
On Matrix Factorization and Finite-time Average-consensus

Chih-Kai Ko and Xiaojie Gao

Abstract— We study the finite-time average-consensus prob-
lem for arbitrary connected networks. Viewing this consensus
problem as a factorization of 1

n
11

T by suitable families of
matrices, we prove the existence of a finite factorization and
provide tight bounds on the size of the minimal factorization by
exhibiting finite-time average-consensus algorithms and bound-
ing their runtimes. We also show that basic matrix theory yields
insights into the structure of finite-time consensus algorithms.

I. INTRODUCTION

In a consensus problem, a group of agents (or network

nodes) try to reach agreement on a certain quantity of interest

that depends on their states [1]. Consensus problems arise

in diverse areas such as oscillator synchronization [2], [3],

flocking behavior of swarms [4], rendezvous problems [5]–

[7], multi-sensor data fusion [8], multi-vehicle formation

control [9], satellite alignment [10], [11], distributed compu-

tation [12], and many more. When the objective is to agree

upon the average, it is an average-consensus problem. A

motivating example (from [13]) is a network of temperature

sensors needing to average their readings to combat fluctua-

tions in ambient temperature and sensor variations.

Many efficient algorithms exist under various settings, e.g.

[13]–[17]. Although the majority of the proposed algorithms

offer rapid convergence, very few offer guaranteed consensus

in finite time. In this paper, we study algorithms that achieve

average-consensus in finite time for arbitrarily connected

networks. We adopt a dual view of finite matrix factorization

motivated by the following lemma:

Lemma 1. Let W (0), W (1), · · · , W (T − 1) ∈ Rn×n be

a finite sequence of T matrices, then W (T − 1)W (T −
2) · · ·W (0) = 1

n11
T iff

W (T − 1)W (T − 2) · · ·W (0) x(0) =
1

n
11

Tx(0) (1)

for all x(0) ∈ Rn.

Proof. The “only if ” direction is clear, so we show the “if ”

direction. Let ei denote a unit-vector in Rn with 1 in the i-th
coordinate. If we take x(0) = ei, then equation (1) becomes
1
n1 =

∏T−1
t=0 W (t) ei. So the i-th column of

∏T−1
t=0 W (t)

must be 1
n1 for any i and the lemma follows.

A. Background and Notation

In this paper, we adopt the following notation: G = (V, E)
denotes a connected undirected graph on n vertices with

vertex set V and edge set E ⊆ V × V . A spanning tree

Chih-Kai Ko is with the Department of Electrical Engineer-
ing, California Institute of Technology, Pasadena, CA 91125, USA
cko@caltech.edu

Dr. Xiaojie Gao is an independent researcher.

T is a subgraph that is a tree and contains all vertices

of G. We assume basic familiarity with elementary graph

algorithms and asymptotic notation O(·), Ω(·) and Θ(·).
Unless otherwise specified, all graphs discussed in this paper

are connected and undirected. R, Q, and N denote the set

of real, rational, and natural numbers, respectively. Boldface

1 ∈ Rn is a vector of all 1’s, ei ∈ Rn is a unit vector with 1

in the i-th coordinate, I ∈ Rn×n denotes the identity matrix.

Superscript T denotes matrix transpose. For a sequence of

T matrices W (t) ∈ Rn×n, the product W (T − 1)W (T −
2) · · ·W (0) is abbreviated as

∏T−1
t=0 W (t).

B. Problem Statement

First, we need the notion of admissible matrices.

Definition 2. Given a graph G = (V, E), we say a matrix

W ∈ Rn×n is G-admissible if

1) (Conservation) W is left stochastic:

Wij ≥ 0, 1
TW = 1

T; and

2) (Connectivity) For i 6= j, Wij = 0 if (i, j) /∈ E.

With slight abuse of notations, we write W ∈ G if W is

G-admissible.

Loosely speaking, a G-admissible matrix performs aver-

aging according to the topolgoy specified by G. In this work,

we study the following problems:

• (Existence) Given G, does there exist a T ∈ N such that
∏T−1

t=0 W (t) = 1
n11

T, W (t) ∈ G. In other words, we

study the existence of a finite G-admissible factorization

of n−1
11

T.

• (Algorithm) How can we find a G-admissible factoriza-

tion, if it exists.

• (Minimality) If it exists, what is the minimal such

factorization? Denote such minimum by T ∗
G.

Definition 3. Given a set of matrices S ⊆ Rn×n, define

T ∗
S , min

{

T : ∃W (t) ∈ S with

T−1
∏

t=0

W (t) =
1

n
11

T

}

when it exists. For convenience, when S is the set of G-

admissible matrices, we write T ∗
G.

Our problem is equivalent to a finite-time average-

consensus problem. Given a graph G = (V, E), imagine

vertices V as nodes in a network connected according to

E. For each node i ∈ V , let xi(t) denote the value of node

i at time step t. Define x(t) = [x0(t), · · · , xn−1(t)]
T. Given

any set of initial values x(0), we are interested in a finite

sequence of (averaging) operations, W (t), that allows all

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThC16.2

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 5798



nodes to reach average consensus, i.e. 1
n11

Tx(0). Expressed

as a linear dynamical system, we have

x(t + 1) = W (t)x(t) (2)

with W (t) ∈ G. The G-admissibility requirement limits our

averaging operations to those that are consistent with the

network topology. Ultimately, we desire a finite sequence

of G-admissible matrices W (0), · · · , W (T − 1) such that

x(T ) =
∏T−1

t=0 W (t)x(0) = 1
n11

Tx(0) for all x(0) ∈ Rn.

Thus, T ∗
G is the minimum consensus time.

As we shall see shortly, the set of G-admissible matrices

may be too general in the context of network consensus

problems. In addition to connectivity and conservation con-

straints, networked nodes may act synchronously or asyn-

chronously, nodes may be power-constrained, and nodes may

have different levels of knowledge/computation. Each of

these restrictions further constrains the factors of 1
n11

T to

specific subsets of G-admissible matrices.

C. Contributions

Our contributions are as follows:

• We show that any connected graph admits a fi-

nite G-admissible factorization of 1
n11

T. Furthermore,

maxG T ∗
G = Θ(n).

• When one restricts the factors to come from S ∩ G,

we prove that maxG T ∗
S∩G = Θ(n). See Section IV for

definition of S.

• When one further restricts the factors to come from from

S1 ∩ G, we prove maxG T ∗
S1∩G = Θ(n2). See Section

IV for definition of S1.

• We show that matrix theory provides insight on the

structure of finite-time average-consensus algorithms.

Since our results are of a “centralized” nature, our re-

sults lowerbounds the runtime of any distributed finite-time

average-consensus algorithm.

D. Organization

The rest of the paper is organized as follows: In Section

II, we review the existing literature. In Section III we show

that a G-admissible factorization of 1
n11

T always exists.

In Section IV, we study factorization by subsets of G-

admissible matrices. In Section V, we discuss algorithm

structures dictated by matrix properties. Finally, we close

with potential research directions and concluding remarks in

Section VI.

II. RELATED WORK

We introduced the finite time average-consensus problem

as a matrix factorization problem to emphasize that we

require an exact average in finite time. Much of the existing

work analyzes asymptotic properties of
∏

t W (t) as t→∞,

e.g. [1], [9], [13]. If we relax our exactness requirement and

allow a randomized choice of product matrices, we can define

the ǫ-average time of distribution D [13] as

Tave(ǫ,D) , sup
x(0)

inf

{

PD

(

‖x(t)− 1
n11

T‖

‖x(0)‖
≥ ǫ

)

≤ ǫ

}

where ǫ > 0 and D is a probability distribution on the set of

G-admissible matrices, and W (t) are drawn independently

from D. The choice of D reflects the behavior of different

distributed consensus algorithms. For a trivial D, e.g. pick a

W ∈ G with W1 = 1 and let W (t) = W for all t; the ǫ-

average time is governed by the second largest eigenvalue of

W , c.f. [1], [9]. Optimization of Tave(ǫ, W ) over W can be

written as a semidefinite program (SDP) [18], hence solved

efficiently numerically. Tight bounds on Tave(ǫ,D) when

D correspond to synchronous and asynchronous distributed

gossip algorithms can be found in [13]. For a more detailed

overview of convergence behavior of consensus-type prob-

lems, we refer the reader to [1], [9], [13] and the references

within.

Although exponentially-fast convergence is sufficient in

many cases, it is sometimes desirable to achieve convergence

in finite time. A number of authors have studied finite-time

consensus in the framework of continuous-time systems:

Cortés [19] employed nonsmooth gradient flows to design

gradient-based coordination algorithms that achieve average-

consensus in finite time. Using finite-time semistability the-

ory, Hui et al [20] designed finite time consensus algorithms

for a class of thermodynamically motivated dynamic net-

work. Wang and Xiao [21] used finite-time Lyapunov func-

tions to derive finite-time guarantees of specific coordination

protocols.

In the discrete-time setting, Sundaram and Hadjicostis

[22], [23] studied the finite-time consensus problem for

discrete-time systems. By allowing sufficient computation

power for the network nodes, [22] showed that nodes in cer-

tain linear time-invariant system can compute their averages

after a finite number of linear iterations.

Our work is most closely related to [17] where Ko and Shi

examined link scheduling on the complete graph to achieve

finite-time average-consensus. They provided necessary and

sufficient conditions for finite-time consensus and computed

the minimum consensus time on the boolean hypercube. By

working with a complete graph, one implicitly assumes that

any two nodes in the network can communicate. In this paper,

we generalize their results to provide communication sched-

ules (i.e. consensus algorithms) for any arbitrary connected

network.

III. G-ADMISSIBLE FACTORIZATION

To prove the existence of a finite G-admissible factoriza-

tion of 1
n11

T, we present Algorithm 1. Starting from its

leaves, the algorithm traverses up a spanning tree of G.

Along the way, it gives all its value onto its parent and then

removes itself. This process terminates when only a single

vertex remains. At this point, the remain node contains the

sum of all initial node values. The remainder of the algorithm

traverses back down the tree while re-distributing the values

to achieve average-consensus at termination.

To translate Algorithm 1 into a G-admissible factorization.

Notice that line 6 corresponds to a G-admissible matrix W

ThC16.2

5799



Algorithm 1: GATHER-PROPAGATE

Input: Graph G, initial values x
Output: x← 1

n11
Tx

d← vector of 1’s indexed by V (G)1

T ← a spanning tree of G2

while T is not a single vertex do3

Pick a leaf v ∈ V (T )4

Let e = (u, v) be the edge attaching v to T5
[

xu

xv

]

←

[

1 1
0 0

] [

xu

xv

]

6

du ← du + dv7

T ← (V \{v}, E\{e})8

end9

Let u← remaining vertex of T10

PROPAGATE(G, u, d) // See Algorithm 211

Algorithm 2: PROPAGATE

Input: G, u, d
Output: x← 1

n11
Tx

foreach neighbor v of u do1
[

xu

xv

]

← 1
du

[

du − dv

dv

]

xu
2

E ← E\{(u, v)}3

PROPAGATE(G, v, d)4

du = du − dv5

end6

with

Wij =











1 if i = j 6= v,

1 if i = u and j = v,

0 otherwise.

(3)

Similarly, line 2 of Algorithm 2 corresponds to a G-

admissible matrix W with

Wij =



















(du − dv)/du if i = j = u,

dv/du if i = v and j = u,

1 if i = j 6= u,

0 otherwise.

(4)

It is straightforward to construct a finite factorization of
1
n11

Tusing 2(n−1) G-admissible matrices: n−1 matrices of

type (3) followed by n−1 matrices of type (4). Summarizing

into a theorem:

Theorem 4. For any connected graph G = (V, E) on n
vertices, there exists a finite G-admissible factorization of
1
n11

T. Furthermore, T ∗
G ≤ 2(n−1) and Algorithm 1 exhibits

such a factorization.

To see that our upperbound is tight, we consider a path

on n vertices: let G = (V, E) with V = {0, · · · , n− 1} and

(i, j) ∈ E iff j = i + 1. Fix the initial values x(0) as

xi(0) =

{

1 if i = 0,

0 otherwise.

Since all of the mass is contained in node-0, we require

at least n averaging operations to distribute mass to node-

(n−1). Each operation (i.e. multiplication by a G-admissible

matrix) can only propagate information by one additional

node down the path. Thus,

Theorem 5. maxG T ∗
G = Θ(n)

IV. FACTORIZATION UNDER ADDITIONAL CONSTRAINTS

In terms of network consensus, allowing factorization by

G-admissible matrices may be too strong of a requirement.

Before proceeding, we need some additional notation. Given

a graph G on n vertices and a set S ⊆ Rn×n of matrices, we

write S ∩G to mean {W ∈ Rn×n : W ∈ S and W ∈ G}.
Various existing consensus algorithms correspond to fac-

toring 1
n11

T using S ∩ G with differing S. For exam-

ple, it may be desirable to factor 1
n11

T using W (t) ∈
{W : W1 = 1 and W ∈ G} so the average is a fix point

of iteration (2).

Gossip-based asynchronous algorithms, c.f. [13], corre-

spond to factorization using W (t) ∈ S′
1 ∩G where

S′
1 ,

{

I −
(ei − ej)(ei − ej)

T

2
: 0 ≤ i, j < n

}

.

Each matrix in S′
1 ∩ G corresponds to the averaging of

two neighboring node values. Boyd et al [13] studies the ǫ-

average time of (2) when the W (t)’s are drawn independently

and uniformly at random from S′
1∩G. In terms of finite-time

consensus, [17] showed that

Theorem 6. Given a connected graph G on n vertices, finite

factorization of 1
n11

Twith S′
1 ∩ G is possible only if n =

2m for some m ∈ N. Furthermore, T ∗
S′

1
∩G ≥ m 2m−1 and

equality is achieved when G is the boolean m-hypercube.

Proof. See Algorithm 1 of [17] for hypercube achievability,

Theorem 2 of [17] for the lowerbound, and Theorem 8 of

[17] for the necessary condition.

Thus, for arbitrary G, the set S′
1 ∩ G is too restricting

and we must look beyond S′
1 ∩ G if we desire a finite

factorizations of 1
n11

T.

A. Pair-wise Weighted Averages

Consider the following generalization of S′
1:

S1 ,

{

I −
(ei − ej)(ei − ej)

T

m
: 1 ≤ m ∈ Q; 0 ≤ i, j < n

}

The set S1 allows pair-wise weighted-averages and notice

that S′
1 ⊂ S1. Using Algorithm 3, we show that finite-time

average-consensus is possible using only pair-wise weighted

averages at each step. That is, T ∗
S1∩G <∞.

Let us examine Algorithm 3. Let x ∈ Rn denote a vector

of node values. Starting with a leaf node v (i.e. v has degree

1) of T , the algorithm performs a depth-first search (see

Algorithm 4) that terminates with xv achieving the average.

Once v reaches the average, it can be removed from future

consideration. The algorithm repeats this procedure leaf-by-

leaf until all vertices have been examined. At which time,

all nodes have reached average-consensus.

ThC16.2

5800



Algorithm 3: CONSENSUS

Input: Graph G, initial values x
Output: x← 1

n11
Tx

T ← a spanning tree of G1

d← vector indexed by V (T )2

while T is not a single vertex do3

Initialize d to all 1’s4

Pick a node v ∈ V (T ) such that degree(v)=15

Designate v as the root of T6

DFS(T, v, x, d) // See Algorithm 47

T ← T \{v}8

end9

Algorithm 4: DFS

Input: Tree T , vertex v,vectors x, d
Output: xv ← |T |

−1
∑

u∈T xu

if v has no children then1

return2

else3

foreach child u of v do4

DFS(T, u, x, d)5
[

xv

xu

]

←

[

dv

dv+du

du

dv+du
du

dv+du

dv

dv+du

]

[

xv

xu

]

6

dv ← dv + du7

end8

end9

It is straight forward to construct a sequence of G-

admissible matrices from Line 6 of Algorithm 4. It’s runtime

is O(n2) since depth-first search executes in time O(n) (see

§22.3 of [24]) and we perform n− 1 of them. Thus,

Lemma 7 (Upperbound). For any connected graph G with

n vertices, T ∗
S1∩G = O(n2).

As it turns out, we can’t do better than O(n2) on the path:

Lemma 8 (Lowerbound). When G = (V, E) is the path on

n vertices, i.e. V = {0, 1, · · · , n− 1} and E = {(i, i + 1) :
0 ≤ i < n}, T ∗

S1∩G = Ω(n2)

Proof. Consider the initial condition x(0): xi(0) = 0 if i <
n/2 and xi(0) = 1 if i ≥ n/2. The total mass is 1

Tx(0) =
n/2 and average-consensus is achieved when x(T ) = 1

21

for some T . In this proof, it is useful to view each matrix

in S1 ∩ G as a “use” of a particular edge in E. Using a

mass-balancing flow argument, we show the need for Ω(n2)
edge uses.

For 0 < i < n/2, there are i + 1 nodes to the left of edge

(i, i + 1), these nodes require (i + 1)/n fraction of the total

mass. Since the total mass is n/2 and each use of an edge

carries at most 1 unit of mass, we know that edge (i, i + 1)
must be used at least ⌈(i + 1)/2⌉ times. Summing over these

edges yield

T ∗
S1∩G ≥

n/2−1
∑

i=1

⌈

i + 1

2

⌉

≥
1

2

n/2−1
∑

i=1

(i + 1) = Ω(n2)

Algorithm 5: DFS

Input: Tree T , vertex v,vectors x, d
Output: xv ← |T |

−1
∑

u∈T xu

if v has no children then1

return2

else3

foreach child u of v do4

DFS(T, u, x, d)5

end6

{u1, · · · , ul} ← set of children of v7

D ← dv +
l
∑

j=1

duj
8







xv

xu1

.

.

.
xul






←











dv

D

du1

D
· · ·

dul

D
du1

D

D−du1

D
0

.

.

.
. . .

dul

D
0

D−dul

D

















xv

xu1

.

.

.
xul







9

dv ← D10

end11

To see that each edge can carry a flow of at most 1, observe

that matrices in S1 correspond to convex combinations of

pairs of node values. Since initial values are xi(0) ∈ {0, 1},
any sequence of convex combinations must keep the values

in the closed interval [0, 1], i.e. 0 ≤ xi(t) ≤ 1 for all t.

Combining Lemmas 7 and 8, we have

Theorem 9. maxG T ∗
S1∩G = Θ(n2)

B. Symmetric Weighted Averages

Let us now restrict ourselves even less and consider S ,
{

W ∈ Qn×n : W = W T
}

. Note that the matrices in S are

doubly stochastic (i.e. 1
TW = 1

T and W1 = 1). The mo-

tivation for S is to allow distribution of mass by symmetric

weighted averages; yet disallow drastic aggregation steps

such as line 6 of Algorithm 1. Such operations are often

impossible under typical network node assumptions (i.e.

topology awareness, computational limitations, distributed

behavior... etc.). We will see that by using S ∩ G instead

of S1 ∩ G, the consensus time is improved from Θ(n2) to

Θ(n).

As S1 ⊂ S, we can still use Algorithm 3 to achieve

consensus. Instead using the depth-first search in Algorithm

4, we modify it slightly (see Algorithm 5) to use fewer

matrices.

Intuitively speaking, Algorithm 6 implements a pipelined

version of Algorithm 3. We employ parallel consensus steps

when they do not interfere with each other. For clarity, we

use a simple example to illustrate the essence of the pipelined

algorithm. Consider G as the path with V = {1, 2, 3, 4, 5}
and E = {a, b, c, d} as shown in Figure 1. Suppose that line 5

of Algorithm 3 examines nodes 5, 4, 3, 2, 1 in that order, then

the sequence of pair-wise weighted averages corresponds to

ThC16.2

5801



k1 k2 k3 k4 k5a b c d
Fig. 1. A line graph.

the following sequence of edges:

a b c d 5©
a b c 4©

a b 3©
a 1©& 2©

Time: 1 2 3 4 5 6 7 8 9 10

Here, time runs left-to-right and each time column enumer-

ates all edges used during that time slot. With Algorithm

3, each time slot only utilizes one edge. The right-most

annotation indicates that a sequence of edges allowed a

node to obtain the correct average. For example, after the

edge sequence a, b, c, d in time steps 1-4, node 5© will have

the correct global average. Since edges a and c are vertex-

disjoint, the averaging on a will not effect the values of nodes

in edge c. We can thus perform some averages in parallel and

implement a pipelined fashion:

a b c d 5©
a b c 4©

a b 3©
a 1©& 2©

Time: 1 2 3 4 5 6 7

Pipelining allow us to use multiple edges per time step (e.g.

At time 4, edges b and d are used in parallel. At time 5, edges

c and a are used in parallel). Once again, the right-most

labels annotate the epochs dedicated to each node obtaining

the global average (e.g. after edge sequence a, b, c in time

3-5, node 4© obtains the global average). The key innovation

of Algorithm 6 is that it takes advantage of edges that can

be used simultaneously.

Now we examine the inner workings of Algorithm 6. We

begin by establishing a postordering (r1, r2, · · · , rn) of ver-

tices by a depth-first search from an arbitrary vertex. During

the execution process, we keep track of φ, an indicator of

whether a vertex’s value is the average of its descendants:

φv =







1 if v = 1
deg(v)

∑

u∈decedents(v)

xu

0 otherwise

The computations of x updates in each while loop (line 13)

can be translated into a single matrix in S∩G as each vertex

appears at most once in line 20 for each iteration of the

loop. The number of while loops needed for r1 to achieve

the average is at most n − 1. After ri reaches the average,

the number of while loops needed for ri+1 to achieve the

average is the length of the path from ri to ri+1. Since

the sequence r1, r2, · · · , rn is a postordering of V (T ) by

depth-first search,
n−1
∑

i=1

(length of path from ri to ri+1) ≤

2n. Therefore, the number of matrices in this factorization

is O(n).

Theorem 10 (Upperbound). For any connected graph G with

n vertices, T ∗
S∩G = O(n).

Algorithm 6: CONSENSUS

Input: Graph G, initial values x
Output: x← 1

n11
Tx

T ← a spanning tree of G1

r1, r2, · · · , rn ← a postordering of V (T ) by depth-first2

search

d← vector of 1’s indexed by V (T )3

φ← vector of 0’s indexed by V (T )4

foreach v ∈ V (T ) do5

if degree(v)=1 then φv = 16

end7

i← 18

Let ri be the root of T9

φri
= 010

while |V (T )| > 1 do11

d′ ← d12

φ′ ← φ13

foreach v ∈ V (T ) do14

if φv = 0 and ∀ child u of v, φu = 1 then15

{u1, · · · , ul} ← set of children of v16

D ← dv +
l
∑

j=1

duj
17







xv

xu1

.

.

.
xul






←











dv

D

du1

D
· · ·

dul

D
du1

D

D−du1

D
0

.

.

.
. . .

dul

D
0

D−dul

D

















xv

xu1

.

.

.
xul







18

d′v ← D19

φ′
v ← 120

foreach child u of v do21

if du 6= 1 then22

d′u ← 123

φ′
u ← 024

end25

end26

end27

end28

d← d′29

φ← φ′
30

if φri
= 1 then31

let ri ∼ u1 ∼ · · · ∼ um ∼ ri+1 be the path32

from ri to ri+1 in T
foreach 0 < j ≤ m do33

duj
← 134

φuj
← 035

end36

if degree(u1)=1 then37

φu1
← 138

end39

T ← T \{ri}40

i← i + 141

Let ri be the root of T42

φri
= 043

end44

end45

ThC16.2

5802



Since Ω(n) is a lower bound on T ∗
G for any G, we have:

Corollary 11. maxG T ∗
S∩G = Θ(n).

V. MATRIX INSIGHTS

Many of our finite factorization results have been derived

constructively from algorithms. We now examine what basic

matrix theory can tell us about the algorithmic structure. Let

us consider factorization of 1
n11

T with W (t) ∈ S1 ∩ G.

Except for matrices in S′
1 ∩ S1, all of the matrices in S1

are non-singular. Thus, for det
∏T−1

t=0 W (t) = det 1
n11

T, we

must have W (t) ∈ S′
1 for at least one t. In fact,

Theorem 12. If a finite sequence of T matrices

W (0), · · · , W (T − 1) satisfies
∏T−1

t=0 W (t) = 1
n11

T with

W (t) ∈ S1 ∩ G; then, there exists a sequence of n − 1
indices I = {t1, t2, · · · , tn−1} such that W (ti) ∈ S′

1 ∩ G
for all i ∈ I.

Proof. First note that rankA = n−1 for A ∈ S′
1, rankB =

n for B ∈ S1\S
′
1, and rank11

T = 1. Since multiplication

by a rank-(n− 1) matrix can decrease the rank of a matrix

by at most one, we need n−1 such matrices to reach a rank

of one.

VI. DISCUSSION AND EXTENSIONS

All of the algorithms given thus far have assumed access

to a spanning tree of G. In terms of finding a finite factor-

ization of 1
n11

T, this is not a problem: we can compute a

spanning tree in polynomial time using depth-first search. In

terms of distributed consensus algorithms, this assumption

corresponds to nodes knowing the network topology and

behaving synchronously. Or, alternatively, assumed existence

of a centralized scheduler (who knows the topology) that

schedules the interactions in a consensus protocol.

We close with some possible future research directions:

(1) In our analysis, we have assumed that network nodes are

homogeneous and capable of performing weighted average

operations. If nodes are inhomogeneous (e.g. a network

of mobile phones and base stations) then their ability to

compute weighted averages may differ. It is interesting to

consider the implications of inhomogenous networks on

finite-time average-consensus. (2) If nodes communicate

wirelessly using directional antennas, then their topology is

represented by a directed graph. Hence, the analysis of G-

admissible factorizations of 1
n11

Twhen G is a directed graph

is a natural extension.

VII. ACKNOWLEDGMENT

The authors would like to thank Leonard Schulman, Lijun

Chen, and the anonymous reviewers for helpful discussions

and/or comments.

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
Cooperation in Networked Multi-Agent Systems,” Proceedings of the

IEEE, Special Issue on Networked Control Systems, vol. 95, no. 1,
pp. 215–233, 2007.

[2] V. Preciado and G. Verghese, “Synchronization in generalized erdos-
renyi networks of nonlinear oscillators,” Decision and Control, 2005

and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE

Conference on, pp. 4628–4633, Dec. 2005.
[3] A. Papachristodoulou and A. Jadbabaie, “Synchronization in oscil-

lator networks: Switching topologies and non-homogeneous delays,”
Decision and Control, 2005 and 2005 European Control Conference.

CDC-ECC ’05. 44th IEEE Conference on, pp. 5692–5697, Dec. 2005.
[4] W. Xi, X. Tan, and J. S. Baras, “A Stochastic Algorithm for Self-

Organization of Autonomous Swarms,” in IEEE Conference on Deci-

sion and Control, 2005.
[5] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-

oryless point convergence algorithm for mobile robots with limited
visibility,” Robotics and Automation, IEEE Transactions on, vol. 15,
pp. 818–828, Oct 1999.

[6] A. S. M. J. Lin and B. D. O. Anderson, “The multi-agent rendezvous
problem,” 42nd IEEE Conference on Decision and Control, 2003,
p. 1508, Dec. 2003.

[7] S. Martı́nez, J. Cortés, and F. Bullo, “Motion coordination with
distributed information,” IEEE Control Systems Magazine, vol. 27,
no. 4, pp. 75–88, 2007.

[8] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed Sensor
Fusion Using Dynamic Consensus,” in IFAC World Congress, 2005.

[9] J. A. Fax and R. M. Murray, “Information Flow and Cooperative
Control of Vehicle Formations,” IEEE Trans. on Automatic Control,
vol. 49, pp. 1465–1476, September 2004.

[10] T. Arai, E. Pagello, and L. E. Parker, “Guest Editorial Advances in
Multirobot Systems,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, pp. 655 – 661, 2002.

[11] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative Control of
Mobile Sensor Networks: Adaptive Gradient Climbing in a Distributed
Environment,” IEEE Trans. on Automatic Control, vol. 49, pp. 1292–
1302, August 2004.

[12] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann
Publishers, 1996.

[13] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Transactions on Networking, vol. 14, no. SI,
pp. 2508–2530, 2006.

[14] A. D. D. Kempe and J. Gehrke, “Gossip-based computation of aggre-
gate information,” in Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Sciend (FOCS 03), vol. 8, p. 482, 2003.

[15] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of
aggregates in wireless sensor networks: distributed randomized al-
gorithms and analysis,” Information Processing in Sensor Networks,
2005. IPSN 2005. Fourth International Symposium on, pp. 348–355,
April 2005.

[16] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, “Communication
constraints in coordinated consensus problems,” American Control
Conference, June 2006.

[17] C.-K. Ko and L. Shi, “Scheduling for finite time consensus,” in
Proceedings of the American Control Conference, June 2009.

[18] L. Xiao and S. Boyd, “Fast Linear Iterations for Distributed Aver-
aging,” Systems and Control Letters, vol. 53, pp. 65–78, September
2004.

[19] J. Cortes, “Finite-time convergent gradient flows with applications to
network consensus,” Automatica, vol. 42, no. 11, pp. 1993 – 2000,
2006.

[20] Q. Hui, W. Haddad, and S. Bhat, “Finite-time semistability theory
with applications to consensus protocols in dynamical networks,” in
Proceedings of the American Control Conference, July 2007.

[21] L. Wang and F. Xiao, “Finite-time consensus problems for networks
of dynamic agents,” http://arxiv.org/pdf/math/0701724.

[22] S. Sundaram and C. N. Hadjicostis., “Finite-Time Distributed Consen-
sus in Graphs with Time-Invariant Topologies,” in The 26th American

Control Conference, New York, NY, 2007.
[23] S. Sundaram and C. N. Hadjicostis, “Distributed consensus and linear

functional calculation in networks: an observability perspective,” in
The 6th International Conference on Information Processing in Sensor

Networks, 2007.
[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. The MIT Press, 2nd ed., 2001.

ThC16.2

5803


