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Abstract— This paper studies the stabilisation of switched
discrete-time linear control systems under arbitrary switching.
A sufficient condition for the uniform global exponential sta-
bility (UGES) of such systems is the existence of a common
quadratic Lyapunov function (CQLF) for the component sub-
systems. The existence of such CQLF can be ensured using
Lie-algebraic techniques by the existence of a nonsingular
similarity transformation that simultaneously triangularises
the closed-loop evolution maps of the component subsystems.
The present work formulates a Lie-algebraic feedback design
problem in terms of invariant subspaces and proposes an
iterative algorithm that seeks a set of feedback maps that
guarantee the existence of a CQLF, and thus UGES of the
switched feedback system. The main contribution of the paper
is to show that this algorithm will find the required feedback
maps if and only if the Lie-algebraic problem has a solution.

Index Terms— Switched systems, Lyapunov methods, closed
loop systems, asymptotic stability, Lie algebras.

I. INTRODUCTION

A switched system is a hybrid system that can be math-
ematically described by a set of indexed differential or
difference equations that are switched according to some
logical rule or regime. Such systems arise in many diverse
areas of application, such as the regulation of complex
dynamical processes [18], and the control of data flow in
large information networks [10].

In recent years, the study of stability of switched systems
has attracted increasing research activity. A number of survey
papers [14], [4], [20], [16], and books [19], [12] summarise
many important advances in the area.

This paper considers the problem of asymptotic stabilisa-
tion of switched discrete-time control systems under arbitrary
switching regimes. It is well-known that the UGES of a
switched system under arbitrary switching is equivalent to the
existence of a common Lyapunov function for the component
subsystems [17]. Finding such a common Lyapunov function
is not easy in general, and thus, much research activity
focused on studying the existence of a CQLF [20, §4.2].

Quadratic Lyapunov functions are appealing because they
can be constructed easily for linear systems, and they lend
themselves to efficient numerical computation by solving
linear matrix inequalities (LMIs) [15]. The application of
LMIs to find or check for the existence of a CQLF, however,
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has two main drawbacks: (1) numerical complexity increases
rapidly as dimensions grow, and (2), little theoretical insight
is gained into the structural obstructions to the existence of
a CQLF for a given system [20, §4.3], [15], [16].

An elegant conceptual framework to analyse the stability
of switched systems is based on Lie-algebraic conditions
[13], [1], [9], [22]. The Lie-algebraic approach offers valu-
able structural insight into the stability problem as well as
some computational advantages [13]. For switched discrete-
time systems, the existence of a CQLF is guaranteed if, in
addition to the stability of each of the component subsystems,
the Lie algebra generated by their evolution operators is
solvable. Such Lie-algebraic condition is more restrictive
than the existence of a CQLF. A more general condition
is available for switched continuous-time systems [1].

The above Lie-algebraic conditions apply to autonomous
systems under arbitrary switching. The present paper applies
similar Lie-algebraic techniques to analyse the stabilisability
of switched discrete-time linear systems with control in-
puts. We study the design of a set of stabilising feedback
control laws that also satisfy the Lie-algebraic conditions
that guarantee the existence of a CQLF. This feedback
stabilisation problem is formulated in the geometric approach
of Wonham [23] and Basile and Marro [3]. In this way,
solving the problem is equivalent to finding a set of state
feedback maps that, in addition to ensuring the stability of the
component subsystems, render invariant a flag of subspaces
(to be defined in Section II) simultaneously under each of
the closed-loop maps of the component subsystems.

The feedback stabilisation of discrete-time switched linear
systems using Lie algebraic techniques has been addressed
in [7], [6], [8]. The latter works consider the specific case
of switched discrete-time systems arising from continuous-
time systems sampled at a varying rate, but where at each
sampling instant the subsequent sampling period can only be
selected from a finite set of known values. In [7], control
design for this type of system is pursued and achieved
for some special cases: (i) pairwise commuting closed-loop
system matrices, (ii) simultaneous triangularisation, where
the triangularising transformation can be directly obtained
from the open-loop continuous-time system matrix, and
(iii) second order systems. In [6], the results of [7] are
enhanced by analysing robustness and performance taking
consideration of the fact that a diagonal CQLF always exists
for stable subsystems in triangular form. In [8], control
design through iterative common eigenvector assignment
with stability is suggested as a possible control and observer
design methodology, although conditions to show that the

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeB02.6

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 1118

Authorized licensed use limited to: University of Newcastle. Downloaded on May 29,2010 at 05:42:31 UTC from IEEE Xplore.  Restrictions apply. 



methodology itself is not restrictive are not given, nor a
procedure for its numerical implementation.

The present paper extends the ideas in [7], [6], [8] in
two main directions. First, it deals with general switched
discrete-time linear systems and not just those arising from
sampling a single continuous-time system. Second, and most
importantly, necessary and sufficient conditions indicating
the success or otherwise of the methodology are derived.
We propose an algorithm that seeks a solution iteratively,
by simultaneous assignment of a common eigenvector with
corresponding stable eigenvalues. Our main result establishes
that this iterative algorithm will find the required feedback
maps in a finite number of steps if and only if the problem
has a solution. The main significance of our result is its
necessity part. Sufficiency follows straightforwardly from
typical Lie-algebraic considerations used in autonomous sys-
tems. Necessity, however involves explicit consideration of
the fact that control inputs are present.

The rest of the paper is organised as follows. In Section II
we more precisely define the control design problem consid-
ered, and introduce notation and some concepts required in
Section III to describe the proposed iterative algorithm that
solves this problem whenever a solution exists. Our main
result is stated and discussed in Section III-A, and proved
in Section III-B (with some auxiliary results proved in the
Appendix). Section IV presents the paper conclusions.

Notation

The spectrum (set of eigenvalues) of a square matrix A
is denoted σ(A), and the spectral radius of A is denoted
ρ(A). Calligraphic upper case letters (X ,V,S) denote vector
spaces, and d(X ) denotes the dimension of a vector space
X . If X is a vector space, then S ⊂ X means that S is a
subspace of X and X/S denotes the quotient space. A linear
map is denoted as A : X → Y , and if A : X → X , S ⊂ X ,
and AS ⊂ S, then A|S denotes the restriction of A to S
with codomain S. The kernel (null space) of a linear map
A is denoted by ker A. Depending on the context, 0 denotes
0 ∈ R, 0 ∈ C, the zero vector, zero map, or zero-dimensional
vector space. If L and M are two sets, then L\M denotes the
set {x ∈ L : x /∈M}. We refer to [23, §0] for other standard
linear algebra concepts and notation used.

II. PROBLEM FORMULATION

A. Discrete-time switched control systems

Consider the linear discrete-time switched system (DTSS)

xk+1 = Ai(k)xk + Bi(k)uk, (1)

where xk ∈ Rn, uk ∈ Rm,

i(k) ∈ {1, 2, . . . , N}, for all k, (2)

and the matrices A1, . . . , AN ∈ Rn×n and B1, . . . , BN ∈
Rn×m are known. We are interested in state-feedback control
design of the form

uk = Ki(k)xk, (3)

so that the resulting closed-loop system

xk+1 = ACL
i(k)xk, where (4)

ACL
i = Ai + BiKi, for i = 1, . . . , N, (5)

be exponentially stable for arbitrary switching. Note that at
every time instant k, the control law (3) requires knowledge
of the “active” subsystem given by i(k).

As is well-known, ensuring that ρ(ACL
i ) < 1 for i =

1, . . . , N is necessary but not sufficient to ensure the sta-
bility of the DTSS (1) for arbitrary switching. A sufficient
condition is given by the following result, which is a minor
modification of [22, Theorem 6.18].

Lemma 1 If ρ(ACL
i ) < 1 for i = 1, . . . , N , and the Lie

algebra generated by {ACL
i : i = 1, . . . , N} is solvable, then

(4) admits a common quadratic Lyapunov function and hence
is exponentially stable. �

In this paper, we specifically consider stabilising state
feedback design based on the Lie-algebraic condition of
Lemma 1. In matrix terms, the fact that the Lie algebra
generated by the matrices ACL

i is solvable is equivalent to
the existence of an invertible matrix T ∈ Cn×n such that
T−1ACL

i T is upper triangular for i = 1, . . . , N . That is, each
matrix ACL

i for i = 1, . . . , N is similar to an upper triangular
matrix under a common similarity transformation T . Note
that even if the matrices ACL

i have real entries, those of the
transformation T may be complex [5].

B. Invariant subspaces

The requirement that a matrix ACL
i ∈ Rn×n be similar

to an upper triangular matrix can be posed in geometric
terms as follows. Let X denote the state space, which, even
if ACL

i : Rn → Rn necessarily has to be taken as Cn

(the complexification of Rn, see [23]), and consider the
corresponding map ACL

i : X → X . The following definitions
will be used in the sequel.

Definition 1 (Flag, invariant flag) A chain of subspaces of
X satisfying

S1 ⊂ S2 ⊂ · · · ⊂ Sn = X ,

where d(Sj) = j, for j = 1, 2, . . . , n,

is called a flag of X . If each subspace Sj in the flag is
invariant with respect to some map A : X → X , namely,

ASj ⊂ Sj , for j = 1, 2, . . . , n,

then the flag is said to be invariant1 under the map A. �

The motivation for these definitions is that if there exist a
flag of subspaces {Sj , j = 1, . . . , n} that is simultaneously
invariant under the closed-loop maps ACL

i for i = 1, . . . , N ,
then in a basis {s1, . . . , sn} for X , where {s1, . . . , sj} is

1In Algebra, such A is sometimes said to “stabilise” the flag (see, for
example, [11, §3.3]). However, we reserve the term stabilisation to refer to
the concept typically used in Systems and Control.
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a basis for Sj , the maps ACL
i are all represented by upper

triangular matrices. By Lie’s Theorem [11, §4.1, Corollary
A], the existence of a flag in X that is invariant under all
matrices ACL

i , i = 1, . . . , N is equivalent to the Lie-algebraic
condition of Lemma 1. We may thus formulate the problem
to be addressed as follows.

Problem 1 Given the maps Ai : Rn → Rn and Bi : Rm →
Rn for i = 1, 2, . . . , N , find maps Ki : Rn → Rm such that
ρ(ACL

i ) < 1 with ACL
i as in (5), and such that there exists a

flag of X = Cn,

S1 ⊂ S2 ⊂ · · · ⊂ Sn = X ,

where d(Sj) = j, for j = 1, 2, . . . , n, (6)

that is invariant under each ACL
i ,

ACL
i Sj ⊂ Sj , for j = 1, 2, . . . , n. (7)

�

If the feedback maps Ki solving Problem 1 exist, they
guarantee the existence of a CQLF for the closed-loop maps
ACL

i . Because these closed-loop maps will all be triangular
in a basis {s1, . . . , sn} of X , a (diagonal) CQLF can be
computed [22]. Thus, a solution to Problem 1 provides a
way to find a common quadratic control Lyapunov function
(in the sense of [2], [21]) for the switched system.

III. STABILISING FEEDBACK CONTROL DESIGN

A. Control Design Algorithm

This section presents the main result of the paper, The-
orem 1, which shows that Problem 1 can be solved if and
only if an iterative algorithm terminates successfully. At each
iteration, this algorithm seeks feedback maps so that a set of
closed-loop maps have a common eigenvector and, for each
of these closed-loop maps, the eigenvalue corresponding to
the common eigenvector is stable. The fact that Problem 1 is
solved if the algorithm successfully terminates follows easily
from standard Lie-algebraic considerations. The converse im-
plication, however, is much more involved and constitutes the
core contribution of the paper. The aforementioned algorithm
is given in pseudocode as Algorithm 1.

The common eigenvector assignment procedure (Proce-
dure 1) executed at each step of Algorithm 1 is the following.

Procedure 1 (Common eigenvector assignment with sta-
bility) Given the maps A`

i : X` → X` and B`
i : U → X`, for

i = 1, . . . , N , compute, if possible, a set of feedback maps
F `

i : X` → U and a one-dimensional subspace V` such that
for i = 1, . . . , N ,

(A`
i + B`

i F
`
i )V` ⊂ V`, (8)

ρ(A`
i + B`

i F
`
i |V`) < 1. (9)

Also, if A`
i and B`

i are real, then F `
i will be real. If, in

addition, V` is complex, then F `+1
i = 0. �

The condition F `+1
i = 0 in the case A`

i and B`
i are real (and

hence so are F `
i ) with V` complex is only ensuring that if a

complex eigenvector is assigned, its complex conjugate will
be assigned as well, which will ultimately ensure that the
feedback maps sought are real.

Algorithm 1: Iterative triangularisation by feedback
Data: Ai, Bi for i = 1, . . . , N
begin Initialisation
X1 := X , A1

i := Ai, B1
i := Bi, ;

`← 0
end
repeat

`← ` + 1 ;
Execute Procedure 1 (common eigenvector
assignment with stability) for A`

i , B
`
i ;

if Procedure 1 successfully returns F `
i ,V` then

Define

X`+1 := X`/V`, (quotient subspace), (10)
P` : X` → X`+1, canonical map, (11)

B`+1
i := P`B

`
i , (12)

and the map induced by A`
i + B`

i F
`
i [see (15)]

A`+1
i : X`+1 → X`+1. (13)

else
Stop: algorithm ends unsuccessfully.

until d(X`) = 1 ;
Algorithm ends successfully.

Some comments are in order before we state Theorem 1.
Algorithm 1 begins by taking X1 = X , A1

i = Ai and
B1

i = Bi, and seeking feedback maps to assign a common
eigenvector, with corresponding stable eigenvalues. If the
common eigenvector assignment procedure (Procedure 1) is
successful, then a one-dimensional subspace V1 is returned
and note that, by (10), the dimension of X2 will satisfy
d(X2) = d(X1) − 1. This reduction in the dimension of
the vector space considered occurs after every successful
iteration of Procedure 1 until dimension one is reached.

When d(X`) = 1, the maps A`
i +B`

i F
`
i share the common

eigenvector direction V` = X` for any feedback map F `
i ,

and hence Procedure 1 must necessarily return successfully
at this point, after which Algorithm 1 terminates successfully.
Therefore, the number of iterations required for successful
termination of Algorithm 1 is n, the dimension of X .

We now introduce a few more definitions required by The-
orem 1. Let `∗ denote the last value of ` in Algorithm 1 for
which Procedure 1 successfully computed the required maps
F `

i and subspace V`. If Procedure 1 was never successful,
define `∗ := 0. Otherwise, `∗ > 0 and, from (12) and (13),
we have for all ` = 1, . . . , `∗ the maps

A`
i : X` → X`, B`

i : U → X`, (14)
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and, by (10)–(13), the commutative diagram

X`

P`

��

A`
i+B`

i F `
i // X`

P`

��
X`+1

A`+1
i // X`+1

. (15)

Finally, for all ` = 1, . . . , `∗ and i = 1, . . . , N , we
introduce the sequences of projections P̄` : X → X`+1, and
state feedback maps K`

i : X → U defined as

P̄0 := I, P̄` :=
∏̀
j=1

Pj = P`P`−1 · · ·P1, (16)

K0
i := 0, K`

i :=
∑̀
j=1

F j
i P̄j−1. (17)

We are now ready to state Theorem 1, whose proof will
be given in Section III-B.

Theorem 1 Problem 1 has a solution if and only if Algo-
rithm 1 terminates successfully. In such a case, then `∗ = n,
the required feedback maps are given by

Ki := Kn
i , (18)

with Kn
i defined by (17), and the invariant flag (6)–(7) is

given by

Sj := ker P̄j , for j = 1, . . . , n. (19)

�

If a solution to Problem 1 exists, Theorem 1 says that the
required feedback maps and corresponding ACL

i -invariant flag
can be found iteratively with Algorithm 1. On the other hand,
if Algorithm 1 terminates successfully (`∗ = n), Theorem 1
guarantees the existence of a common quadratic control
Lyapunov function for the switched system (as indicated
following the statement of Problem 1).

The importance of Theorem 1 lies in the fact that it
shows that the search for the desired stabilising feedback
maps Ki to solve Problem 1 can be performed iteratively
by solving, at each iteration, a common eigenvector assign-
ment problem. For autonomous systems, it is well-known
that checking whether the Lie algebra generated by the
subsystems evolution maps is solvable can be performed
iteratively by seeking a common eigenvector and obtaining
the induced map in a quotient subspace. However, to the best
of the authors’ knowledge, the fact that control design for
stabilisation can also be performed in this iterative way has
not been previously established.

The feedback maps that assign a common eigenvector
with corresponding stable eigenvalues in Procedure 1 can
be found numerically by posing and solving an optimisation
problem. Due to space limitations, details on the numerical
implementation of Procedure 1 will be reported elsewhere.

B. Proof of Theorem 1

The core of this section is the proof of Theorem 1. We
require two preliminary lemmas, which are proved in the
Appendix.

Lemma 2 Suppose that Algorithm 1 is executed and `∗ is
the maximum value of ` reached for which Procedure 1
successfully computes F `

i and V`. Then
(i) P̄`(Ai + BiK

`
i ) = A`+1

i P̄`, for ` = 0, . . . , `∗, and
(ii) K`∗

i S` = K`
iS`, for ` = 1, . . . , `∗ provided `∗ > 0.

(iii) P̄`(Ai + BiK
`∗

i )S`+1 = (A`+1
i + B`+1

i F `+1
i )P̄`S`+1

for ` = 0, . . . , `∗ − 1, provided `∗ > 0.

The next lemma is the key technical result employed in
the necessity proof of Theorem 1.

Lemma 3 Consider a set of maps A`
i : X` → X` and B`

i :
U → X`, for i = 1, . . . , N , and let n` := d(X`). Suppose
that there exist a set of maps J`

i : X` → U and a flag

S`
1 ⊂ · · · ⊂ S`

n`
, d(S`

j ) = j, (20)

that is invariant under A`
i + B`

i J
`
i , namely

(A`
i + B`

i J
`
i )S`

j ⊂ S`
j , and (21)

ρ(A`
i + B`

i J
`
i ) < 1, (22)

for i = 1, . . . , N and j = 1, . . . , n`. In addition, suppose
that a set of maps F `

i : X` → U and a one-dimensional
subspace T1 ⊂ X` with basis {t1} are known and satisfy

(A`
i + B`

i F
`
i )T1 ⊂ T1, and (23)

ρ(A`
i + B`

i F
`
i |T1) < 1, (24)

for i = 1, . . . , N . Then,
(i) There exist a set of maps L`

i : X` → U for i =
1, . . . , N , and subspaces T2, . . . , Tn`

satisfying, for j =
1, . . . , n` and i = 1, . . . , N ,

T1 ⊂ T2 ⊂ · · · ⊂ Tn`
= X`, d(Tj) = j, (25)

(A`
i + B`

i L
`
i)Tj ⊂ Tj , (26)

ρ(A`
i + B`

i L
`
i) < 1, and L`

it1 = F `
i t1. (27)

(ii) Let A`+1
i : X`/T1 → X`/T1 be the map induced by

A`
i + B`

i F
`
i , let P` : X` → X`/T1 be the canonical

projection, and let B`+1
i := P`B

`
i , all for i = 1, . . . , N .

Then, there exist a flag

S`+1
1 ⊂ · · · ⊂ S`+1

n`−1 = X`/T1, d(S`+1
j ) = j, (28)

and maps F `+1
i : X`/T1 → U such that

(A`+1
i + B`+1

i F `+1
i )S`+1

j ⊂ S`+1
j , (29)

ρ(A`+1
i + B`+1

i F `+1
i ) < 1, (30)

for j = 1, . . . , n` − 1 and i = 1, . . . , N .

We are now ready to present the proof of Theorem 1.
Proof: (Theorem 1)
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Sufficiency: By (19) and (16), note that

Sj ⊂ Sj+1 ⊂ X , for j = 1, . . . , `∗ − 1, (31)

and
d(Sj) = j, for j = 1, . . . , `∗. (32)

From Lemma 2(ii), we have

(Ai + BiK
`∗

i )Sj = (Ai + BiK
j
i )Sj . (33)

Applying P̄j to (33) and using Lemma 2(i),

P̄j(Ai + BiK
j
i )Sj = Aj+1

i P̄jSj = 0. (34)

Equation (34) hence shows that (Ai + BiK
j
i )Sj ⊂ ker P̄j =

Sj , establishing (7).
Next, note that

V` = P̄`−1S`. (35)

With this observation, Lemma 2(iii) can be used inductively
to show that

σ(Ai + BiKi) =
n⋃

`=1

σ(A`
i + B`

i F
`
i |V`). (36)

Then, ρ(Ai + BiKi) < 1 follows from (9).
Since the dimension of X` is reduced by one at each

iteration of `, and the dimension of X1 = X is n, it takes
Algorithm 1 n steps to terminate successfully, and so `∗ = n.
The sufficiency part of the proof is complete.

Necessity: The proof is by induction on `. Note first that
Algorithm 1 terminates unsuccessfully if at some iteration
there exist no feedback maps that can assign any common
eigenvector. Since we assume that Problem 1 has a solution,
then a flag (6) and feedback maps Ki exist such that (7) is
satisfied. This implies that, at the first iteration, ` = 1, a com-
mon assignable eigenvector indeed exists and the common
eigenvector assignment procedure must return successfully.

Next, suppose that at iteration ` there exist a flag (20) in
X` and maps J`

i so that (21)–(22) are satisfied. Therefore, the
common eigenvector assignment procedure can successfully
compute F `

i and V`. Let T1 := V` and, by (8), we have (A`
i +

B`
i F

`
i )T1 ⊂ T1. Then, Lemma 3(i) establishes the existence

of maps L`
i and subspaces T2, . . . , Tn such that (25)–(27) are

satisfied. Consequently, Lemma 3(ii) establishes that a flag
(28) in X`+1 = X`/T1 and feedback maps F `+1

i exist so that
(29)–(30) are satisfied. This implies that at iteration ` + 1
the common eigenvector procedure (Procedure 1) terminates
successfully. Finally, Algorithm 1 terminates successfully if
and only if X` is one-dimensional.

The proof of Theorem 1 is now complete.

IV. CONCLUSIONS

This paper presents sufficient conditions for the uni-
form global exponential stabilisability of arbitrarily switched
discrete-time linear systems with control inputs. These con-
ditions establish the existence of a common quadratic con-
trol Lyapunov function for the system using Lie algebraic
techniques in an iterative algorithm that solves a common
eigenvector assignment problem at each iteration. It is shown

that the Lie algebraic conditions that imply the existence of
a CQLF for this problem are satisfied if and only if the
proposed algorithm terminates successfully.

The approach proposed to solve this problem is restrictive,
in that these Lie-algebraic conditions, which we seek to sat-
isfy by feedback design, are only sufficient for the existence
of a CQLF. However, a numerical implementation of the
proposed algorithm can somewhat overcome these restric-
tions, in the sense that approximate numerical solutions may
ensure stability even when a CQLF does not exist. Due to
space limitations, details on such numerical implementation
will be reported elsewhere.

APPENDIX

Proof of Lemma 2

(i): By induction on `. Note that (i) holds for ` = 0
by (16), (17), and the initialisation step of Algorithm 1. If
`∗ = 0, then the result is already established. Next, in the
case that `∗ > 0, suppose that (i) holds for some ` ≥ 0. We
have

P̄`+1(Ai + BiK
`+1
i )

= P`+1P̄`(Ai + BiK
`
i + BiF

`+1
i P̄`), (37)

where we have used (16) and (17). Next, using (12) and our
induction hypothesis, it follows from (37) that

P̄`+1(Ai + BiK
`+1
i ) = P`+1(A`+1

i + B`+1
i F `+1

i )P̄`. (38)

Using (11) and (13) in (38), then

P̄`+1(Ai + BiK
`+1
i ) = A`+2

i P`+1P̄` = A`+2
i P̄`+1, (39)

which establishes (i).
(ii): Using (16) and (17), it follows that

K`∗

i S` = (K`
i + F `+1

i P̄` + . . . + F `∗

i P̄`∗−1)S`

= K`
iS`, (40)

where the last line above follows from (19) and (16).
(iii): By induction on `. Using part (ii), (17) and the

initialisation step of Algorithm 1, we have (Ai+BiK
`∗

i )S1 =
(Ai+BiK

1
i )S1 = (A1

i +B1
i F 1

i )S1. Recalling (16), it follows
that (iii) is satisfied for ` = 0. Next, suppose that (iii) holds
for some 0 ≤ ` < `∗ − 1. From part (ii) and (17), we have

K`∗

i S`+2 = K`+2
i S`+2

= (K`+1
i + F `+2

i P̄`+1)S`+2, (41)

and using (41), part (i), (12), and (16), then

P̄`+1(Ai + BiK
`∗

i )S`+2

= (A`+2
i + B`+2

i F `+2
i )P̄`+1S`+2, (42)

which establishes (iii) for ` + 1 and concludes the proof.
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Proof of Lemma 3

(i): Let q := min j subject to T1 ⊂ S`
j and note that

necessarily 1 ≤ q ≤ n`. Let {s1, . . . , sn`
} be a basis for

S`
n`

= X` such that {s1, . . . , sj} is a basis for S`
j , for j =

1, . . . , n`.
If q = 1, it follows that T1 = S`

1, and define Tj := S`
j

for j = 2, . . . , n`. If q > 1, define Tj := T1 + S`
j−1 and

note that T1 ∩ S`
j−1 = 0, for j = 2, . . . , q. Also, if q < n`

define Tj := S`
j for j = q + 1, . . . , n`. Note that (25) is now

established and that {t1} ∪ ({s1, . . . , sn`
} \ {sq}) is a basis

for X`.
Next, select L`

i such that, for i = 1, . . . , N ,

L`
it1 = F `

i t1, (43)

L`
isj = J`

i sj , for j ∈ {1, . . . , n`} \ {q}. (44)

We next show that (A`
i +B`

i L
`
i)Tj ⊂ Tj . From (43), we have

(A`
i +B`

i L
`
i)t1 = (A`

i +B`
i F

`
i )t1 which, combined with (23)

and (24) yields

(A`
i + B`

i L
`
i)T1 ⊂ T1, and (45)

ρ(A`
i + B`

i L
`
i |T1) < 1. (46)

In addition, (44) implies that (A`
i + B`

i L
`
i)sj = (A`

i +
B`

i J
`
i )sj for j = 1, . . . , q − 1 which combined with (21)

yields

(A`
i + B`

i L
`
i)Sj ⊂ Sj for j = 1, . . . , q − 1. (47)

From (45), (47), and the definition of Tj , it follows that

(A`
i + B`

i L
`
i)Tj ⊂ Tj , for j = 2, . . . , q, (48)

which, if q = n`, already establishes (26) for j = 1, . . . , n`.
If q < n`, let x ∈ S`

j = Tj for some q + 1 ≤ j ≤ n` and
write x = x1 +

∑j
p=q+1 cpsp, with x1 ∈ S`

q . It follows that
(A`

i +B`
i L

`
i)x = (A`

i +B`
i L

`
i)x1+(A`

i +B`
i J

`
i )

∑j
p=q+1 cpsp

and from (48), (21) and the fact that S`
q = Tq , then

(A`
i + B`

i L
`
i)x ∈ Tj . We have thus established (26) for

j = 1, . . . , n`.
Recall that S`

q = Tq = T1 ⊕ S`
q−1, and consider the

quotient space X`/Tq . Let A`
i + B`

i L
`
i and A`

i + B`
i J

`
i be

the maps induced by A`
i + B`

i L
`
i and A`

i + B`
i J

`
i on X`/Tq .

By (44), it follows that A`
i + B`

i L
`
i = A`

i + B`
i J

`
i and

that (A`
i + B`

i L
`
i)S`

q−1 = (A`
i + B`

i J
`
i )S`

q−1 ⊂ S`
q−1.

From the latter facts and (45), we have σ(A`
i + B`

i L
`
i) =

σ(A`
i + B`

i L
`
i |T1) ∪ σ(A`

i + B`
i J

`
i |S`

q−1) ∪ σ(A`
i + B`

i J
`
i ),

and recalling (22) and (46), then (27) is established and the
proof of (i) is concluded.

(ii): Let L`
i and T2, . . . , Tn`

be the maps and subspaces
whose existence is asserted by part (i). Define S`+1

j :=
P`Tj+1 for j = 1, . . . , n` − 1, and note that by (25), then
(28) is satisfied. We have

P`(A`
i + B`

i L
`
i) = P`(A`

i + B`
i F

`
i + B`

i (L`
i − F `

i ))

= A`+1
i P` + B`+1

i (L`
i − F `

i ). (49)

By (27), then T1 ⊂ ker(L`
i −F `

i ) and hence L`
i −F `

i can be
factored as

L`
i − F `

i = F `+1
i P`. (50)

Substituting (50) into (49) yields

P`(A`
i + B`

i L
`
i) = (A`+1

i + B`+1
i F `+1

i )P`. (51)

Combining (26) and (51), it follows that

P`(A`
i + B`

i L
`
i)Tj+1 = (A`+1

i + B`+1
i F `+1

i )S`+1
j

⊂ P`Tj+1 = S`+1
j , (52)

for j = 1, . . . , n`− 1, whence (29) is established. Also, (30)
follows from (51) and (27). This concludes the proof of (ii)
and the proof of the lemma.
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