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Dynamics of a 3D Elastic String Pendulum

Taeyoung Lee, Melvin Ledk and N. Harris McClamroch

Abstract— This paper presents an analytical model and a dynamic model. We show that the governing equations of
geometric numerical integrator for a rigid body connected b an  mpotion can be developed according to Hamilton’s variationa
elastic string, acting under a gravitational potential. Shce the principle.

point where the string is attached to the rigid body is displaed . . .
from the center of mass of the rigid body, there exist nonlinar The second part of this paper deals with a geometric

coupling effects between the string deformation and the rigi numerical integrator for the 3D elastic string pendulum- Ge
body dynamics. A geometric numerical integrator, refereedo as  ometric numerical integration is concerned with develgpin

a Lie group variational integrator, is developed to numerially  numerical integrators that preserve geometric features of
preserve the Hamiltonian structure of the presented model gygiam such as invariants, symmetry, and reversibiliy. [1
and its Lie group configuration manifold. These properties ae = ical simulati f Hamiltoni t Vi

illustrated by a numerical simulation. or a numerical simulation of Hamiltonian systems evolving

on a Lie group to exhibit good long-time energy behavior,

. INTRODUCTION it is critical to preserve both the symplectic property of

The dynamics of a body connected to a string appear fi@miltonian flows and the Lie group structure [12]. A
several engineering problems such as cable cranes, towdPMetric numerical integrator, referred to as a Lie group
underwater vehicles, and tethered spacecraft. It has begfiational integrator, has been developed for a Hamitoni
shown that gravitational forces acting along a string cégral SyStem on an arbitrary Lie group in [13].
the tension of the string, while significantly disturbingeth = A 3D elastic string pendulum is a Hamiltonian system, and
dynamics of a body connected to the string [1]. Therefore, its cqnﬁgura_tlon manifold is expressed as the product of the
is important to model the string dynamics accurately as wefPecial Euclidean groufO(3) and the space of connected
as the dynamics of the body even if the tension of the strirfg!Ve Segments oit®. This paper develops a Lie group
is low. variational integrator for a 3D elastic string pendulumdzhs

Several dynamic and numerical models have been dev@? the results presented in [13]. The proposed geometric
oped. Lumped mass models, where the string is spatialﬂ}’mer'cal integrator preserves symplecticity an_d monmentu
discretized into connected point masses, were developBtRPS. and exhibits desirable energy conservation preserti
in [2], [3], [4]. Finite difference methods in both the sgti It als_o respects the_ Lie group struc_tl_Jre of the conflgur_atlon
domain and the time domain were applied in [5], [6]. Finiteman'fOId_- . and avo!ds the. singularities and compl_JtanonaI
element discretizations of the weak form of the equations GPMPIexities associated with the use of local coordinates.
motion were applied in [6], [7]. String deployment models N summary, this paper develops an analytical model and
were developed in [8], [9]. a geometric numen.cal integrator for a 3D elastic string-pen

The goal of this paper is to develop an analytical moddfulum. These provide a mathematical model and a reliable

and a numerical simulation tool for a rigid body connected t§Umerical simulation tool that characterizes the nonlinea
a string acting under a gravitational potential. This dyfeam COUPIiNg between the string dynamics and the rigid body

model is referred to as a 3D elastic string pendulum: it is dynamics accurately. This can be naturally extended to con-

generalization of a 3D pendulum model introduced in [10] tdrolled dynamics, and serve as the basis for optimal control

include the effects of string deformations: it is an extensi /90rithms as in [14].

of a string pendulum model with a point mass bob [6]. This paper is organized as follows. A 3D elastic string
We assume that the point where the string is attachdtfndulum is described in Sectioh Il. An analytical model and

to the rigid body is displaced from the center of mass oft Li€ group variational integrator are developed in Sediilin
the rigid body so that there exist nonlinear coupling effiect2d in SectiorL TV, respectively, followed by a numerical

between the string deformation dynamics and the rigi§*@mple in Sectioh V.
body dynamics. This provides a more realistic and accurate 1. 3D ELASTIC STRING PENDULUM
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G = C>([0,1],R?) x SO(3), whereC*([0,1], R?) denotes
the space of smooth connected curve segment®&band
SOB3) ={R e R*3|RTR = I,det[R] = 1}.

IIl. CONTINUOUS-TIME ANALYTICAL MODEL

In this section, we develop continuous-time equations of
motion for a 3D elastic string pendulum. The equations
for a string pendulum connected to a point mass has been
developed in [6]. Here we focus on generalizing them for
a rigid body. The attitude kinematics equation of the rigid
body is given by

R = RQ, 1)

where thehat map = : R* — so(3) is defined by the condition
thatzy = x x y for anyx, y € R3. For notational simplicity,

Fig. 1. 3D Elastic String Pendulum we do not express the time dependency of variables explic-
itly, i.e. 7(3) = r(3,1).

Reference configuration Deformed configuration

rigid body so that the dynamics of the rigid body is coupleéIA' Lagrangan o _
to the string deformations and displacements. Kinetic energy: The total kinetic energy is composed of
This model is a generalization of the 3D pendulum anél“e kme.t".: energy of the S,tr'_n@;" and the kl_netlc energy
the string pendulum introduced in [10] and [6], respectivel Of the rigid bodyT,. Let 7(3,t) be the partial derivative
and it is referred to as a 3D elastic string pendulum. This igf r(sit) W'Fh respect tOt.' This represent_s thg velocity of a
illustrated in Fig[L. ma_ltengl ppmt on the string. Then, the kinetic energy of the
i s&rlng is given by
We choose a global reference frame and a body-fixe
frame. The origin of the body-fixed frame is located at the
end of the string where the string is attached to the rigid/bod

Since the string is extensible, we need to distinguish betwe If;Ft » € R® be the vector from the mass center of the rigid

the arc length for the stretched deformed configurgtion ".Hbody to a mass element of the rigid body represented in the
the arc length for the unstretched reference conﬁguratloBbdy fixed frame. The location of the mass element is given

l
1_ .. -
L= [ GEliG)I® ds @
0

Define ) by (1) 4+ R(p.+ p) in the global reference frame. Therefore,
leR Total length of the unstretched string the kinetic energy of the rigid body can be written as
5€10,] Length of the string from the pivot to a ma-
teria_l poin_tP for the unstretched reference 7, = / %Hja(l) +RQ(pc +p)|[2dM (p)
configuration B
s(s,t) eR*  Length of the string from the pivot to a _ leﬂ(l) () + la. JQ+ Mi(l) - RQp.,  (3)
material pointP for the stretched deformed 2 2
configuration where B denotes the region enclosed by the rigid body
r(3,t) € R Vector from the pivot to a material poif¢  surface, and we use the following propertigfg:p dM = 0;
in the global reference frame iy = —gx; J = — [5((p+ pe)")? dM.
R € S0(3) Rotation matrix from the body-fixed frame Potential Energy: The strain of the string at a material
to the reference frame point located at(3) is given by
N eR? Angular velocity of the rigid body repre- =\ A=
) : . As(3) — A3 o
sented in the body-fixed frame €= A111110 — Az ° (5) -1,
pe €R3 Vector from the origin of the body fixed o ] § o _
frame to the mass center of the rigid bodywhere( )’ denote the partial derivative with respecttdarhe
represented in the body fixed frame tangent vector at the material point is given by
meRT Mass density of the string per unit un- or(3) or(3) 0% ' (3)
stretched length “ = "9s T o3 95(3) = s'(3)°
M eR* Mass of the rigid body ) ) . _
J € R3%3 Inertia matrix of the rigid body representedS'nce this tangent vector has the unit length, we hé{® =

[[*'(3)||. Therefore, the strain is given by= ||+'(3)| — 1.

The potential energy of the string is composed of the elastic
A configuration of this system can be described by thgotential and the gravitational potential:

locations of all the material points of the string(s, t) for .

5 € [0,1], and the attitude of the rigid bod§(t) with respect Vier = / 1EA(||7~’(§)|| —1)2 —Tgr(s) - esds, (4)

to the reference frame. So, the configuration manifold is 0 2

in the body fixed frame



whereE and A denote the Young's modulus and the sectionalariation according to Hamilton’s principle. This yieldset
area of the string, respectively, and the unit vectgr following Euler-Lagrange equations:
represents the gravity direction. 5 L

Since the location of the center of mass of the rigid body i (3,t) — g es — EA— (Mﬂ@’ t)) =0,

is r(1) + Rp. in the global reference frame, the gravitational 95 17 (5, )l
potential energy of the rigid body is (10)
. _pAC A2 _
Vi = M) + Rpe) s @ MR R ) ay
r(,t)]] —1
From [2)-[3), the Lagrangian of the 3D elastic string + EA%T'(U) =0,

endulum is given b . N
P I Y JQ+ QI+ mp.RT#(1,t) — mgp.RVe3 =0.  (12)

L= Tstr — Vstr + Trb - ‘/rb- (6)

Conserved quantities: The total energy, given byr =

B. Euler-Lagrange Equations Tty + Vit + Tr + Vi, is preserved. As the Lagrangian is
Let the action integral b& = jttof Ldt. It is composed invariant under the rotation about the gravity directidme t

of two parts,®;, and &,,, contributed by the string and total angular momentum about the gravity direction is con-
by the rigid body, respectively. According to the Hamil®n’ served. It is given byrs = {fol wr(3)r(s) ds+ M#(1)(r(1) +
principle, the variation of the action integral is equal tORQpC) —Mf(l)Rpc+RJQ}-eg.
zero for fixed boundary conditions, which yields the Euler-
Lagrange equations of the 3D elastic string pendulum. IV. LIE GROUPVARIATIONAL INTEGRATOR

By repeatedly applying integration by parts, the variation The continuous-time Euler-Lagrange equations developed

of &, can be written as . . . . .
in the previous section provide an analytical model for a
tr I~ D] -1, beo 3D elastic string pendulum. However, the popular finite dif-
08.tr = /to —kA I (1)]] (1) - or(l) +/O [_ i (5) ference approximations or finite element approximations of
those equations using a general purpose numerical integgrat

") — 1 /
+Tges + EA <Mr’(§)) } -or(s)dsdt. (7) may not preserve the geometric properties of the system
I )l accurately [11].
(See [6] for details.) Variational integrators provide a systematic method

Next, we found the variation of,,. It can be written as of developing geometric numerical integrators for La-
ty . grangian/Hamiltonian systems [16]. As it is derived from a
08, = / [Mi“(l) + MRQpC} <or(l1) + Mges - or(l) discrete analogue of Hamilton’s principle, it preservesmisy
to plecticity and the momentum map, and it exhibits good total
+ [JQ+ Mp.R"#(1)] - 602 energy behavior. Lie group methods conserve the structure
+ M (1) - SROp. + Mges - 0Rpe. dt. (8) of a Lie group configuration manifold as it updates a group
o ) ) ) element using the group operation [17].
The variation of a rotation matrix can be written as These two methods have been unified to obtain a Lie group
d . d variational integrator for Lagrangian/Hamiltonian sysge
0R = de R = de evolving on a Lie group [13]. This preserves symplecticity
) o and group structure of those systems concurrently. It has be
for n € R? [15]. The corresponding variation of the angularshown that this property is critical for accurate and effitie

Rexpen = Rn
e=0

e=0

velocity is obtained from the kinematics equatiéh (1): simulations of rigid body dynamics [12].
R d T B ) N In this section, we develop a Lie group variational inte-
082 = de _O(R ) RO=(n+Qxn)" grator for a 3D elastic string pendulum. We first construct a

o ] ) _ ) finite element model, and derive an expression for a discrete
Substituting these intd 8) and applying the integration by agrangian, which is substituted into the discrete-timéeEu

parts, we obtain Lagrange equations on a Lie group.

ty . .
66, = /t - [Mf(l) — MRpS+ MRO?p, — M963} -or(IA. Finite Element Model
0
: J A AT . We discretize the string bW one-dimensional line el-
+ [_JQ_MpCR (0 + MpQUR T(l)} N ements. Thus, the unstretched length of each element is
n [_MﬁCQRTf(Z) + Mgp.R es — QJQ:| L dt, (9) u= - A natural coordinatg € [0,1] in the a-th element
is defined by = 1(5 — u(a — 1)). Let Sy, 51 be shape
where we repeatedly use the propeityiz = 2y -z for any  functions given bySy(¢) = 1 — ¢, and S1(¢) = ¢. These
x,y,z € R3. shape functions are also referred totast functions. The
From [1) and[(R), the variation of the action integral isposition vectors for the end nodes of theh element are

given byd® = §&4,. + 06,4, and it is equal to zero for any given by o, ri .+1 Whent = kh for a fixed time steph.



. o " - hoft1 _
Using thI.S flnltg el_ement model, the posmon vept(m,t) _ _/ _EA(HT;CJFLGH _ 1)2 — T Trs1.a(C) - €3 udC.
of a material point in the:-th element is approximated as 2 )y 2

follows:

r(5,t) = So(Q)rk,a + S1(O)rkat1 = Th,a(C). (13)

Note thatry 4 (0) = 14, andrg q(1) = 71.a11. The partial Lav. = g
derivative with respect t@ is given by

This is given by

1
MATE o - ATk + @mArkya “ATE a1

+ 6—hmA7‘k,a+1 AT a1
_ 87’(§, t) 8( 1 o h
) = ¢ 05 E(Tk"aﬂ ~Tha) = Mo (14) + ng(2rk,a + 27041 + ATka + ATk ar1) - €3

The partial derivative with respect tois approximated by _ Zh“(Hrk,a-kl — rpall — )

. 1

#(5,8) = 3 (50O + S (OAw41) = vhal(6), (15) — ke + Arass = i = Ariall = u)?)
where the Delta-operator represents a change for a time step (17)
6. ATp o = Thila — Th.a- o i

" mL " wherem = fiu, k = ETA. So, the contribution of the string

B. Discrete-Lagrangian to the discrete Lagrangian i6g, ., = fo:l Lg, .. The

Using these finite element model, a configuration of th&ontribution of the rigid body to the discrete Lagrangian is
discretized 3D elastic pendulum at= ki is described chosen as follows.

by gv = (rk1,...,7%n~n+1,Rk), and the corresponding 1 1

configuration manifold iG = (R3)V+1 x SO(3). Lay = 57 MATE N1 - AT N1+ (] = Fio) ]
We define a discrete-time kinematics equation as follows. M

Define f = (Arg1,..., Arg N1, Fr) € G for Ary, € R3 + fATk-,NH - Ri(Fy, — I)pe

and F, € SO(3) such thatgy+1 = g fr andG acts on itself h

by the diagonal action: + §Mg (P, N+1 + Bipe) - e3
(Tht1,15 -+ > Tk 1, N+15 Rig1) + gMg (Te,N+1 + Arg N1+ RiFrpe) - e3, (18)

= (k1 + A1k, TeN+1 + ATk N1, RiFr). (16) _ o o
. whereJ; € R3*3 is a nonstandard inertia matrix defined by
Therefore, f; represents the relative update between twg, — Lltf ], 5 — J, as introduced in [15].
integration steps. This ensures that the structure of tiee Li Fro?n [17), [IB), the discrete Lagrangian of the 3D elastic
group configuration manifold is numerically preserved eincstring pendu,lum i’s as follows.
gr 1S updated byf;, using the right Lie group action o&

on itself. I _
. . , di, (gks k) = Lay, oo, (9k, ) + Ly, (ks fr)
A discrete Lagrangiar.q(gi, fv) : G x G — R is an 3 o ( ) o
approximation of the Jacobi solution of the Hamilton—Jacob _ I ny (19
equation, which is given by the integral of the Lagrangian ; (G0 i) Lar o (g0 fio)- - (19)
along the exact solution of the Euler-Lagrange equatioes ov
a single time step: C. Discrete-time Euler-Lagrange Equations

h NS For a discrete Lagrangian @ G, the following discrete-
La(gk, fi) %/0 L(g(t), g~ (1)g(t)) dt, time Euler-Lagrange equations, referred to as a Lie group
~ o _variational integrator, were developed in [13].
whereg(t) : [0,h] — G satisfies Euler-Lagrange equations
with t?ound_ary con_ditionsj(o) = ks g(h) = grfr. The Tikg, ~Df,c,1Ldk,1—Ad;71 (Tiky, -Dy La,)
resulting discrete-time Lagrangian system, referred to as b
a variational integrator, approximates the Euler-Lageang + ety - Dy La, =0,
equations to the same order of accuracy as the discrete Gk+1 = 9k [k, (21)
Lagrangian approximates the Jacobi solution.
Substituting[ZB)F(D5) into the continuous-time Lagramgi Where Tt : TG — TG is the tangential map of the left
given by [®), the contribution of the-th element to the translation,D; represents the derivative with respect ftp

(20)

discrete Lagrangian is chosen as follows. andAd" : G x g* — g* is co-Ad operator [18].
- Using this result, we develop a Lie group variational
La, ., :/ Eﬁ”vk’“(OHQ udC integrator for a 3D elastic string pendulum. Fgr =
1 (Arl’.“’?,Aj]ZaVN-’l_l’F) 36 G andp = (pla'-'apN-l-laﬂ—) €
h 1 , 5 g* ~ (R®)V*! x R3, the co-Ad operator is given by
- 5/0 §EA(HT,€,,1H —1)" —Tigri,a(C) - ez udg Adiip = (p1, .-, pnt1, F).



Derivatives of the discrete Lagrangian: We now obtain

By repeatedly applying the following property of the trace

expressions for the derivatives of the discrete Lagrangiaoperator, t4B] = tr[BA] = tr[A"B"] for any A,B €

The derivatives of the discrete Lagrangian of th¢h ele-
ment, given by[(17), with respect thry, , and Ary .41 are
given by

1 1 h
Dar, . La,, = ﬁm(Ark,a + §ATk.,a+1) +mges
h €
+ §VV]C+1,U,7
1 1 h
Daryoii Ldy,, = ﬁm(Ark,aJrl + §Ark,a) +myes
h
— —VV,jH_ﬂ. (22)
where VV , = Kl H‘ o for @ = ryar — rre € R

Then, from [ID), the derivative of the discrete Lagrangian

with respect toAry, o, fora € {2,..., N}, is given by
DATk,aLdk = DATk,aLdk,a + DATk,aLdk,a—l

1
= —m(Arg a1+ 4Ar% 4 + ATk at1)

6h
h h h
+ §m983 + EVV;.H,@ - §vvke+17a_1. (23)

Similarly, the derivative of the discrete Lagrangian with

respect tory, o, for a € {2,..., N}, is given by

h
D, ,La, = hmges + - (VVk o T VVE L)

§(VVk€,a71 +VViiia1) (24)

Next, we find the derivatives of the discrete Lagrangian

with respect toAr; x4+1 andri y41. They are contributed

by the N-th string element and the rigid body, and they can 1

be obtained from[{18) an@ (22) as follows.

1
DATk’NJrlL dy, h(M + 3 )Af‘k N+1 + 6—hmAT‘k N
M h he .

“FTR]@(F]@—I) §(M+ 2)983—§VV]€+1,N,

(25)
he . h_. .

Drk N+1L h(M =+ 2 )983 — EVVkN — Evvk+17N.

(26)

Now, we find the derivatives of the discrete Lagrangian

with respect toF;, and R;. From [18), we have
1 M
Dpg, Ly, - 0F, = Etr[—zSFde] + FATIC’NJA - R0 Fipe

h
+ §Mng5kac -es

%tl’[—&Fde] + Ag - 0 Fkpe,

where A, = 2RI Ary ny1 + 2MgRTes. The variation of
F, can be written asFj, = F,.(,. for ¢, € R3. Therefore,
this can be written as

1 . R
= Etr[—Fk(de} + Ag - Fi.Crpe-

R**3, the first term can be written as [JerFkngd] =
tr[—CdeFk] = tr[CkaTJd] ——tr[Ck(JdFo — Fk Jd)]
Using the property of the hat map”y = —1tr[2g] for any
z,y € R3, this can be further written a(séJdF;C —ElJg)V)-
(k. Asy -2z = 2y -x for anyz,y, z € R3, the second term
can be written as’ Ay, - (up. = peFF Ak - G Using these,
we obtain

. 1 .
Titr, -Dp, La, = E(JdFk — FLJa)Y + pe B A, (27)

The the coAd operator yields

1 —_—

& (Feda = JaF)Y + FrpeAr.
(28)

Similarly, we can derive the derivative of the discrete
Lagrangian with respect t&;, as follows.

Ad;kT ’ (T?LF)C ’ DFdek) =

* M
TILRk : DRdek = T((Fk - I)pc)/\RgArk,N-i—l
h N h —
+ §MgpcRge3 + §M9kacR£€3.
(29)

Discrete-time Euler-Lagrange Equations. Substituting

(23)-(29) into [20){(2), we obtain discrete-time Euler-
Lagrange equations for a 3D elastic string pendulum as
follows.

1
— (A% a1 + 40T, + A,
6hm( Tha—1+ Tha+ ATk at1) (30)
— hmges + hVV¢, 1 —hVV{, =0,
1
h(M + 3 )A ThoN+1 + 6—hmA27'k,N +hVViy
+ hM(Rka — 2R+ Ri—1)pe — h(M + )963 =0,
(31)
1
E(ijd — JdFkT — JgFr_1 + Fg_ljd)v
y (32)
+ TﬁcRgA%'k,N-'rl — hMgp:Rfes =0,
Thtl,a = Tka + ATk, (33)
Ry 1 = Ry Iy, (34)

WhereA2’f‘k a — A’f‘k a A’f‘k 1,a = Tk+1,a 277@ atTh— 1,as
%, m=Ju, k = == andVVka = ”Tlll ”u:c for x =
Tkatl — Tkq. EQUAtion IED) is satisfied far € {2,..., N},
and [33) is satisfied fon € {2,..., N + 1}. For anyk, the
vectorr, ; = 0 since the pivot is fixed.

For given(gx_1, fx—1), gr is explicitly computed by[(33)
and [3%). The updatef;, is computed by a fixed point
iteration for Fj,: we select an initial guess afy; Ary,
is obtained by solving[{30) and_(31), which requires the
inversion of a fixed3 NV x 3N matrix; a newfF}, is computed
by solving the implicit equatiod (32); these are repeateti un
F}, converges. When solving the implicit equatiénl(32), we
first express, onR3 using the Cayley transform, and apply

Newton'’s iteration (See Section 3.3.8 in [13]). These \geld

u =
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Fig. 2. Snapshots of a 3D elastic string pendulum maneuweinSenergy (c) Deviation of the total angular mo-(d) Orthogonality error of rotation
distribution is illustrated by color shading (An animatiim available at mentum about the gravity direction — matrices||I — RT R)|
http://my.fit.edu/taeyoung)

50, 125
a Lagrangian flow maggx_1, fx—1) — (gx, fx), and they w 115
are repeated. 0 ! 2 3 4 5
5
V. NUMERICAL EXAMPLE OW 1.05
We now demonstrate the computational properties of tt :
Lie group variational integrator developed in the previou o i > 3 4 5 % i 2 3 4 s

. . . . . 3 t
sect|on. by conS|de.r|ng a numerical example. The mater!e IVelocity / angular velocity of the (f) Stretched length of the string
properties of the string are chosen to represent a rubieg stfigiq body (second components)

as follows [6].
Fig. 3. Numerical simulation of a 3D elastic string pendulum

7 =0.025kg/m, l=1m, FEA=40N.

The rigid body is chosen as an elliptic cylinder with a
semimajor axis0.06m, a semiminor axis0.04m, and a errors of rotation matrices, velocities of the rigid bodgda
height0.1 m. Its properties are as follows. the stretched length of the string. As shown in Fig. B(b), the
M=0.1kg, pe=[0.04,0.01,005m, computed total energy of the Lie group va_r|at|or_1al mteglrat
oscillates near the initial value, but there is no increggin

0.38 —0.04 -0.20 , decreasing drift for long time periods. This is due to the
J=1-004 058 —0.05] kgm®. fact that the numerical solutions of symplectic numerical
—0.20 -0.05  0.30 integrators are exponentially close to the exact solutibn o

Initially, the string is aligned to the horizontaj axis at rest, @ Perturbed Hamiltonian [19]. The value of the perturbed
and the rigid body has an initial velocif9, 0.2, —0.5] m/s. Ham|lton|§m_|s pr_eserved in the discrete-time flow. The Lie
We useN = 20 elements. Simulation time i§ = 5 seconds, 9roup variational integrator preserves the momentum map as
and time step i = 0.0001 second. in Fig. [3(c}, and it also preserves the orthogonal structure
Fig.[2 illustrates the resulting maneuver of the 3D elasti€f rotation matrices accurately. The orthogonality errors
string pendulum. As the point where the string is attache@easured by|l — RTR||, are less thar2 x 10~' in Fig.
to the rigid body is displaced from the center of mass 4}
the rigid body, the rigid body dynamics are directly coupled These show that the Lie group variational integrator pre-
to the elastic string dynamics, which yields the illustdate serves the geometric characteristic of the 3D elastic gstrin
complex maneuver. pendulum accurately even for the presented complex ma-
Fig. [3 shows the corresponding energy transfer, totameuver that has nontrivial energy transfer between diffiere
energy, total angular momentum deviation, orthogonalitgdynamic modes.
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VI. CONCLUSIONS [6]

We have developed continuous-time equations of motion
and a geometric numerical integrator, referred to as a Lieb]
group variational integrator, for a 3D elastic string pen-
dulum. The continuous-time equations of motion provide

. . . 8]
an analytical model that is defined globally on the Lie
group configuration manifold, and the Lie group variational[9]
integrator preserves the geometric features of the system,
thereby yielding a reliable numerical simulation tool for
complex maneuvers over a long time period. [10]

These can be extended to include the effects of control
inputs by using the discrete Lagrange-d’Alembert prireipl (11
[20], which modifies the discrete Hamilton’s principle by
taking into account the virtual work of the external controf!?!
inputs. When applied to an optimal control problem, this
allows us to find optimal maneuvers accurately and effi-
ciently, as there is no artificial numerical dissipationuodd (13]
by the computational method. Furthermore, optimal largg
angle rotational maneuvers can be easily obtained without
singularities and complexity associated with local param?15]
terizations, since the configuration is represented giploal
the Lie group [21].

[16]
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