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Dynamics of a 3D Elastic String Pendulum

Taeyoung Lee, Melvin Leok∗, and N. Harris McClamroch†

Abstract— This paper presents an analytical model and a
geometric numerical integrator for a rigid body connected to an
elastic string, acting under a gravitational potential. Since the
point where the string is attached to the rigid body is displaced
from the center of mass of the rigid body, there exist nonlinear
coupling effects between the string deformation and the rigid
body dynamics. A geometric numerical integrator, refereedto as
a Lie group variational integrator, is developed to numerically
preserve the Hamiltonian structure of the presented model
and its Lie group configuration manifold. These properties are
illustrated by a numerical simulation.

I. I NTRODUCTION

The dynamics of a body connected to a string appear in
several engineering problems such as cable cranes, towed
underwater vehicles, and tethered spacecraft. It has been
shown that gravitational forces acting along a string can alter
the tension of the string, while significantly disturbing the
dynamics of a body connected to the string [1]. Therefore, it
is important to model the string dynamics accurately as well
as the dynamics of the body even if the tension of the string
is low.

Several dynamic and numerical models have been devel-
oped. Lumped mass models, where the string is spatially
discretized into connected point masses, were developed
in [2], [3], [4]. Finite difference methods in both the spatial
domain and the time domain were applied in [5], [6]. Finite
element discretizations of the weak form of the equations of
motion were applied in [6], [7]. String deployment models
were developed in [8], [9].

The goal of this paper is to develop an analytical model
and a numerical simulation tool for a rigid body connected to
a string acting under a gravitational potential. This dynamic
model is referred to as a 3D elastic string pendulum: it is a
generalization of a 3D pendulum model introduced in [10] to
include the effects of string deformations; it is an extension
of a string pendulum model with a point mass bob [6].

We assume that the point where the string is attached
to the rigid body is displaced from the center of mass of
the rigid body so that there exist nonlinear coupling effects
between the string deformation dynamics and the rigid
body dynamics. This provides a more realistic and accurate
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dynamic model. We show that the governing equations of
motion can be developed according to Hamilton’s variational
principle.

The second part of this paper deals with a geometric
numerical integrator for the 3D elastic string pendulum. Ge-
ometric numerical integration is concerned with developing
numerical integrators that preserve geometric features ofa
system, such as invariants, symmetry, and reversibility [11].
For a numerical simulation of Hamiltonian systems evolving
on a Lie group to exhibit good long-time energy behavior,
it is critical to preserve both the symplectic property of
Hamiltonian flows and the Lie group structure [12]. A
geometric numerical integrator, referred to as a Lie group
variational integrator, has been developed for a Hamiltonian
system on an arbitrary Lie group in [13].

A 3D elastic string pendulum is a Hamiltonian system, and
its configuration manifold is expressed as the product of the
special Euclidean groupSO(3) and the space of connected
curve segments onR3. This paper develops a Lie group
variational integrator for a 3D elastic string pendulum based
on the results presented in [13]. The proposed geometric
numerical integrator preserves symplecticity and momentum
maps, and exhibits desirable energy conservation properties.
It also respects the Lie group structure of the configuration
manifold, and avoids the singularities and computational
complexities associated with the use of local coordinates.

In summary, this paper develops an analytical model and
a geometric numerical integrator for a 3D elastic string pen-
dulum. These provide a mathematical model and a reliable
numerical simulation tool that characterizes the nonlinear
coupling between the string dynamics and the rigid body
dynamics accurately. This can be naturally extended to con-
trolled dynamics, and serve as the basis for optimal control
algorithms as in [14].

This paper is organized as follows. A 3D elastic string
pendulum is described in Section II. An analytical model and
a Lie group variational integrator are developed in SectionIII
and in Section IV, respectively, followed by a numerical
example in Section V.

II. 3D ELASTIC STRING PENDULUM

Consider a rigid body that is attached to an elastic string.
The other end of the string is fixed to a pivot point. We
assume that the rigid body can freely translate and rotate in
a three dimensional space, and the string is extensible and
flexible. The bending stiffness of the string is not considered
as the diameter of the string is assumed to be negligible
compared to its length. The point where the string is attached
to the rigid body is displaced from the center of mass of the
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Fig. 1. 3D Elastic String Pendulum

rigid body so that the dynamics of the rigid body is coupled
to the string deformations and displacements.

This model is a generalization of the 3D pendulum and
the string pendulum introduced in [10] and [6], respectively,
and it is referred to as a 3D elastic string pendulum. This is
illustrated in Fig. 1.

We choose a global reference frame and a body-fixed
frame. The origin of the body-fixed frame is located at the
end of the string where the string is attached to the rigid body.
Since the string is extensible, we need to distinguish between
the arc length for the stretched deformed configuration and
the arc length for the unstretched reference configuration.
Define

l ∈ R Total length of the unstretched string
s ∈ [0, l] Length of the string from the pivot to a ma-

terial pointP for the unstretched reference
configuration

s(s, t) ∈ R+ Length of the string from the pivot to a
material pointP for the stretched deformed
configuration

r(s, t) ∈ R3 Vector from the pivot to a material pointP
in the global reference frame

R ∈ SO(3) Rotation matrix from the body-fixed frame
to the reference frame

Ω ∈ R3 Angular velocity of the rigid body repre-
sented in the body-fixed frame

ρc ∈ R3 Vector from the origin of the body fixed
frame to the mass center of the rigid body
represented in the body fixed frame

µ ∈ R+ Mass density of the string per unit un-
stretched length

M ∈ R+ Mass of the rigid body
J ∈ R3×3 Inertia matrix of the rigid body represented

in the body fixed frame

A configuration of this system can be described by the
locations of all the material points of the string,r(s, t) for
s ∈ [0, l], and the attitude of the rigid bodyR(t) with respect
to the reference frame. So, the configuration manifold is

G = C∞([0, l],R3) × SO(3), whereC∞([0, l],R3) denotes
the space of smooth connected curve segments onR3 and
SO(3) = {R ∈ R3×3 |RTR = I, det[R] = 1}.

III. C ONTINUOUS-TIME ANALYTICAL MODEL

In this section, we develop continuous-time equations of
motion for a 3D elastic string pendulum. The equations
for a string pendulum connected to a point mass has been
developed in [6]. Here we focus on generalizing them for
a rigid body. The attitude kinematics equation of the rigid
body is given by

Ṙ = RΩ̂, (1)

where thehat map ·̂ : R3 → so(3) is defined by the condition
that x̂y = x× y for anyx, y ∈ R3. For notational simplicity,
we do not express the time dependency of variables explic-
itly, i.e. r(s) = r(s, t).

A. Lagrangian

Kinetic energy: The total kinetic energy is composed of
the kinetic energy of the stringTstr and the kinetic energy
of the rigid bodyTrb. Let ṙ(s, t) be the partial derivative
of r(s, t) with respect tot. This represents the velocity of a
material point on the string. Then, the kinetic energy of the
string is given by

Tstr =

∫ l

0

1

2
µ ‖ṙ(s)‖

2
ds. (2)

Let ρ ∈ R3 be the vector from the mass center of the rigid
body to a mass element of the rigid body represented in the
body fixed frame. The location of the mass element is given
by r(l)+R(ρc+ρ) in the global reference frame. Therefore,
the kinetic energy of the rigid body can be written as

Trb =

∫

B

1

2
‖ṙ(l) +RΩ̂(ρc + ρ)‖2 dM(ρ)

=
1

2
Mṙ(l) · ṙ(l) +

1

2
Ω · JΩ +Mṙ(l) · RΩ̂ρc, (3)

where B denotes the region enclosed by the rigid body
surface, and we use the following properties:

∫

B
ρ dM = 0;

x̂y = −ŷx; J = −
∫

B
((ρ+ ρc)

∧)2 dM .
Potential Energy: The strain of the string at a material

point located atr(s) is given by

ǫ = lim
∆s→0

∆s(s)−∆s

∆s
= s′(s)− 1,

where( )′ denote the partial derivative with respect tos. The
tangent vector at the material point is given by

et =
∂r(s)

∂s
=

∂r(s)

∂s

∂s

∂s(s)
=

r′(s)

s′(s)
.

Since this tangent vector has the unit length, we haves′(s) =
‖r′(s)‖. Therefore, the strain is given byǫ = ‖r′(s)‖ − 1.
The potential energy of the string is composed of the elastic
potential and the gravitational potential:

Vstr =

∫ l

0

1

2
EA(‖r′(s)‖ − 1)2 − µgr(s) · e3 ds, (4)



whereE andA denote the Young’s modulus and the sectional
area of the string, respectively, and the unit vectore3
represents the gravity direction.

Since the location of the center of mass of the rigid body
is r(l)+Rρc in the global reference frame, the gravitational
potential energy of the rigid body is

Vrb = −Mg(r(l) +Rρc) · e3. (5)

From (2)-(5), the Lagrangian of the 3D elastic string
pendulum is given by

L = Tstr − Vstr + Trb − Vrb. (6)

B. Euler-Lagrange Equations

Let the action integral beG =
∫ tf

t0
Ldt. It is composed

of two parts,Gstr and Grb, contributed by the string and
by the rigid body, respectively. According to the Hamilton’s
principle, the variation of the action integral is equal to
zero for fixed boundary conditions, which yields the Euler-
Lagrange equations of the 3D elastic string pendulum.

By repeatedly applying integration by parts, the variation
of Gstr can be written as

δGstr =

∫ tf

t0

−EA
‖r′(l)‖ − 1

‖r′(l)‖
r′(l) · δr(l) +

∫ l

0

[

− µr̈(s)

+ µg e3 + EA

(

‖r′(s)‖ − 1

‖r′(s)‖
r′(s)

)′
]

· δr(s) ds dt. (7)

(See [6] for details.)
Next, we found the variation ofGrb. It can be written as

δGrb =

∫ tf

t0

[

Mṙ(l) +MRΩ̂ρc

]

· δṙ(l) +Mge3 · δr(l)

+
[

JΩ +Mρ̂cR
T ṙ(l)

]

· δΩ

+Mṙ(l) · δRΩ̂ρc +Mge3 · δRρc dt. (8)

The variation of a rotation matrix can be written as

δR =
d

dǫ

∣

∣

∣

∣

ǫ=0

Rǫ =
d

dǫ

∣

∣

∣

∣

ǫ=0

R exp ǫη̂ = Rη̂

for η ∈ R3 [15]. The corresponding variation of the angular
velocity is obtained from the kinematics equation (1):

δΩ̂ =
d

dǫ

∣

∣

∣

∣

ǫ=0

(Rǫ)T Ṙǫ = (η̇ +Ω× η)∧.

Substituting these into (8) and applying the integration by
parts, we obtain

δGrb =

∫ tf

t0

−
[

Mr̈(l)−MRρ̂cΩ̇ +MRΩ̂2ρc −Mge3

]

· δr(l)

+
[

−JΩ̇−Mρ̂cR
T r̈(l) +Mρ̂cΩ̂R

T ṙ(l)
]

· η̇

+
[

−Mρ̂cΩ̂R
T ṙ(l) +Mgρ̂cR

T e3 − Ω̂JΩ
]

· η dt, (9)

where we repeatedly use the property:y · x̂z = ẑy ·x for any
x, y, z ∈ R3.

From (7) and (9), the variation of the action integral is
given byδG = δGstr + δGrb, and it is equal to zero for any

variation according to Hamilton’s principle. This yields the
following Euler-Lagrange equations:

µr̈(s, t)− µg e3 − EA
∂

∂s

(

‖r′(s, t)‖ − 1

‖r′(s, t)‖
r′(s, t)

)

= 0,

(10)

M
(

r̈(l, t)−Rρ̂cΩ̇ +RΩ̂2ρc − ge3

)

+ EA
‖r′(l, t)‖ − 1

‖r′(l, t)‖
r′(l, t) = 0,

(11)

JΩ̇ + Ω̂JΩ+mρ̂cR
T r̈(l, t)−mgρ̂cR

T e3 = 0. (12)

Conserved quantities: The total energy, given byE =
Tstr + Vstr + Trb + Vrb, is preserved. As the Lagrangian is
invariant under the rotation about the gravity direction, the
total angular momentum about the gravity direction is con-
served. It is given byπ3 = {

∫ l

0
µr̂(s)ṙ(s) ds+Mr̂(l)(ṙ(l)+

RΩ̂ρc)−M ˆ̇r(l)Rρc +RJΩ} · e3.

IV. L IE GROUP VARIATIONAL INTEGRATOR

The continuous-time Euler-Lagrange equations developed
in the previous section provide an analytical model for a
3D elastic string pendulum. However, the popular finite dif-
ference approximations or finite element approximations of
those equations using a general purpose numerical integrator
may not preserve the geometric properties of the system
accurately [11].

Variational integrators provide a systematic method
of developing geometric numerical integrators for La-
grangian/Hamiltonian systems [16]. As it is derived from a
discrete analogue of Hamilton’s principle, it preserves sym-
plecticity and the momentum map, and it exhibits good total
energy behavior. Lie group methods conserve the structure
of a Lie group configuration manifold as it updates a group
element using the group operation [17].

These two methods have been unified to obtain a Lie group
variational integrator for Lagrangian/Hamiltonian systems
evolving on a Lie group [13]. This preserves symplecticity
and group structure of those systems concurrently. It has been
shown that this property is critical for accurate and efficient
simulations of rigid body dynamics [12].

In this section, we develop a Lie group variational inte-
grator for a 3D elastic string pendulum. We first construct a
finite element model, and derive an expression for a discrete
Lagrangian, which is substituted into the discrete-time Euler-
Lagrange equations on a Lie group.

A. Finite Element Model

We discretize the string byN one-dimensional line el-
ements. Thus, the unstretched length of each element is
u = l

N
. A natural coordinateζ ∈ [0, 1] in the a-th element

is defined byζ = 1

u
(s − u(a − 1)). Let S0, S1 be shape

functions given byS0(ζ) = 1 − ζ, andS1(ζ) = ζ. These
shape functions are also referred to astent functions. The
position vectors for the end nodes of thea-th element are
given byrk,a, rk,a+1 when t = kh for a fixed time steph.



Using this finite element model, the position vectorr(s, t)
of a material point in thea-th element is approximated as
follows:

r(s, t) = S0(ζ)rk,a + S1(ζ)rk,a+1 ≡ rk,a(ζ). (13)

Note thatrk,a(0) = rk,a and rk,a(1) = rk,a+1. The partial
derivative with respect tos is given by

r′(s, t) =
∂r(s, t)

∂ζ

∂ζ

∂s
=

1

u
(rk,a+1 − rk,a) ≡ r′k,a. (14)

The partial derivative with respect tot is approximated by

ṙ(s, t) =
1

h
(S0(ζ)∆rk,a + S1(ζ)∆rk,a+1) ≡ vk,a(ζ), (15)

where the Delta-operator represents a change for a time step,
i.e. ∆rk,a = rk+1,a − rk,a.

B. Discrete-Lagrangian

Using these finite element model, a configuration of the
discretized 3D elastic pendulum att = kh is described
by gk = (rk,1, . . . , rk,N+1, Rk), and the corresponding
configuration manifold isG = (R3)N+1 × SO(3).

We define a discrete-time kinematics equation as follows.
Definefk = (∆rk,1, . . . ,∆rk,N+1, Fk) ∈ G for ∆rk,a ∈ R3

andFk ∈ SO(3) such thatgk+1 = gkfk andG acts on itself
by the diagonal action:

(rk+1,1, . . . , rk+1,N+1, Rk+1)

= (rk,1 +∆rk,1, . . . , rk,N+1 +∆rk,N+1, RkFk). (16)

Therefore,fk represents the relative update between two
integration steps. This ensures that the structure of the Lie
group configuration manifold is numerically preserved since
gk is updated byfk using the right Lie group action ofG
on itself.

A discrete LagrangianLd(gk, fk) : G × G → R is an
approximation of the Jacobi solution of the Hamilton–Jacobi
equation, which is given by the integral of the Lagrangian
along the exact solution of the Euler-Lagrange equations over
a single time step:

Ld(gk, fk) ≈

∫ h

0

L(g̃(t), g̃−1(t) ˙̃g(t)) dt,

where g̃(t) : [0, h] → G satisfies Euler-Lagrange equations
with boundary conditions̃g(0) = gk, g̃(h) = gkfk. The
resulting discrete-time Lagrangian system, referred to as
a variational integrator, approximates the Euler-Lagrange
equations to the same order of accuracy as the discrete
Lagrangian approximates the Jacobi solution.

Substituting (13)-(15) into the continuous-time Lagrangian
given by (6), the contribution of thea-th element to the
discrete Lagrangian is chosen as follows.

Ldk,a
=

∫ 1

0

1

h
µ ‖vk,a(ζ)‖

2
udζ

−
h

2

∫ 1

0

1

2
EA(

∥

∥r′k,a
∥

∥− 1)2 − µg rk,a(ζ) · e3 udζ

−
h

2

∫ 1

0

1

2
EA(

∥

∥r′k+1,a

∥

∥− 1)2 − µg rk+1,a(ζ) · e3 udζ.

This is given by

Ldk,a
=

1

6h
m∆rk,a ·∆rk,a +

1

6h
m∆rk,a ·∆rk,a+1

+
1

6h
m∆rk,a+1 ·∆rk,a+1

+
h

4
mg(2rk,a + 2rk,a+1 +∆rk,a +∆rk,a+1) · e3

−
1

4
hκ(‖rk,a+1 − rk,a‖ − u)2

−
1

4
h ‖rk,a+1 +∆rk,a+1 − rk,a −∆rk,a‖ − u)2),

(17)

wherem = µu, κ = EA
u

. So, the contribution of the string
to the discrete Lagrangian isLdk,str

=
∑N

a=1
Ldk,a

. The
contribution of the rigid body to the discrete Lagrangian is
chosen as follows.

Ldk,rb
=

1

2h
M∆rk,N+1 ·∆rk,N+1 +

1

h
tr[(I − Fk)Jd]

+
M

h
∆rk,N+1 ·Rk(Fk − I)ρc

+
h

2
Mg (rk,N+1 +Rkρc) · e3

+
h

2
Mg (rk,N+1 +∆rk,N+1 +RkFkρc) · e3, (18)

whereJd ∈ R3×3 is a nonstandard inertia matrix defined by
Jd = 1

2
tr[J ] I3×3 − J , as introduced in [15].

From (17), (18), the discrete Lagrangian of the 3D elastic
string pendulum is as follows.

Ldk
(gk, fk) = Ldk,str

(gk, fk) + Ldk,rb
(gk, fk)

=

N
∑

a=1

Ldk,a
(gk, fk) + Ldk,rb

(gk, fk). (19)

C. Discrete-time Euler-Lagrange Equations

For a discrete Lagrangian onG×G, the following discrete-
time Euler-Lagrange equations, referred to as a Lie group
variational integrator, were developed in [13].

T
∗
eŁfk−1

·Dfk−1
Ldk−1

−Ad∗
f
−1

k

· (T∗
eŁfk ·DfkLdk

)

+ T
∗
eŁgk ·DgkLdk

= 0,
(20)

gk+1 = gkfk, (21)

whereTŁ : TG → TG is the tangential map of the left
translation,Df represents the derivative with respect tof ,
andAd∗ : G× g∗ → g∗ is co-Ad operator [18].

Using this result, we develop a Lie group variational
integrator for a 3D elastic string pendulum. Forf =
(∆r1, . . . ,∆rN+1, F ) ∈ G and p = (p1, . . . , pN+1, π) ∈
g∗ ≃ (R3)N+1 × R3, the co-Ad operator is given by
Ad∗f−1p = (p1, . . . , pN+1, Fπ).



Derivatives of the discrete Lagrangian: We now obtain
expressions for the derivatives of the discrete Lagrangian.
The derivatives of the discrete Lagrangian of thea-th ele-
ment, given by (17), with respect to∆rk,a and∆rk,a+1 are
given by

D∆rk,a
Ldk,a

=
1

3h
m(∆rk,a +

1

2
∆rk,a+1) +

h

4
mge3

+
h

2
∇V e

k+1,a,

D∆rk,a+1
Ldk,a

=
1

3h
m(∆rk,a+1 +

1

2
∆rk,a) +

h

4
mge3

−
h

2
∇V e

k+1,a. (22)

where ∇V e
k,a = κ‖x‖−u

‖x‖ x for x = rk,a+1 − rk,a ∈ R3.
Then, from (19), the derivative of the discrete Lagrangian
with respect to∆rk,a, for a ∈ {2, . . . , N}, is given by

D∆rk,a
Ldk

= D∆rk,a
Ldk,a

+D∆rk,a
Ldk,a−1

=
1

6h
m(∆rk,a−1 + 4∆rk,a +∆rk,a+1)

+
h

2
mge3 +

h

2
∇V e

k+1,a −
h

2
∇V e

k+1,a−1. (23)

Similarly, the derivative of the discrete Lagrangian with
respect tork,a, for a ∈ {2, . . . , N}, is given by

Drk,a
Ldk

= hmge3 +
h

2
(∇V e

k,a +∇V e
k+1,a)

−
h

2
(∇V e

k,a−1 +∇V e
k+1,a−1). (24)

Next, we find the derivatives of the discrete Lagrangian
with respect to∆rk,N+1 and rk,N+1. They are contributed
by theN -th string element and the rigid body, and they can
be obtained from (18) and (22) as follows.

D∆rk,N+1
Ldk

=
1

h
(M +

m

3
)∆rk,N+1 +

1

6h
m∆rk,N

+
M

h
Rk(Fk − I)ρc +

h

2
(M +

m

2
)ge3 −

h

2
∇V e

k+1,N ,

(25)

Drk,N+1
Ldk

= h(M +
m

2
)ge3 −

h

2
∇V e

k,N −
h

2
∇V e

k+1,N .

(26)

Now, we find the derivatives of the discrete Lagrangian
with respect toFk andRk. From (18), we have

DFk
Ldk

· δFk =
1

h
tr[−δFkJd] +

M

h
∆rk,N+1 · RkδFkρc

+
h

2
MgRkδFkρc · e3

=
1

h
tr[−δFkJd] +Ak · δFkρc,

whereAk = M
h
RT

k ∆rk,N+1 +
h
2
MgRT

k e3. The variation of
Fk can be written asδFk = Fk ζ̂k for ζk ∈ R3. Therefore,
this can be written as

DFk
Ldk

· (Fk ζ̂k) = (T∗
IŁFk

·DFk
Ldk

) · ζk

=
1

h
tr
[

−Fk ζ̂kJd

]

+Ak · Fk ζ̂kρc.

By repeatedly applying the following property of the trace
operator, tr[AB] = tr[BA] = tr[ATBT ] for any A,B ∈
R3×3, the first term can be written as tr[−Fk ζ̂kJd] =
tr[−ζ̂kJdFk] = tr[ζ̂kFT

k Jd] = − 1

2
tr[ζ̂k(JdF0 − FT

k Jd)].
Using the property of the hat map,xT y = − 1

2
tr[x̂ŷ] for any

x, y ∈ R3, this can be further written as((JdFk−FT
k Jd)

∨) ·
ζk. As y · x̂z = ẑy · x for anyx, y, z ∈ R3, the second term
can be written asFT

k Ak · ζ̂kρc = ρ̂cF
T
k Ak · ζk. Using these,

we obtain

T
∗
IŁFk

·DFk
Ldk

=
1

h
(JdFk − FT

k Jd)
∨ + ρ̂cF

T
k Ak. (27)

The the co-Ad operator yields

Ad∗FT
k
· (T∗

IŁFk
·DFk

Ldk
) =

1

h
(FkJd − JdF

T
k )∨ + F̂kρcAk.

(28)

Similarly, we can derive the derivative of the discrete
Lagrangian with respect toRk as follows.

T
∗
IŁRk

·DRk
Ldk

=
M

h
((Fk − I)ρc)

∧RT
k ∆rk,N+1

+
h

2
Mgρ̂cR

T
k e3 +

h

2
MgF̂kρcR

T
k e3.

(29)

Discrete-time Euler-Lagrange Equations: Substituting
(23)-(29) into (20)-(21), we obtain discrete-time Euler-
Lagrange equations for a 3D elastic string pendulum as
follows.

1

6h
m(∆2rk,a−1 + 4∆2rk,a +∆2rk,a+1)

− hmge3 + h∇V e
k,a−1 − h∇V e

k,a = 0,
(30)

1

h
(M +

m

3
)∆2rk,N+1 +

1

6h
m∆2rk,N + h∇V e

k,N

+
1

h
M(RkFk − 2Rk +Rk−1)ρc − h(M +

m

2
)ge3 = 0,

(31)
1

h
(FkJd − JdF

T
k − JdFk−1 + FT

k−1Jd)
∨

+
M

h
ρ̂cR

T
k ∆

2rk,N+1 − hMgρ̂cR
T
k e3 = 0,

(32)

rk+1,a = rk,a +∆rk,a, (33)

Rk+1 = RkFk. (34)

where∆2rk,a = ∆rk,a−∆rk−1,a = rk+1,a−2rk,a+rk−1,a,
u = l

N
, m = µu, κ = EA

u
, and∇V e

k,a = κ‖x‖−u

‖x‖ x for x =

rk,a+1 − rk,a. Equation (30) is satisfied fora ∈ {2, . . . , N},
and (33) is satisfied fora ∈ {2, . . . , N + 1}. For anyk, the
vectorrk,1 = 0 since the pivot is fixed.

For given(gk−1, fk−1), gk is explicitly computed by (33)
and (34). The updatefk is computed by a fixed point
iteration for Fk: we select an initial guess ofFk; ∆rk,a
is obtained by solving (30) and (31), which requires the
inversion of a fixed3N ×3N matrix; a newFk is computed
by solving the implicit equation (32); these are repeated until
Fk converges. When solving the implicit equation (32), we
first expressFk onR3 using the Cayley transform, and apply
Newton’s iteration (See Section 3.3.8 in [13]). These yields



(a) t ∈ [0, 1.25] (b) t ∈ [1.25, 2.5]

(c) t ∈ [2.5, 3.75] (d) t ∈ [3.75, 5]

Fig. 2. Snapshots of a 3D elastic string pendulum maneuver. Strain energy
distribution is illustrated by color shading (An animationis available at
http://my.fit.edu/˜taeyoung)

a Lagrangian flow map(gk−1, fk−1) 7→ (gk, fk), and they
are repeated.

V. NUMERICAL EXAMPLE

We now demonstrate the computational properties of the
Lie group variational integrator developed in the previous
section by considering a numerical example. The material
properties of the string are chosen to represent a rubber string
as follows [6].

µ = 0.025 kg/m, l = 1m, EA = 40N.

The rigid body is chosen as an elliptic cylinder with a
semimajor axis0.06m, a semiminor axis0.04m, and a
height0.1m. Its properties are as follows.

M = 0.1 kg, ρc = [0.04, 0.01, 0.05]m,

J =





0.38 −0.04 −0.20
−0.04 0.58 −0.05
−0.20 −0.05 0.30



 kgm2.

Initially, the string is aligned to the horizontale1 axis at rest,
and the rigid body has an initial velocity[0, 0.2,−0.5]m/s.
We useN = 20 elements. Simulation time isT = 5 seconds,
and time step ish = 0.0001 second.

Fig. 2 illustrates the resulting maneuver of the 3D elastic
string pendulum. As the point where the string is attached
to the rigid body is displaced from the center of mass of
the rigid body, the rigid body dynamics are directly coupled
to the elastic string dynamics, which yields the illustrated
complex maneuver.

Fig. 3 shows the corresponding energy transfer, total
energy, total angular momentum deviation, orthogonality
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(f) Stretched length of the string

Fig. 3. Numerical simulation of a 3D elastic string pendulum

errors of rotation matrices, velocities of the rigid body, and
the stretched length of the string. As shown in Fig. 3(b), the
computed total energy of the Lie group variational integrator
oscillates near the initial value, but there is no increasing or
decreasing drift for long time periods. This is due to the
fact that the numerical solutions of symplectic numerical
integrators are exponentially close to the exact solution of
a perturbed Hamiltonian [19]. The value of the perturbed
Hamiltonian is preserved in the discrete-time flow. The Lie
group variational integrator preserves the momentum map as
in Fig. 3(c), and it also preserves the orthogonal structure
of rotation matrices accurately. The orthogonality errors,
measured by‖I − RTR‖, are less than2 × 10−13 in Fig.
3(d).

These show that the Lie group variational integrator pre-
serves the geometric characteristic of the 3D elastic string
pendulum accurately even for the presented complex ma-
neuver that has nontrivial energy transfer between different
dynamic modes.

http://my.fit.edu/~taeyoung


VI. CONCLUSIONS

We have developed continuous-time equations of motion
and a geometric numerical integrator, referred to as a Lie
group variational integrator, for a 3D elastic string pen-
dulum. The continuous-time equations of motion provide
an analytical model that is defined globally on the Lie
group configuration manifold, and the Lie group variational
integrator preserves the geometric features of the system,
thereby yielding a reliable numerical simulation tool for
complex maneuvers over a long time period.

These can be extended to include the effects of control
inputs by using the discrete Lagrange-d’Alembert principle
[20], which modifies the discrete Hamilton’s principle by
taking into account the virtual work of the external control
inputs. When applied to an optimal control problem, this
allows us to find optimal maneuvers accurately and effi-
ciently, as there is no artificial numerical dissipation induced
by the computational method. Furthermore, optimal large-
angle rotational maneuvers can be easily obtained without
singularities and complexity associated with local parame-
terizations, since the configuration is represented globally on
the Lie group [21].
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