) Thus Corollary 22 shows that the Maxwellian and Gaussian
closures are the exception rather than the rule. However, in spite of the difficulties
encountered for α ∈ Am ∩ ∂Am, (124) and (125) extend to all of Rm.

Theorem 23. For all ρ ∈ Rm,

(156) h(ρ) + h∗(a(ρ)) = a(ρ)Tρ,

and the function a is the continuous Fréchet derivative of h everywhere on Rm, i.e.,

(157) a(ρ) = hρ(ρ).

Proof. Let ρ ∈ Rm, and set ρ̄ = π(ρ) ∈ Rexp
m . By (124),

(158) h(π(ρ)) + h∗(a(π(ρ))) = a(π(ρ))Tπ(ρ).
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However, according to Lemma 21, a(ρ) = a(ρ̄), h(ρ) = h(ρ̄), and a(ρ)Tρ = a(ρ)T ρ̄.
Therefore (158) and (156) are equivalent.

We now move on to proving (157). By using (116), we find that

(159)
h(ρ + δ) = ψ (a(ρ + δ),ρ + δ) ≥ ψ (a(ρ),ρ + δ)

= ψ (a(ρ),ρ) + a(ρ)T δ = h(ρ) + a(ρ)T δ

and, similarly, that

(160)
h(ρ) = ψ (a(ρ),ρ) ≥ ψ (a(ρ + δ),ρ) = ψ (a(ρ + δ),ρ + δ) − [a(ρ + δ)]

T
δ

= h(ρ + δ) − [a(ρ + δ)]
T

δ.

Together (159) and (160) imply that

(161) 0 ≤ h(ρ + δ) − h(ρ) − a(ρ)T δ ≤ |δ| |a(ρ + δ) − a(ρ)| .

Hence, to complete the proof, we need only to show that a is continuous.
Equation (159) implies also that a(ρ) is a subgradient of h at ρ [30, section 23,

page 214]. The set of all subgradients is called the subdifferential of h at ρ and is
denoted by ∂h(ρ). It is a general result from convex analysis [30, Theorem 24.7] that,
because h is convex, the set ∂h(S) ≡

⋃
ρ∈K∂h(ρ) is bounded whenever K ⊂ Rn is

bounded. In particular, if {ρ(i)}∞i=1 ⊂ Rm converges to ρ∗ ∈ Rm, then {a(ρ(i))}∞i=1

is a bounded sequence. Let α∗ be any subsequential limit for this sequence. Then

(162)
ψ(a(ρ∗),ρ∗) = lim

i→∞
ψ
(
a(ρ∗),ρ(ik)

)
≤ lim

i→∞
ψ
(
a(ρ(ik)),ρ(ik)

)
≤ ψ(α∗,ρ∗) ≤ ψ(a(ρ∗),ρ∗),

where {ik}∞i=1 is any sequence of integers such that α∗ = limi→∞ a(ρ(ik)). The first
and last inequalities in (162) follow because ψ(a(ρ),ρ) maximizes ψ(·,ρ), whereas
the middle inequality is a consequence of the fact that ψ(·,ρ) is upper semicontinuous
(Theorem 11).

From (162), we deduce that ψ(α∗,ρ) = ψ(a(ρ∗),ρ), and, since a(ρ∗) is the unique
minimizer of ψ(·,ρ), it follows that α∗ = a(ρ∗). Because {a(ρ(i))} is bounded and
all of its converging subsequences converge to a(ρ∗), it follows then that

(163) lim
i→∞

a(ρ(i)) = a(ρ∗).

Thus a is continuous, and h is continuously differentiable.
Note that, as a consequence of Theorem 23, h(ρ) = ψ(a(ρ),ρ) is a differentiable

on all of Rm even though ψ(·,ρ) may not be continuous for α ∈ Am ∩ ∂Am. We
alluded to this fact earlier in section 4.2.

6. Geometry of Dm. In this section, we give a description of the geometry of
the set D. The main results are given in Theorem 25, which shows that D is a union
of cones, and in Theorem 28, which concludes that, with additional assumptions, D
is small in both a topological and a measure-theoretic sense. We begin with some
motivation for why such results are important.

6.1. Motivation: Behavior of the closure near degeneracy. Even though
Dm is usually nonempty, there is evidence to suggest that if ρ ∈ Rexp

m initially, then
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densities in Dm might never be attained. To investigate this possibility, we introduce
the function χ : Rm → R, defined by

(164) χ(ρ) ≡
∫

Rd

|vm(v)|Ga(ρ)(v) dv.

For the entropy-based closure, χ is closely related to the flux f in (13), and we show
below that χ becomes unbounded as ρ approaches Dm. As pointed out in [20], such
divergent behavior raises the possibility that Rexp

m is invariant under the dynamics of
the closure.

Proposition 24. Let {ρ(j)}∞j=1 be a sequence in Rexp
m such that ρ(j) → ρ∗ ∈ Dm,

and for each j, let χj ≡ χ(ρ(j)). Then {χj}∞j=1 is unbounded.
Proof. Since {ρ(j)}∞j=1 ⊂ Rexp

m ,

(165) r(a(ρ(j))) = ρ(j) , j = 1, 2, . . . ,

and taking limits on both sides gives

(166) lim
j→∞

r(a(ρ(j))) = ρ∗.

We proceed by showing that if {χj}∞j=1 is bounded, then

(167) lim
j→∞

r(a(ρ(j))) = r(a(ρ∗)).

Together (166)–(167) will then imply that ρ∗ ∈ Rexp
m which, by contradicting our

hypothesis, proves the claim. Hence, suppose that {χj}∞j=1 is bounded. To conclude
(167), we calculate∣∣∣r(a(ρ∗)) − r(a(ρ(j)))

∣∣∣ =
∣∣∣〈mGa(ρ∗)

〉
−
〈
mGa(ρ(j))

〉∣∣∣
≤
∫

Rd

|m(v)|
∣∣∣Ga(ρ∗)(v) −Ga(ρ(j))

(v)
∣∣∣ dv

=

∫
|v|>R

|m(v)|
∣∣∣Ga(ρ∗)(v) −Ga(ρ(j))

(v)
∣∣∣ dv(168)

+

∫
|v|<R

|m(v)|
∣∣∣Ga(ρ∗)(v) −Ga(ρ(j))

(v)
∣∣∣ dv,(169)

where R > 0 is an arbitrary constant. We handle the integrals for |v| > R and |v| < R
in (168) separately. For |v| > R,

(170)

∫
|v|>R

|m(v)|
∣∣∣Ga(ρ∗)(v) −Ga(ρj)

(v)
∣∣∣ dv

≤
∫
|v|>R

|vm(v)|
R

∣∣∣Ga(ρ∗)(v) −Ga(ρj)
(v)

∣∣∣ dv
≤ 1

R

∫
Rd

|vm(v)|
∣∣∣Ga(ρ∗)(v) −Ga(ρj)

(v)
∣∣∣ dv ≤ C

R
,

where

(171) C ≡ 2 max

{
χ(ρ∗), sup

j
{χj}

}
.
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For |v| < R, continuity of a (see Theorem 23) implies that a(ρ(j)) → a(ρ∗). Hence

the sequence Ga(ρ(j))
is uniformly bounded on {v ∈ Rd : |v| ≤ R}. By the Lebesgue

bounded convergence theorem,

(172) lim
j→∞

∫
|v|<R

|m(v)|Ga(ρj)
(v) dv =

∫
|v|<R

|m(v)|Ga(ρ∗)(v) dv.

Together (168), (170), and (172) imply that

(173) lim
j→∞

∣∣r(a(ρ∗)) − r(a(ρj))
∣∣ ≤ C

R
.

Because R can be arbitrarily large, we conclude that (167) holds, which proves the
claim.

Note that, by uniformly bounding χj in the proof above, we are providing uniform
control on the highest-order moments in ρ(j). In general, such control is not possible,
which is why the minimizer in (14) with equality constraints does not always exist.
(See the discussion following the proof of Theorem 3.)

The behavior of χ expressed in Proposition 24 was first observed by Junk for the
one-dimensional example in [20]. In particular, for a sequence {ρ(j)}∞j=1 ∈ intRexp

m , it

was found that
〈
vmNGa(ρ)

〉
diverges to either positive or negative infinity as ρ(j) →

ρ∗ ∈ Dm, with the sign depending on the direction of approach.
Suppose now that it can be proven that Rexp

m is invariant under the dynamics
of the balance law (12) with the entropy-based closure. Then if ρ ∈ Rexp

m initially,
the entropy minimization problem with equality constraints (14) will always have
a solution, and the formal properties of the closure based on the Legendre duality
between h and h∗ will be maintained. However, it must be shown—at a minimum—
that Dm is small in some sense, thereby limiting the number of initial conditions
in Rm which must be discarded in order to maintain a well-defined closure. In the
following subsections, we use the complementary slackness conditions (92) to show
that, under reasonable hypotheses, Dm is indeed a Lebesgue measure zero set.

6.2. The complementary slackness condition and normal cones. From
the complementary slackness condition (149b), we obtain the following result.

Theorem 25. The set Rm can be expressed as the following union of cones:

(174) Rm =
⋃

ρ̄∈Rexp
m

ρ̄ +
N
NC(AmN

,aN (ρ̄)).

The proof of this theorem uses the following lemma.
Lemma 26. Let m be a vector whose polynomial components form the basis for

an admissible space M. Then Am ⊂ {α ∈ Rn : αN ∈ AmN
}, where Am and AmN

are
defined in (36) and (44), respectively.

Proof. Let α ∈ Am, and let v∗ ∈ Rd be fixed. Because the components of mi are
homogeneous polynomials of degree i, for any λ > 0,

(175) 0 ≥ 1

λN
αTm(λv∗) =

N∑
i=0

λi

λN
αT

i mi(v∗).

Taking the limit λ → ∞ in (175) gives αT
NmN (v∗) ≤ 0, and since v∗ is arbitrary, we

conclude that αN ∈ AmN
.
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Proof of Theorem 25. Suppose that ρ ∈ Rn and that ρ̄ ∈ Rexp
m . Before making

any further assumptions about ρ or any relationship between ρ and ρ̄, we note that
from Proposition 20 we obtain the following set of equivalent statements:

(i) ρN − ρ̄N ∈ NC(AmN
,aN (ρ̄));(176a)

(ii) (αN − aN (ρ̄))
T

(ρN − ρ̄N ) ≤ 0 ∀ αN ∈ AmN
;(176b)

(iii) aN (ρ̄)T (ρN − ρ̄N ) = 0 and αT
N (ρN − ρ̄N ) ≤ 0 ∀ αN ∈ AmN

.(176c)

We first show containment of the left-hand side of (174). Given ρ ∈ Rm, let
ρ̄ = π(ρ) ∈ Rexp

m . Then ρj = ρ̄j for j < N and, by (149f), a(ρ̄) = a(ρ). Thus, from
(149b),

(177) aN (ρ̄)TρN = aN (ρ̄)T ρ̄N .

Meanwhile, the constraint conditions in (52) imply that

(178) αT
NρN ≤ αT

N ρ̄N ∀ α ∈ Am.

We conclude from (176)–(178) that ρN − ρ̄N ∈ NC(AmN
,aN (ρ̄)).

Next we show containment in the other direction. Suppose that ρj = ρ̄j for
j < N and that ρN − ρ̄N ∈ NC(AmN

,aN (ρ̄)). By Theorem 1, Rm = intA◦
m, so it

is sufficient to prove that ρ ∈ intA◦
m. Because ρ̄ ∈ Rexp

m ⊂ Rm = intA◦
m, it follows

that αT ρ̄ < 0 for all α ∈ Am. Furthermore, by Lemma 26, αN ∈ AmN
for all such

α. Hence from (178),

(179) αTρ = αT ρ̄ + αT
N (ρN − ρ̄N ) < 0 ∀ α ∈ Am.

This shows that ρ ∈ intA◦
m and concludes the proof.

For ρ̄ ∈ intRexp
m , NC(AmN

,aN (ρ̄)) is just the origin in RnN . In such cases,
Theorem 25 is trivial, and the construction ρ̄ +

N
NC(AmN

,aN (ρ̄)) does not generate
any new densities. Therefore Dm is constructed entirely by convex cones attached to
ρ̄ ∈ Rexp

m ∩∂Rexp
m . Recall from (32) that NC0(AmN

,aN (ρ̄)) = NC(AmN
,aN (ρ̄))\{0}.

We have the following corollary.
Corollary 27. The degenerate densities are

(180)

Dm =
⋃

ρ̄∈Rexp
m ∩∂Rexp

m

{ρ̄ +
N
NC0(AmN

,aN (ρ̄))} =
⋃

ᾱ∈Am∩∂Am

{r(ᾱ) +
N
NC0(AmN

, ᾱN )} .

6.3. Smoothness assumptions on Am∩∂Am. Corollary 27 gives the degen-
erate densities associated with each ρ̄ ∈ Rexp

m ∩ ∂Rexp
m . However, a clean description

of Dm requires also that Rexp
m ∩ ∂Rexp

m itself have a nice structure. In particular, we
would like to say that Rexp

m ∩ ∂Rexp
m is a finite union of disjoint manifolds. At this

point we are unable to prove such a result in general, in part due to the complicated
structure of Am∩∂Am to which we alluded in section 2.4. We therefore make two as-
sumptions. The first assumption says that Am∩∂Am is a union of disjoint manifolds
with dimensional restrictions that are related to the dimensions of the normal cones
in (180) in such a way as to ensure that Dm is a lower-dimensional subset of Rm.
The second assumption says that the mapping r is diffeomorphic when restricted to
each of these manifolds. Thus each dimension k manifold in Am ∩ ∂Am will map to
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a dimension k manifold in Rexp
m ∩ ∂Rexp

m . Before stating our assumptions, we define
the orthogonal projections PN : Rn 
→ RnN and PÑ : Rn 
→ Rn−nN by
(181)
PN (α) ≡ (0, . . . , 0, 0,αT

N )T and PÑ (α) ≡ α − PN (α) = (αT
0 ,α

T
1 , . . . ,α

T
N−1, 0)T .

Assumption I. The vector m is such that the set Am ∩ ∂Am can be decomposed
into a finite collection S of disjoint, smooth (C∞) manifolds in Rn. Furthermore, if S is
one such manifold, then PN projects S onto a manifold SN ⊂ ∂AmN

with codimension
at least one in RnN and PÑ projects S onto a manifold SÑ of codimension at least
one in Rn−nN .

We call S a stratification of Am∩∂Am; the manifolds S that make up S are called
strata. We fully expect that S can be chosen so that, for each S ∈ S, the projection
SN is indeed a manifold. If so, SN will certainly have codimension of one or more
since, by (46), SN ⊂ ∂AmN

. Furthermore, if αN ∈ ∂AmN
, then αT

NmN (λω) = 0
for some ω ∈ Sd−1 and all λ ∈ R, which means that mN no longer provides uniform
control over lower-degree polynomials. Thus, in order to maintain the integrability
condition (40) that defines Am, we expect further restrictions on the components
αj for j < N . This is the motivation for the codimension one restriction on the
manifold SÑ in Assumption I. Since, in general, dim(S) ≤ dim(SN )+dim(SÑ ), these
restrictions together imply that S itself has codimension of at least two in Rn.

It should be noted that Assumption I is known to hold for at least two cases:

(i) d = 1 and N ≥ 2;(182a)

(ii) d > 1, N = 4, and m4 = |v|4.(182b)

(Whether or not Assumption I holds in any other case is, to our knowledge, an open
question.) For the first case above, αj = αj and n = N + 1. For i = 1, . . . , N/2, we
define the sets

(183) A2i
m = {α ∈ Rn : αj = 0 for 2i < j ≤ N and α2i < 0} .

Clearly each A2i
m is a manifold of dimension 2i + 1 such that

(184) Am ∩ ∂Am =

N/2−1⋃
i=1

A2i
m and AN

m = intAm.

For the second case, Am ∩ ∂Am = {α ∈ Rn : αT
2 m2 < 0}. If m2 = |v|2, then Gα has

the form of a Maxwellian distribution (133) on Am ∩ ∂Am; if m2 = v ∨ v, then Gα

has the form of a Gaussian distribution (138) on Am ∩ ∂Am.
One possible way to prove that Assumption I always holds is to show that the

integrability condition which defines Am can be expressed as a family of polynomial
equalities and inequalities for α. Sets expressed in this way are called semialgebraic
and are known to have a stratification with special properties [2, 27]. One can show,
for example, that the sets Amj (j even) and clAm are semialgebraic. One can also
show that the interiors and boundaries of these sets are semialgebraic. See [17] for
details.

Assumption II. The vector m is such that if Assumption I holds and if S is an
element of the stratification of Am ∩ ∂Am, then for each ρ ∈ Rm, the restriction of
ψ(·,ρ) to S is infinitely Fréchet differentiable on S.

One may easily verify that Assumption II also holds for the cases in (182). When
both Assumptions I and II hold, r is a smooth diffeomorphism with inverse a when
restricted to any manifold in the stratification of Am ∩ ∂Am.
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6.4. Fiber bundles. The construction of Dm by attaching cones to the densities
Rexp

m ∩ ∂Rexp
m is very similar to the construction of a fiber bundle. A (continuous)

fiber bundle (B, B, F,P) [18] consists of topological spaces B, B, and F along with a
projection P : B → B such that, for every y ∈ B, there is a neighborhood O ⊂ B
containing y such that P−1(O) is homeomorphic to O × F . In addition, if φ is this
homeomorphism and Π is the natural projection of O×F onto O (i.e., Π(y×F ) = y for
all y ∈ O), then Π(φ(P−1)) is the identity on O. The space B is called the base space,
F is called the fiber space, and often B itself is called the bundle. Roughly speaking,
B is constructed by attaching to each point in B a (topologically equivalent) copy of
F that varies continuously from point to point in the base space. If Assumptions I
and II hold, then for each manifold S in a stratification S of Am∩∂Am, the manifold
r(S) acts like a base space; the cones NC(AmN

,αN ), α ∈ S, are like fibers; and π is
the projection onto the base space. The entire structure is

(185) B(S) =
⋃

α∈S

{r(α) +
N
NC(AmN

,αN )} ,

and, in view of Corollary 27, Dm =
⋃

S∈S B0(S), where

(186) B0(S) = B(S)\r(S) =
⋃

α∈S

{r(α) +
N
NC0(AmN

,αN )} .

Unfortunately, we cannot conclude that B(S) is a bundle even with Assumptions I
and II. In short, we have been unable to show a local homeomorphism between the
base-fiber product space and the inverse image π−1(S). However, the sets taken from
the examples in section 6.6 below are all fiber bundles. This is fairly easy to check
because, in these examples, the convex cones AmN

and NC(AmN
,αN ), αN ∈ ∂AmN

,
have explicit expressions that are (relatively) simple.

6.5. Smallness of Dm. If Assumptions I and II hold, we can show that Dm is
small in the following sense.

Theorem 28. Suppose that Assumptions I and II hold. Then Dm has zero
Lebesgue measure, intRexp

m is a dense subset of Rm, and Dm ⊂ ∂Rexp
m .

Proof. The basic idea of the argument is that the image of a smooth map from
a lower-dimensional space to a higher-dimensional space has zero Lebesgue measure.
We will construct such a map F whose image covers a portion of Dm. We can then
cover Dm with the images from a countable number of similar maps.

Let S be a stratification of Am ∩ ∂Am as provided by Assumption I, and let
S ∈ S have dimension j. According to Assumption I, SN ≡ PNS ⊂ ∂AmN

and
SÑ ≡ PÑS are smooth manifolds with dimensions which we denote by jN and jÑ ,
respectively. In general, dim(S) ≤ dim(SN )+dim(SÑ ), and in view of Assumption I,
dim(SÑ ) < n− nN . Therefore

(187) j ≤ jN + jÑ < jN + (n− nN ).

This inequality is the key to our result. For any α ∈ S, the normal cone NC(SN ,αN )
is a subspace of dimension nN − jN , and one can readily show that

(188) NC(AmN
,αN ) ⊂ NC(SN ,αN ) , α ∈ S.

We can therefore proceed with the proof by considering the set

(189) Km ≡
⋃
S∈S

⋃
α∈S

K(α) ⊃ (Rexp
m ∩ ∂Rexp

m ) ∪ Dm,
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where the affine spaces

(190) K(α) ≡ r(α) +
N
NC(SN ,αN ) , α ∈ S,

are constructed by attaching NC(SN ,αN ) to r(α) ∈ r(S) ⊂ Rexp
m ∩ ∂Rexp

m .
Let U ⊂ S be the nonempty intersection of S with a bounded open ball in Rn.

Because S is a manifold, there exists a smooth diffeomorphism τ : U → Rj such that
τ(U) is the open unit disk Dj . Define a second mapping V : U → RnN×(nN−jN ) such
that V(α) is a matrix whose (nN − jN ) columns are vectors in RnN that form a basis
for NC(S,αN ). Since S is smooth, this basis can be chosen to vary smoothly over
α ∈ U . Then by using τ and V, define F : Rj × RnN−jN → Rn by

(191) F (y,b) ≡ r(τ−1(y)) +
N

V(τ−1(y)) · b.

In view of Assumption II, F is smooth, and by (187), j + (nN − jN ) < n. Thus,
by [18, Proposition 1.2], the image F (Dj×RnN−jN ) =

⋃
α∈U K(α) has zero Lebesgue

measure. Because measure is countably subadditive, repeating this argument for each
j-ball U in a countable cover of S and then for each S ∈ S shows that Km has zero
Lebesgue measure. Since Dm ⊂ Km, Dm also has zero Lebesgue measure, and since
Rm\Km ⊂ intRexp

m , intRexp
m and Rm have the same closure. (Otherwise, there would

exist an open set of positive measure contained in Km.) Therefore Dm ⊂ ∂Rexp
m .

6.6. Examples. We will assume that Assumptions I and II hold in the following
examples.

1. Junk’s example. The case mN = |v|N has been studied in [20, 21, 31], partic-
ularly when N = 4. For general N ,

(192) AmN
= {αN ∈ R : αN ≤ 0} and ∂AmN

= {0}.

If ρ ∈ Rm and aN (ρ) = 0, then aN−1(ρ) = 0 as well; otherwise, Ga(ρ) /∈ Fm.
With this fact in mind, we conclude from Corollary 15 that Ga(ρ) is actually
the minimizer of H subject to fewer constraints:

(193) H(Ga(ρ)) = min
g∈Fm

{
H(g) : 〈mjg〉 = ρj , j ≤ N − 2

}
.

Let m̄ contain the components of m of degree N̄ ≡ N − 2 and less:

(194) m̄ ≡ (m0,m1, . . . ,mN−2)
T
,

and let the variables ρ̄ and ᾱ and the functions r̄ and ā be defined similarly.
For this example,

(195) Am ∩ ∂Am ⊂ {α ∈ Rn : ᾱ ∈ Am̄ , αN−1 = 0 , αN = 0},

but these two sets are not necessarily equal, since the latter may include α
for which Gα ∈ Fm̄, but Gα �∈ Fm. However, one may readily conclude that
Gα ∈ Fm for all ᾱ ∈ intAm̄. Hence,

(196) {α ∈ Rn : ᾱ ∈ intAm̄, αN−1 = 0, αN = 0} ⊂ Am ∩ ∂Am.

Let S be a stratification of Am∩∂Am. The projection of any manifold S ∈ S
onto ∂AmN

is the origin in RnN , so the normal cone attached to α ∈ S is
just the nonnegative axis:

(197) NC(AmN
, αN ) = {σN ∈ R : σN ≥ 0} = A◦

mN
.
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Therefore

(198) Dm = {ρ : ρN > rN (α), α ∈ Am ∩ ∂Am} .

Because AmN
is one-dimensional, the inequality in (198) is scalar.

If N = 4, the situation simplifies further, because intAm̄ = Am̄ and the
inclusion in (195) becomes an equality. In addition, Rm̄ = Rexp

m̄ and r̄ is a
diffeomorphism on all of Am̄. Therefore

Dm = {ρ : ρN > rN (α), ᾱ ∈ Am̄, αN = αN−1 = 0}
=

{
ρ : ρN > rN (0, 0, ā(ρ̄)), ρN−1 = rN−1(0, 0, ā(ρ̄)), ρ̄ ∈ Rm̄

}
.(199)

The components rN (0, 0, ā(ρ̄)) and rN−1(0, 0, ā(ρ̄)) are simple to compute
since r(0, 0, ā(ρ̄)) =

〈
mGā(ρ̄)

〉
and ā(ρ̄) has an explicit formula when N̄ = 2.

(See the examples in section 5.3.)
2. A non-Junkian example. The situation becomes more complicated when mN

includes polynomials other than |v|N , because the inequality constraints from
the relaxed minimization problem (20) are no longer scalar. The simplest
example of this type occurs when

(200) mN = (v ∨ v) |v|N−2.

We examine in detail the two-dimensional case (d = 2) and write αN ∈ AmN

in the form of a symmetric matrix:

(201) αN =

(
(αN )11 (αN )12
(αN )21 (αN )22

)
=

(
a + b c
c a− b

)
.

As a matrix, αN must be negative-definite. Thus, with respect to the (a, b, c)
coordinates, the set AmN

is a cone in R3 that can be found in a high school
geometry text:

(202)
AmN

=
{

(a, b, c) ∈ R3 : a ≤ −
√
b2 + c2

}
and ∂AmN

=
{

(a, b, c) ∈ R3 : a = −
√
b2 + c2

}
.

Let S be the stratification of Am ∩ ∂Am, and let S ∈ S so that SN ∈ ∂AmN
.

The set ∂AmN
itself has a stratification T consisting of two manifolds: T1 is

the origin in R3, and T2 is the remainder of the cone. We consider SN as a
subset of each manifold separately.
(a) αN ∈ T1. In this case, a = b = c = 0 and

(203) NC(AmN
,αN ) = A◦

mN
= {αN : αN ≥ 0} .

The situation essentially reduces to the Junkian case. The fiber bundle
associated with S ⊂ {Am ∩ ∂Am : αN = 0} is

(204) B(S) =
{

ρ : ρN ≥A◦
mN

rN (α), α ∈ S
}
,

and if N = 4,

(205)
B(S) =

{
ρ : ρN ≥A◦

mN
rN (0, 0, ā(ρ̄)), ρN−1

= rN−1(0, 0, ā(ρ̄)), ρ̄ ∈ Rm̄} ,
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where ā(ρ̄) has an explicit formula. (See the examples in section 5.3.)
However, unlike the Junkian case, the inequalities in (204) and (205) are
no longer scalar. Rather, it must be understood in terms of the polar
cone A◦

mN
.

(b) αN ∈ T2. In this case a ≤ − |b| < 0. In the (a, b, c) coordinates,
NC(AmN

,αN ) is a ray:

(206) NC(AmN
,αN ) =

{
λ
(√

b2 + c2, b, c
)

: λ ≥ 0
}
,

which can then be reexpressed in terms of the components of αN by
inverting (201). The bundle associated with any S ⊂ {α ∈ Am ∩ ∂Am :
αN �= 0} is
(207)
B(S) =

{
ρ : ρN = rN (α) + NC(AmN

,αN ),ρj = rj(α), j < N ,α ∈ S
}
.

The set Dm is the union of sets of the form B0(S) = B(S)\r(S), where B(S) is a
bundle of the type given in (204) or (207).

One should note from these examples that our ability to identify degenerate
densities is currently limited by our inability to explicitly identify the elements of
Am ∩ ∂Am. However, because the set AmN

is semialgebraic, one should presumably
be able to compute NC(AmN

,αN ) for any given α ∈ Am ∩ ∂Am, even though such
computations will likely be much more tedious than in the examples given above.

7. Conclusions and discussion. We have given in this paper a description
of the set Dm of degenerate densities based on a geometric interpretation of the
complementary slackness conditions associated with the dual formulation of (20).
Roughly speaking, the set Dm is constructed by attaching a convex cone to every
point in the boundary component ∂Rexp

m ∩Rexp
m . This description recovers and extends

previous results concerning the constrained entropy minimization problem.
Analytically, we see three important open questions that must be solved. First,

one must determine if Assumptions I and II hold in a setting that is more general
than the examples in (182). Concerning Assumption I, this means understanding the
structure of the set of polynomials p for which v 
→ p(v)ep(v) is Lebesgue integrable.
For example, do the coefficients of such polynomials form a semialgebraic set? Sec-
ond, it must be determined whether the sets Rexp

m and Rm are invariant under the
dynamics of the balance law (12) with the entropy-based closure. (Although not dis-
cussed in this paper, such a condition on Rm is obviously necessary for entropy-based
closures to have any practical application.) Finally, it must be determined whether
the existence of degenerate densities and the dynamics of (12) near such densities are
simply artifacts of the entropy-based closure or if they actually reflect some physically
relevant properties of the original Boltzmann equation (2).

Numerically speaking, a full implementation of entropy-based closures for gas
dynamics faces many challenges. (An implementation has been attempted in [34],
although the issue of degenerate densities was not addressed.) Clearly a discretization
of (12) must preserve any invariant properties of Rm and Rexp

m with respect to the
balance law (12). As pointed out in [20], even if Rexp

m is invariant under (12), solving
the dual optimization problem (74) becomes extremely difficult for ρ near Dm because
the function h∗ is very hard to evaluate. The reason for this is that, as α approaches
∂Am, the function Gα can develop isolated modes that are often overlooked in a
numerical quadrature. The result is a regularization effect in which accuracy is lost.
In addition, the matrix

〈
mmTGα

〉
becomes poorly conditioned near the boundary of
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Am. Any minimization algorithm for (74) must be carefully formulated in order to
overcome these challenges. Furthermore, as with the degenerate densities themselves,
one must determine if these difficulties are by-products of the closure or related in
some way to the dynamics of the Boltzmann equation.

Appendix. The purpose of this appendix is to provide the reader with a reference
for important notation used in the main body of the paper. We includes tables
of important sets and mappings (Tables 1 and 2) and also a diagram (Figure 1)

Table 1

A list of important sets and properties used in this paper. Properties in brackets are known to
hold under Assumptions I and II.

Set Lies in. . .
Defining
equation(s)

Important
properties

Fm L1(Rd) (15) Convex cone; closure is proper

Amj R
nj (44) Proper cone for j even

Am R
n (36) Proper cone

Am R
n (40)

int(Am) = R
n−nN × intAmN ;

cl(Am) = R
n−nN ×AmN ;

∂Am ⊂ R
n−nN × ∂AmN

Rm R
n (33)

Open, solid, convex cone;
Rm = intA◦

m

Rexp
m R

n (42)
Solid cone; in general, not
convex or open; Rexp

m ⊂ Rm;
[Rm ⊂ cl(intRexp

m )]

Dm R
n (34), (73)

Dm = Rm\Rexp
m ; cone;

[zero Lebesgue measure]

Table 2

A list of important functions and properties used in this paper.

Function Domain/Range
Defining
equation(s)

Important
properties

m R
d → R

n (8) Polynomial components; see (21)

H Fm → R ∪ {∞} (4), (47)
Strictly convex and
bounded below on Fm

Gα Am → Fm (38) Positive; convex on Am

r Am → Rexp
m (41)

Bijective on Am;
diffeomorphic on intAm;
derivative of h∗ on intAm

a Rm → Am (55)
Continuous on Rm;
diffeomorphic on intRexp

m ;
a ◦ r is identity on Am

h Rm → R (14), (19), (20), (115)
Convex, differentiable on Rm;
strictly convex on intRexp

m ;
Legendre dual of h∗ on intAm;

h∗ Am → R (39)

Strictly convex; directionally
differentiable on Am;
differentiable on intAm;
Legendre dual of h on intAm;
generally not continuous
at ∂Am ∩ Am

L Fm × R
n ×Rm

→ R ∪ {∞} (74)
Strictly convex with respect
to first argument

ψ
R
n ×Rm

→ R ∪ {−∞} (75)
Strictly concave;
ψ(α,ρ) = αT ρ − h∗(α)
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Fig. 1. A commutative diagram summarizing mappings and relationships between important sets.

emphasizing the relationships between different sets. Recall that a cone is proper
when it is closed, pointed, convex, and has a nonempty interior (see section 2.2).
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[12] B. Dubroca and J.-L. Fuegas, Étude théorique et numérique d’une hiérarchie de modèles
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