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Abstract— This paper is concerned with simultaneous ℋ∞

stabilization with a fixed-order constraint on the controllers for
multi-input/multi-output (MIMO) plants. By virtue of a new
closed-loop stability and ℋ∞ performance characterization, a
novel necessary and sufficient condition for the existence of
desired controllers is established in terms of a set of nonlinear
matrix inequalities, which possess a monotonic structure for
a linearized computation. A convergent iterative algorithm is
then provided to solve the condition, and a special property
of the feasible solutions enables one to further improve
the solvability via simple optimization on initial values. In
addition, structural constraints on the controller gains or
strong stabilizability can be incorporated into the design
procedure in a straightforward manner.

Index Terms—Fixed-order controller, ℋ∞ control, iterative
calculation, linear matrix inequality (LMI), simultaneous ℋ∞

stabilization, structural gains, strong stabilization.

I. INTRODUCTION

Over decades, a great deal of effort has been devoted to

studying the simultaneous stabilization problem formulated

initially in [1] and [2]. Simultaneous stabilization has been

shown to be relevant to several important systems and

control problems including strong stabilization [3], model

reduction [4], and robust stabilization [5], and has found

widespread practical applications such as nonlinear con-

trol for helicopters [6], chemical process control [7], fault-

tolerant control [8].

Early investigations on simultaneous stabilization are

available in [9], [10], [11] and reference therein. A significant

contribution to this problem comes from Blondel’s research

[12], [13], [14], which provide some fundamental results

from the theory of computational complexity. It has been

shown that the computational complexity of the simultaneous

stabilization problem with a fixed-order controller is NP-

hard [12], [13], that is, it is very unlikely to be solved via

polynomial time algorithms, and even without a constraint

on the controller order, it is not rationally decidable as well

[14]. Although the simultaneous stabilization problem in its

general form seems to be numerically intractable, it is still

possible to partially/approximately solve it via restricting

the class of plants or resorting to efficient computational
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approaches. For the single-input single-output case, a rank-

one LMI approach to fixed-order simultaneous stabilization

has been developed in [15]. For the multi-input multi-

output case with a common output matrix, novel matrix

inequality characterizations for static state/output-feedback

simultaneous stabilizability and corresponding iterative LMI

algorithm have been established in [16]. When disturbance

attenuation is concerned, a linear periodically time-varying

control scheme, under some stringent constraints on the

plants, has been proposed in [17] to achieve near-optimal

ℋ∞ performance. Recently, some effort in [18] has been

devoted to simultaneous stabilization with stable controllers

under the chain scattering framework, however, the controller

order is generally not guaranteed.

The focus of the paper is simultaneous ℋ∞ stabilization

via fixed-order controllers. From a theoretical point of view,

a novel necessary and sufficient condition for the existence

of desired controllers is established based on a new closed-

loop stability and ℋ∞ performance characterization. In the

new condition, the controller gain is parametrized by a

common free positive definite matrix independent of the mul-

tiple Lyapunov matrices, and the arbitrariness of the matrix

enables one to incorporate additional design specifications

such as structural gains or strong stabilizability into the

design procedure readily. From a numerical point of view, the

obtained design condition possesses a monotonic structure,

which leads to a simple linearized computation in an iterative

way, and a special property of the feasible solutions paves

the way to improve the solvability via some optimization

techniques. The analysis and synthesis are carried out in

the time-domain, and thus all the results may be extended

to other types of systems, for example, stochastic systems,

switched systems, or even nonlinear systems, in a straight-

forward manner.

Notation: Throughout this paper, for real symmetric ma-

trices X and Y, the notation X ≥ Y (respectively, X >

Y ) means that the matrix X − Y is positive semidefinite

(respectively, positive definite); I is the identity matrix with

appropriate dimension; 0n and In represent the n by n

zero matrix, and the n order identity matrix, respectively;

The superscript “T ” represents the transpose; ∥⋅∥ denotes

Euclidean norm for vectors or the spectral norm for matrices;

diag (A1, A2, . . . , AN ) denotes the block diagonal matrix

composed by matrices Ai, i = 1, 2, . . . , N ; For a matrix

A ∈ ℝ
n×n, Herm (A) = A + AT ; For a transfer function

matrix G (s), ∥G∥
∞

represents the ℋ∞ norm of G (s); For a

matrix C ∈ ℝ
m×n, C⊥ denotes the orthogonal complement

of C; The symbol # is used to denote a matrix which can be
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inferred by symmetry; Matrices, if their dimensions are not

explicitly stated, are assumed to have compatible dimensions

for algebraic operations.

II. PRELIMINARIES AND PROBLEM

FORMULATION

Consider the following family of linear plants

⎧



⎨



⎩

ẋi (t) = Aixi (t) +Biui (t) +Bwiwi (t) ,

zi (t) = Cixi (t) +Diui (t) +Dwiwi (t) ,

yi (t) = Cyixi (t) +Dywiwi (t) ,

(1)

with i ∈ V = {1, 2, . . . , r}, where xi(t) ∈ ℝ
n, ui(t) ∈ ℝ

nu ,

yi (t) ∈ ℝ
ny , zi(t) ∈ ℝ

nz , and wi(t) ∈ ℝ
nw are the system

state, the control input, the measured output, the regulated

output to be controlled, and the exogenous disturbance input,

respectively. The controller under consideration is of the

form

U :

{

�̇ (t) = KA� (t) +KBy (t) ,

u (t) = KC� (t) +KDy (t) ,
(2)

where KA ∈ ℝ
nc×nc ,KB ∈ ℝ

nc×ny ,KC ∈ ℝ
nu×nc , and

KD ∈ ℝ
nu×ny are the controller matrices to be designed.

When the controller in (2) is applied to the family of plants

in (1), the closed-loop family of plants becomes

T :

{

ẋcli (t) = Aclixcli (t) +Bclwiwi (t) ,

zi (t) = Cclixcli (t) +Dclwiwi (t) ,
(3)

where xcli (t) =
[

xT
i (t) �T (t)

]T
,

Acli = Āi + B̄iKC̄yi, Bclwi = B̄wi + B̄iKD̄ywi,

Ccli = C̄i + D̄iKC̄yi, Dclwi = D̄wi + D̄iKD̄ywi,

and

Āi =

[

Ai 0
0 0

]

, B̄i =

[

0 Bi

I 0

]

, B̄wi =

[

Bwi

0

]

,

C̄i =
[

Ci 0
]

, D̄i =
[

0 Di

]

, D̄wi = Dwi,

K =

[

KA KB

KC KD

]

, C̄yi =

[

0 I

Cyi 0

]

, D̄ywi =

[

0
Dywi

]

.

The simultaneous ℋ∞ stabilization (SHS) problem to be

solved in this paper is addressed as follows.

Problem 1 (SHS): Design a controller in (2) such that

every closed-loop system family in (3) is asymptotically

stable and satisfies

∥Tziwi
∥
∞

< i, i ∈ V,

where Tziwi
(s) represents the transfer function matrix of the

ith system of (3) from wi to zi.

A controller in (2) is said to be a structural solution

to Problem SHS if it solves Problem SHS, and has some

prescribed structural constraints on the controller matrix K.

For example, block diagonal, upper (lower) triangular, sparse,

or other prescribed patterns. Furthermore, a controller in (2)

is said to be a K -stable solution to Problem SHS if it solves

Problem SHS and satisfies

Uuy(s) is stable, and ∥Uuy∥∞ < K ,

where Uuy(s) is the transfer function matrix of (2) from y to

u. We end this section by giving the following elimination

lemma, which will be used in the sequel.

Lemma 1 ([19]): Let G ∈ ℝ
n×n be a real symmetric ma-

trix and U , V be real matrices with appropriate dimensions.

Then,

G+ UTXV + V TXTU > 0

holds for some X if and only if

(

V ⊥
)T

GV ⊥ > 0,
(

U⊥
)T

GU⊥ > 0. (4)

Note that if V or U has rank n, then the first or second

inequality in (4) will disappear.

III. MAIN RESULTS

A. New Closed-Loop Stability and ℋ∞ Performance Char-

acterization

Theorem 1: The following statements are equivalent:

1) Every closed-loop system family in (3) is asymptoti-

cally stable and satisfies ∥Tziwi
∥
∞

< i.

2) There exist Pi > 0, i ∈ V, an arbitrary S > 0, and

a sufficiently large scalar � > 0 such that, for each

i ∈ V,

Ωi =

[

Herm
(

PT
i (�)Ai

)

+ Λi #
Ci −iI

]

< 0, (5)

where

Pi (�) =

⎡

⎢

⎢

⎣

Pi 0 0
−�SKC̄yi �S 0

Pi 0 0
−�SKC̄yi �S −�SKD̄ywi

⎤

⎥

⎥

⎦

,

Ai =

⎡

⎢

⎢

⎣

Āi B̄i B̄wi

KC̄yi −I KD̄ywi

0 0 0
0 0 KD̄ywi

⎤

⎥

⎥

⎦

,

Λi =

⎡

⎣

0n+nc
0 0

0 0nu+nc
0

0 0 −iInw

⎤

⎦ ,

Ci =
[

C̄i D̄i D̄wi

]

.

3) There exist Pi > 0, i ∈ V, an arbitrary S > 0, a

sufficiently large scalar � > 0 such that, for each i ∈
V,

(

Z⊥

i

)T

⎡

⎣

Ψ1i (�) # #
Ψ2i −2S+ (�) #
Ci 0 −iI

⎤

⎦Z⊥

i < 0, (6)

where

Ψ1i (�) = Herm
(

(Pi (�)−ℛi)
T
Ai

)

+ Λi,

Ψ2i = ℛi + SAi,
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S = diag (0, S, 0, S) ,

S+ (�) = diag (0, S, 0, �S) ,

ℛi =

⎡

⎢

⎢

⎣

Pi 0 0
0 0 0
Pi 0 0
0 0 0

⎤

⎥

⎥

⎦

,

Zi =

[

Āi B̄i B̄wi −I 0 0 0 0
0 0 0 0 0 −I 0 0

]

.

Proof: 3)⇒2) It follows from (6) and Lemma 1 that there

exist matrices Δi such that
⎡

⎣

Ψ1i (�) # #
Ψ2i −2S+ (�) #
Ci 0 −iI

⎤

⎦+Herm
(

ZT
i Δi

)

< 0. (7)

Pre- and post-multiplying (7) by Yiℐ (�) and its transpose,

where

Yi =

[

I2nc+nu+n+nw
AT

i 0
0 0 Inz

]

,

ℐ (�) = diag (In+nc
, Inc+nu

, Inw
, In+nc

, Inc+nu
,

In+nc
, �−1Inc+nu

, Inz

)

,

and noticing that Yiℐ (�)ZT
i = 0, one has that (5) holds.

2)⇒1) Define a nonsingular transformation matrix as

follows:

Ti =

⎡

⎢

⎢

⎣

I 0 0 0
KC̄yi KD̄ywi 0 I

0 I 0 0
0 0 I 0

⎤

⎥

⎥

⎦

.

Pre- and post-multiplying (5) by TT
i and Ti, respectively,

yield that

TT
i ΩiTi

=

⎡

⎢

⎢

⎣

PiAcli +AT
cliPi # # #

BT
clwiPi −iI # #
Ccli Dclwi −iI #
B̄T

i Pi 0 D̄T
i −2�S

⎤

⎥

⎥

⎦

< 0, (8)

of which the 3rd leading principal submatrix implies that

every closed-loop system family in (3) is asymptotically

stable and satisfies ∥Tziwi
∥
∞

< i (see bounded real lemma

[20]).

1)⇒3) 1) implies that there exist Pi > 0, i ∈ V, such that,

for each i ∈ V,

BRLi ≜

⎡

⎣

PiAcli +AT
cliPi PiBclwi CT

cli

BT
clwiPi −iI DT

clwi

Ccli Dclwi −iI

⎤

⎦ < 0. (9)

Let S > 0 be arbitrary, and

Δi ≜

[

Pi 0 0 "I 0 0 0 0
Pi 0 0 0 0 "I 0 0

]

,

ℰ ≜ diag ("I, 0, "I, 0) ,

where the partitions are compatible with Zi and S (�),
respectively, and " > 0 is a sufficiently small scalar such

that, for each i ∈ V,

BRLi +
1

2
"

⎡

⎣

AT
cli

BT
clwi

0

⎤

⎦

⎡

⎣

AT
cli

BT
clwi

0

⎤

⎦

T

< 0.

Now, set �1 > 0 and �2 > 0 to be sufficiently large scalars

such that, for each i ∈ V,

Ξi (�1) ≜ BRLi +
1

2
"

⎡

⎣

AT
cli

BT
clwi

0

⎤

⎦

⎡

⎣

AT
cli

BT
clwi

0

⎤

⎦

T

+
1

2�1

⎡

⎣

0
D̄T

ywi

0

⎤

⎦KTSK

⎡

⎣

0
D̄T

ywi

0

⎤

⎦

T

< 0,

and

−ΣiΞ
−1
i (�1) Σ

T
i +

1

2
"B̄T

i B̄i +
1

2
(1− 4�2)S < 0,

where Σi =
[

B̄T
i Pi +

1
2"B̄

T
i Acli

1
2"B̄

T
i Bclwi D̄T

i

]

. For

� = max {�1, �2}, it is easy to verify that

−ΣiΞ
−1
i (�) ΣT

i +
1

2
"B̄T

i B̄i +
1

2
(1− 4�)S < 0, (10)

Then, by (10) and Schur complement equivalence [19], one

obtains that

TT
i

(

Ωi +
1

2

[

AT
i (S− (�) + ℰ)Ai 0

0 0

])

Ti

=

[

Ξi (�) #
Σi

1
2"B̄

T
i B̄i +

1
2 (1− 4�)S

]

< 0, (11)

where S− (�) = diag
(

0, S, 0, �−1S
)

. It follows from (11)

and Schur complement equivalence that
⎡

⎣

Ψ1i (�) # #
Ψ2i −2S+ (�) #
Ci 0 −iI

⎤

⎦+Herm
(

ZT
i Δi

)

= ℐ−T (�)

⎡

⎣

Herm
(

PT
i (�)Ai

)

+ Λi

(S− (�) + ℰ)Ai

Ci

# #
−2 (S− (�) + ℰ) #

0 −iI

⎤

⎦ ℐ−1 (�)

< 0,

which by Lemma 1 implies that (6) holds. This completes

the proof.

Remark 1: In most previous LMI formulations, the Lya-

punov matrix used for checking stability or performances

is coupled with the controller matrix. This may induce

additional constraints on the Lyapunov matrix when the

controller matrix is parametrized. The significance of the

conditions in Theorem 1 lies in the separation of the multiple

Lyapunov matrices Pi and the single controller matrix K,

which avoids imposing any constraint on Pi when K is

parametrized, and the introduction of a common matrix S

for the parametrization of K.
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Remark 2: The arbitrariness of S enables one to impose

additional constraints on the controller matrix without loss

of generality, and thus various synthesis problems, such as

structural controller synthesis or strong stabilization, can be

treated readily under the same framework.

Remark 3: Although conditions 2) and 3) are equivalent,

whereas, 3) may be more desirable from a computational

point of view. This is because the multipliers Δi, also

referred to as slack matrix variables in some cases, have been

introduced in 3), and they are expected to make the iteration

to be presented later more efficient and less conservative.

B. Design Condition and Algorithm

We are now in a position to establish a new necessary

and sufficient condition for the existence of the desired

controllers.

Theorem 2: Problem SHS has a solution if and only if

there exist Pi > 0, Mi, Ni, i ∈ V, S > 0, L, and a scalar

� > 0 such that, for each i ∈ V,

Πi (�,Mi, Ni)

≜
(

Z⊥

i

)T

⎡

⎣

Π1i (�,Mi, Ni) # #
Π2i −2S+ (�) #
Ci 0 −iI

⎤

⎦Z⊥

i

<0, (12)

where

Π1i (�,Mi, Ni) = 2�Υi − 2�Herm
(

CT
yiL

Tℳi

)

+2�ℳT
i Sℳi + Λi,

Π2i =

⎡

⎢

⎢

⎣

Pi 0 0
LC̄yi −S LD̄ywi

Pi 0 0
0 0 LD̄ywi

⎤

⎥

⎥

⎦

,

Υi =

⎡

⎣

0 C̄T
yiL

T 0
LC̄yi −S LD̄ywi

0 D̄T
ywiL

T 0

⎤

⎦ ,

ℳi =
[

Mi 0 Ni

]

,

Cyi =
[

C̄yi 0 D̄ywi

]

.

Under the condition, a desired control law can be obtained

as

K = S−1L. (13)

Proof: According to Theorem 1, it suffices to prove

that (12) is equivalent to (6).

(Sufficiency) S > 0 implies that (13) is meaningful and

L = SK. Substituting this into (12), and noting, for any

Mi and Ni, −CT
yiK

TSKCyi ≤ −Herm
(

CT
yiK

TSTℳi

)

+
ℳT

i Sℳi, one can easily verify that (6) holds.

(Necessity) Assume that (6) holds. Then, by setting Mi =
KC̄yi and Ni = KD̄ywi, one has that

−CT
yiK

TSKCyi

= −CT
yiK

TSKCyi + (ℳi −KCyi)
T
S (ℳi −KCyi)

= −Herm
(

CT
yiK

TSTℳi

)

+ℳT
i Sℳi.

Substituting this into (6) and letting L = SK yield that (12)

holds. This completes the proof.

When �, Mi, and Ni are fixed, (12) becomes a strict LMI,

which could be verified easily by conventional LMI solver.

According to the proof of Theorem 1, the larger the �, the

higher the reduction in the conservatism of (12). If (12) does

not hold for a sufficiently large � > 0, it would be likely to

conclude that Problem SHS has no solution. Hence, � can

be set to be a large value. The remaining problem is how to

select Mi and Ni. It can be seen from the proof of Theorem

2 that the scalar � satisfying Πi (�,Mi, Ni) < �I achieves

its minimum when Mi = KC̄yi and Ni = KD̄ywi, which

can be used to construct an iteration rule. The following

proposition gives a refined characterization on �, Mi, and

Ni.

Proposition 1: When other variables, that is, Pi > 0, S >

0, and L, are fixed, the following relationship holds for any

Mi, Ni, i ∈ V, and �M > �m > 0,

Πi

(

�M , S−1LC̄yi, S
−1LD̄ywi

)

≤ Πi

(

�m, S−1LC̄yi, S
−1LD̄ywi

)

≤ Πi (�m,Mi, Ni) .
Proof: The second “≤” follows immediately

from the proof of Theorem 2. As for the

first “≤”, it suffices to show −S+ (�M ) ≤
−S+ (�m) and Π1i

(

�M , S−1LC̄yi, S
−1LD̄ywi

)

≤
Π1i

(

�m, S−1LC̄yi, S
−1LD̄ywi

)

. The former one is

obvious, and the latter one can be verified by noting that

Π1i

(

�M , S−1LC̄yi, S
−1LD̄ywi

)

−Π1i

(

�m, S−1LC̄yi, S
−1LD̄ywi

)

= 2 (�m − �M )

⎡

⎣

−C̄T
yiL

T

S

−D̄T
ywiL

T

⎤

⎦S−1

⎡

⎣

−C̄T
yiL

T

S

−D̄T
ywiL

T

⎤

⎦

T

≤ 0.

This completes the proof.

From the proposition, it can be further revealed that the

scalar � satisfying Πi (�,Mi, Ni) < �I achieves its global

minimum only if � → +∞, Mi = S−1LC̄yi = KC̄yi,

and Ni = S−1LD̄ywi = KD̄ywi. In view of this and

aforementioned analysis, the following iterative algorithm is

constructed to solve the condition of Theorem 2.

Algorithm 1:

1) (Initialization) Set � = 1 and � to be a sufficiently

large value (for example, � = 104). Select initial

values M
(�)
i and N

(�)
i , i ∈ V, such that every system

in the following family with ūi (t) = M
(�)
i xcli (t) +

N
(�)
i wi (t) is asymptotically stable with

∥

∥T aux
ziwi

∥

∥

∞
<

∞i, where T aux
ziwi

(s) represents the corresponding

closed-loop transfer function matrix of the ith system

from wi to zi.
{

ẋcli (t) = Āixcli (t) + B̄iūi (t) + B̄wiwi (t) ,

zi (t) = C̄ixcli (t) + D̄iūi (t) + D̄wiwi (t) .
(14)

Set �
(�)
∗ > 0 to be a large number and c to be an

arbitrary positive scalar.
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2) (Iteration) For fixed �, M
(�)
i , and N

(�)
i , solve the

following sequential optimization problem:

Minimize � subject to, for each i ∈ V, Pi > 0, S > 0,

and

Πi

(

�,M
(�)
i , N

(�)
i

)

< �I, (15)

� ≥ −c (16)

Denote �
(�+1)
∗ , S(�), and L(�)as the optimal value of

�, S, and L, respectively.

3) (Criterion) If �
(�+1)
∗ < 0, then there exists a solution

to Problem SHS, and a control law can be obtained as

(13), that is, K =
(

S(�)
)−1

L(�). STOP.

Else if

∣

∣

∣
�
(�+1)
∗ − �

(�)
∗

∣

∣

∣
≤ �, where � is a prescribed

tolerance, then go to Step 4, else update

M
(�+1)
i =

(

S(�)
)−1

L(�)C̄yi,

N
(�+1)
i =

(

S(�)
)−1

L(�)D̄ywi,

and set � = � + 1, then go to Step 2.

4) (Termination) There may not exist a solution to Prob-

lem SHS. STOP (or choose other � and initial values

M
(1)
i , N

(1)
i , then run the algorithm again).

Remark 4: It can be seen easily from Proposition 1 and

(16) that the sequence �
(�)
∗ is monotonic decreasing with

respect to �, that is, �
(�)
∗ ≤ �

(�−1)
∗ , and bounded from

below by −c. Therefore, the convergence of the iteration

is guaranteed.

Remark 5: The initial values M
(1)
i and N

(1)
i are the

“state-feedback ℋ∞ matrices”, which can be determined by

existing approaches. If no such matrices are found, it can be

concluded immediately that Problem SHS has no solution.

Like many other iterative algorithms, the sequence of iterates

depends on the selection of initial values, and appropriate

selection of M
(1)
i and N

(1)
i will improve the solvability. In

addition, various search routines, such as fminsearch.m

provided in MATLAB Optimization Toolbox, can be applied

to find the optimal � for each iteration, if one can afford

more computational effort. In summary, the global optimality

of the iteration is affected by the initial values and the tuning

parameter �, and is thus generally not guaranteed. Further

improvement will be discussed in the next subsection

C. Desirable Initial Value

As mentioned previously, the initial values M
(1)
i , N

(1)
i ,

and the tuning parameter � may affect the global optimality

of the iteration. To see this in a detailed way, let us consider

− �CT
yiK

TSKCyi

≤ −�Herm
(

CT
yiK

TSTℳi

)

+ �ℳT
i Sℳi

= −�CT
yiK

TSKCyi + � (ℳi −KCyi)
T
S (ℳi −KCyi) .

It follows from this inequality that if Problem SHS has a

solution K∗, then (12) will also be feasible, provided that
∥

∥

∥
� (ℳi −K∗Cyi)

T
S (ℳi −K∗Cyi)

∥

∥

∥
is sufficiently small.

The converse is also true. In view of this, it is natural

to improve the solvability of the iterative calculation by

reducing

∥

∥

∥
� (ℳi −K∗Cyi)

T
S (ℳi −K∗Cyi)

∥

∥

∥
, which can

be achieved through adjusting the two parameters � and ℳi,

namely, making � and ∥ℳi −K∗Cyi∥ sufficiently small.

From Proposition 1, however, � should be large in order

to achieve global optimality of the condition in Theorem

2. Hence, the only way is to reduce ∥ℳi −K∗Cyi∥ by

choosing appropriate ℳi. Since

ℳi −K∗Cyi = (Mi −K∗
Cyi)

[

I 0 0
0 0 I

]

,

Mi =
[

Mi Ni

]

,

Cyi =
[

C̄yi D̄ywi

]

,

it suffices to reduce ∥Mi −K∗
Cyi∥. To this end, the fol-

lowing theorem, which plays a central role in selecting Mi,

is provided.

Theorem 3: For some matrices Mi and scalars i > 0,

i ∈ V, the following two statements are equivalent

1) Problem SHS has a solution K∗ satisfying

∥M−K∗
Cy∥ ≤ �1, where �1 > 0 is a sufficiently

small scalar.

2) Mi ∈ S∞i, i ∈ V, and

∥

∥

∥
MC

⊥

y

∥

∥

∥
≤ �2, where �2 > 0

is a sufficiently small scalar, and

S∞i =
{

Mi∣the ith system of (14) with

ūi (t) = Mixcli (t) +Niwi (t)

is asymptotically stable with
∥

∥T aux
ziwi

∥

∥

∞
< ∞i

}

,

M =
[

M1 M2 ⋅ ⋅ ⋅ Mr

]

,

Cy =
[

Cy1 Cy2 ⋅ ⋅ ⋅ Cyr

]

.

Proof: 1)⇒2) It follows from 1) that Mi = K∗
Cyi +

Σi, where Σi is a sufficiently small perturbation, and the

ith system of (14) with ūi (t) = Mixcli (t) + Niwi (t) =

K∗
Cyi

[

xT
cli (k) wT (k)

]T
+ Σi

[

xT
cli (k) wT (k)

]T

is still asymptotically stable with
∥

∥T aux
ziwi

∥

∥

∞
< ∞i,

which means Mi ∈ S∞i. In addition,

∥

∥

∥
MC

⊥

y

∥

∥

∥
=

∥

∥(M−K∗
Cy)C

⊥
y

∥

∥ ≤ �1

∥

∥C
⊥
y

∥

∥ ≜ �2, which is suffi-

ciently small.

2)⇒1) It is noted that if rank (Cy) = n1 < ny +nc, then

Cy can be QR-factorized as

Cy = U

[

C1

0

]

,

where U ∈ ℝ
(ny+nc)×(ny+nc) is an orthogonal matrix, C1 ∈

ℝ
n1×r(n+nc+nw) is a matrix with full row rank, and

C
⊥

1 = C
⊥

y . (17)

Now define K∗ as

{

MC
T
y

(

CyC
T
y

)−1
, if rank (Cy) = ny + nc,

[

MC
T
1

(

C1C
T
1

)−1
0
]

U
T , if rank (Cy) < ny + nc,
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which implies that
{

MC
T
y −K∗

CyC
T
y = 0, if rank (Cy) = ny + nc,

MC
T
1 −K∗

CyC
T
1 = 0, if rank (Cy) < ny + nc,

With this and (17), one obtains that

(M−K∗
Cy)×

[

C
T
y C

⊥
y

]

=
[

0 MC
⊥

y

]

,

if rank (Cy) = ny + nc,

(M−K∗
Cy)×

[

C
T
1 C

⊥
1

]

=
[

0 MC
⊥

y

]

,

if rank (Cy) < ny + nc,

which, by noting the invertibility of
[

C
T
y C

⊥
y

]

and
[

C
T
1 C

⊥
1

]

, implies that

∥M−K∗
Cy∥

≤ �2 max
{
∥

∥

∥

[

C
T
y C

⊥
y

]−1
∥

∥

∥
,
∥

∥

∥

[

C
T
1 C

⊥
1

]−1
∥

∥

∥

}

≜ �1,

which is sufficiently small. Similar to the derivation in

1)⇒2), one further obtains that K∗ is a solution to Problem

SHS.

From this theorem, one may conclude that desirable

initial values should be in S∞i and

∥

∥

∥
MC

⊥

y

∥

∥

∥
should be

small enough. For the extreme case that Mi ∈ S∞i and
∥

∥

∥
MC

⊥

y

∥

∥

∥
= 0, (12) must be feasible for a sufficiently large

scalar � > 0. Based on this, some optimization techniques

such as D-K type iteration [21] or ellipsoidal approximation

could be developed to find a desirable initial value. Details

are omitted here due to page length consideration.

D. Extension to SHS with Structural Gains or Strong Stabi-

lizability

Theorem 4: Problem SHS has a structural solution if and

only if there exist Pi > 0, Mi, Ni, i ∈ V, diagonal S > 0,

L with a prescribed pattern, and a scalar � > 0 such that,

for each i ∈ V, (12) holds.

Proof: Noting that S can be set to any positive definite

matrix and S−1L has the same structure with L, the proof

follows immediately.

Theorem 5: Problem SHS has a K-stable solution if

and only if there exist Pi > 0, Mi, Ni, i ∈ V, S =

diag (PK , I) > 0, L =

[

L1 L2

L3 L4

]

with the partition

compatible with K, and a scalar � > 0 such that, for each

i ∈ V, (12) and the following LMI hold:
⎡

⎣

L1 + LT
1 # #

LT
2 −KI #

L3 L4 −KI

⎤

⎦ < 0.

Proof: Noting that the structure of S and applying the

bounded real lemma to the controller in (2), the proof follows

immediately.

IV. CONCLUSIONS

In this paper, a novel necessary and sufficient condition

for simultaneous ℋ∞ stabilizability has been established in

terms of matrix inequalities with a free parameterization

matrix. A monotonic structure of the condition enables one

to solve it via an convergent iterative algorithm, and a

special property of feasible solutions provides a possibility

to improve the solvability via simple optimization on the

initial values. In addition, additional design specifications

such as structural controller gains or strong stabilizability

can be readily incorporated into the design procedure.
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