Synchronization with partial state feedback onSO(n)
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Abstract—In this paper we consider the problem of con- Considering a static output map, we provide a sufficient rank
structing a distributed feedback law to achieve synchronization  condition on a generalized graph Laplacian matrix which en-
for a group of k agents whose states evolve &0 (n) and which g, ag that the resulting system reaches state synchrionizat

exchange only partial state information along communication Th id fi . tout g fficient
links. The partial state information is given by the action of the én we considaer a time-varying output map, a sutticien

state on reference vectors irfR"™. We propose a gradient based condition is provided to get local state synchronizatiodem
control law which achieves exponential local convergence to appropriate persistance of excitation assumptions. The-ti

a synchronization configuration under a rank condition on a  varying setting leads to conditions that are easier to fgatis
generalized Laplacian matrix. Furthermore, we discuss the case because only a local rank condition must hold for the

of time-varying reference vectors and provide a convergence dsvstem: this implies that hronizati b
result for this case. The latter helps reach synchronization, averagedsystem; this implies that synchronization can be

requiring less communication links and weaker conditions on €nsured with less communication links among agents.
the instantaneous reference vectors. Our methods are illustrad The paper is organized as follows. Section Il states the
on an attitude synchronization problem where agents exchange problem and derives the basic gradient algorithm used as
gg%;?e" relative positions observed in the respective body cqntro) |aw by the individual agents. Section Il analyzes
' the stability properties for fixed output maps. Section IV
. INTRODUCTION considers time-varying output maps. Section V illustrates

Recently, synchronization and other collective phenomen€ results on an example with simulations.
appearing in physical and other natural systems, have drawn
considerable attention in the literature, see e.g. [224)],[2
[19]. The systems and control community has been study- Il. PROBLEM STATEMENT AND GRADIENT
ing coordinated multi-agent systems; potential capadslit SYNCHRONIZATION ALGORITHM
indicate that they may be increasingly used in future apa. Definitions and Notation
plications involving e.g. communication networks or vééic , ) )
formations, see e.g. [15], [23], [8], [9], [13], [10], [14], We denote _bySO(n_) the set ofn-dimensional rotation
[7]. Considered aspects include optimal configuration of g1_atr|ces, thé_‘t is the Lie group of orthogonak n matrices
group, collision avoidance, nonlinear dynamics, communlWlth deter_mlna_ntl, anq by 50(77) the tangent space to
cation graph structures, distributed controller desido, e S0(n) a,t |dent|_ty, that is the_ Lie alggbra of X sk_ew
One main line of research derives from the standard “Iineétymmet”,c matrlcgs. We eqwﬁO(n)Twnh the biinvariant
consensus algorithm”, used by a set of interacting agen@em"’mm""n metrm{QQ,Q@} = (27 6) for Q < SO(")’ ,
to reach agreement on some vectorfifi, see e.g. [23], Q,Qe s0(n). The Frobenius norm, which coincides _W|th
[9], [16]. Problems like rigid body attitude synchronizati € induced norm on the tangent spaces Sih(n), is
motivate an extension of the “linear consensus algorittgn” td€noted by|[ - ||. For a matrix X' € R™*", Sl;eW(X)
manifolds different fromR™: indeed, satellite attitudes for denOtes its skew-symmetric part, Lg(X — X7), and
instance evolve on the grow§O(3) of rotation matrices. The vec(X) the mapR™ ™ — R™ such thatvec((zi;)) =
attitude synchronization problem has already been studiéalla%lw-~xn1a$127~-~~”Un23~~a331n_7~--f€nn)T- The Kro-
in e.g. [15], [25], [12], [3], [11], [18], [21] with differen necker'product qf twq matriced, B is denoted byAd ® B.
approaches. All these studies consider full state exchang8€ unit sphere irR™ is denoted bys” 1.
between communicating agents. A setting with partial state Inter-agent communication is represented by means of a
feedback inlinear systems is proposed and analyzed in [24]c0mmunication grapi{V, E), V' denoting the vertices, i.e.
The present paper extends a basic control law for Sy,t,he agents, and the edges, i.e. the available communication
chronization onSO(n) (see [20]) to a setting where agentslinks. Here communication links are assumed bidirectional
only exchange partial state information. Our output map 80 the graph is undirected. The cardinality fis denoted
inspired by [17], which takes advantage of the fact that*E. The adjacency matrixd = (a;;) of (V. E) contains
it comes down to full state communication fétO(2) in  ai; = 1 if there is a link between agentsand;j, anda;; = 0
order to achieve smart noise reduction. We design a gradiepfherwise. By conventiom;; = 0. Both vertices and edges

algorithm on the basis of a cost function on the outputére represented by numbers, ile.= {1,... ,k} and E =
{1,...,#E}. The verticesi, j linked by edgee € E are

Department of Electrical Engineering and Computer Scienclenoted; = Vl(e) cVv andj _ Vr(e) c V. withi < j. The
(Montefiore Institute, B28), University of BEge, 4000 Lége, f ed hed ois d ’ db : h
Belgium. christian. | ageman@mont efiore. ul g. ac. be, Set of edges attached to a verteis denoted byd(i). The
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B. Synchronization algorithm As in the full state observation case, we use gradient dynam-

Considerk agents whose state spaceSi®(n) — e.g. k ics as a synchronization algorithm: foe=1.. . k,
satellites with attitudes represented $9(3). We denote the 4 , _ q
state of agent by Q; € SO(n). We assume that the agents % @i (gra 1@, ’Qk))
have the simple left-invariant dynamics

4Qi=Qu; , i=1...k (1)

with u; € so(n) a freely chosen input. This yields a left- | a (3) is indeed an output feedback, depending only on the

invariant system on the product grod)(n)*. The agents |ocally available partial state information.
communicate along links defined by a fixed undirected graph

(V,E). However, as a major distinction with respect to IIl. FIXED REFERENCE VECTORS
previous work, if two agents and j are connected by a We now discuss the convergence to synchronization of
communication link, i.ea;; # 0, then they only exchange system (3) fofixedreference vectorg;;. Sincef character-
the partial state information izes output disagreement, we first consider stability opout

T T synchronization, i.e. the situation for which the two oufpu

Qi yij and Q;y;; along each edge df, £) coincide.

along that link. They;; € S"~' are imposed reference Definition 1: A state (Q1,...,Qy) is calledoutput syn-
vectors; we assumg; = y;;, i.e. one vector is associated tochronizationif Qf y;; = QT y;; forall i, 5 € {1,...,k} with
eachbidirectionallink. This kind of output naturally appears a;; = 1. We denote the set of all output synchronization
in applications as e.g. described in Section V. We firs3tates byC,,.
consider fixedy;;, then analyze how the system behaves for Proposition 1: The output synchronization set is asymp-
time-varyingy; ;. The output map is given b§f : SO(n)* —  totically stable under (3).
(Sm—1)2#E where, choosing a suitable order of the outputs, ~ Proof: Since (3) is a gradient descent system faand

i

k
= Qi | D aiskew((QFyi)(Qyi)") |- (3

j=1

components andj + #F of H, j € E, are given by f is an algebraic function the sét,, i.e. the set of global
minima of f, is asymptotically stable [1]. |
ri=Hi(Q1,...,Qr) = QL v ve(; : : ot
j S RRERERZS V() Yv1() ve(4) The next step is to examine when output synchronization
s;j=Hiypp(Q1,...,Qr) = er(j)yvl(j)vr(j), implies state synchronization. We first consider a conditio

) i . ) for outputs of the system to correspond to a unique state.
The goTaI 1S to;md a feedback law, definingas a function  thegrem 1:The output map from the global state space
of {(Qiwij» Qjuis), J=1...k|ay; # 0}, that drives the 1 e output space is injective if and only if eack V has
system tosynchronization(or state sgnchron|zat|Qn|.e. 10 4t leastn — 1 linearly independeny;; with a;; = 1. If this
the setCs = {(Q1,...,Qx) € SO(n)" | Q1 =... = Qk}.  condition does not hold, then the outputs corresponding to
In [20] a gradient algorithm is proposed for (at least Iocal)Elny state inC, can be obtained with a state outside.
synchronization o5 O(n) with full state observations. Here, Proof: Consider a single agent W...o.g. we choose

we exFend this apprqaqh to gﬂti;l#ztate observations H®r t o numbering of the agents and such thata;; = 1 if
we build a cost functiorf: (5™~ ") — Ronoutputspace 44 only if j < m. OutputQTy;; of agenti is given by
that penalizes the difference between pairs of correspandiyo action of gtate@ on v, le < m. Let h: SO(n) x
outputsr; ands; along each edgg. A natural choice is the (gn—1ym _, (gn—1ym the output map action of); on

sum of squared Euclidean distances g = (Yir, - Yim), 1€ 1(Qi,9) = (QTyin, ., Qf yim).
#E The stabilizerstaby, (§) = {Q € SO(n) | h(Q,9) = 4} Is
£ 2
f(ﬁ,---ﬂ‘#E»Sl,-u,S#E):Z§I|Tj*5j|| : m
j=1 staby () = ﬂ stab(yi;),
The cost function on outputs can be pulled back via the J=1
output map to a cost function on state spgce f o H, with stab(y;;) = {Q € SO(n) | QTy;; = vi;}. Thus by
k 1 definition they;y, ..., y;» are eigenvectors with eigenvalue
Qi Qr) = D> ay 3197 i — QF wis” 1 of all Q € stab,(§) C SO(n). Thenstaby,(§) = {I} if
i=1 j<i and only if (n — 1) elements of); = {yi1,...,Yim} are
k linearly independent. The same holdsgifis replaced by
= D> ai(1— (Q] yiuQi)). h(Q*,4) for any Q* € SO(n). Therefore an output of the
i=1 j<i whole system corresponds to a unique state of ag#érand

only if there are(n — 1) linearly independent elements in
Y;. We get injectivity of the whole output map if and only
if this condition holds for ali € V.
(grad f(Ql""’Qk)> = =3 ay; Qi skew(QF My;Q;). Now assume that the condition does not hold for agent
i gy i. Consider output synchronization with the synchronized
(2) state@; = ... = Q. For any ) € stab(y), the

We defineM;; = yuyz; Using the product Riemannian
metric onSO(n)k, the gradient off with respect taQ); is



state (Q1, ..., QQ;, . .. ,Qy) vields the same output as ThenC, C S =V and taking the intersection witBO(n)*
(Q1,...,Qr) € Cs. But asstab(g) # {I,}, we can choose leads toC, = C;.
Q # 1, such that(Q1,...,QQ;,...,Qx) ¢ C,. Hence there  (b) Since f and SO(n) are analytic, an equilibrium of
is no output value irC,, which necessarily requires the stategradient system (3) is stable if and only if it is a local
to be inCs. ®  minimum of f [1]. Similarly to [20], the fact that local
Even if we have enough outputs to ensure injectivity ofminima are global ones for linear functionals &O(n)
the output map, this still does not guarantuee that an outpuplies that all local minima off on SO(n)* are global
synchronization state is a state synchronization state. Thnes and hence belong €4,.
problem is that the output values generated by the state(c) Recall thatat a critical point = the Hessian
synchronization set are only part of the possible outpufl f(x): (T, M xT, M) — R of smooth functionf: M — R
synchronization values: there exist output valdgsy,; = on a smooth manifold/ can be defined byf f(x)(n,7n) :=
Q7 yi; that cannot be generated by synchronization states, %%(f o v)(0), where~(t) is a smooth curve on\/ with
illustrated in Example 1. Thus depending on the actalles ~(0) = = and C(Tiﬂ|0 =, cf. [6].
of the outputs, output synchronization can correspond to The Hessian f(Q) of f on SO(n)* is positive semidef-
state synchronization or not. Therefore the above praposit inite in C, = C,. We want to show that, for al) =
only gives a necessary, but not a sufficient condition fofQ,,...,Qx) € Cs, Hf(Q)(n,n) = 0 impliesn € TpCs.
equivalence of output and state synchronization. SinceC, is a compact submanifold O (n)*, exponential
Example 1:Consider the case ofO(3), with 3 agents stability then follows by the same argument as for Morse-
and a fully connected communication graph. Assume th&ott functions, cf. [6].
yi2 = (1,0,0)7, yo3 = (0,1,0)T, y13 = (0,0,1)T. The ComputingH at a minimum~(0) = (Q, ..., Q) € C, of
assumptions of Theorem 1 hold, so each output synchrg-on M = SO(n)* with v: R — SO(n)* a smooth curve

nization value corresponds to a unique point in state spacmd %7(0) =~0)(21,...,%) = (QQl, e ,QQk) where
Let output synchronization be reachedHtyio = QI yio =  Q; € s0(n), we get
(1 o O)T, QTyis=QFy13=(0 0 1)T andQJ yo3 = 2
Qyos = (0 —1 O)T. Then the corresponding unique W(fov)(()) =
state isQ; = diag(1,1,1), Q2 = diag(1,-1,-1), Q3 = T
diag(—1, —1,1) which is not a state synchronization state. h . . &
To characterize when output synchronization yields stat¢ vec | : (L @QT) (I, @L) (Ix®Q) vec :
synchronization, we must take a closer look at cost functio o o

. The function can be written e = .
f . HQ1 Q) As discussed for case (a) we have fank L = k(n — 1)

Q1 Q1 thatker(Z,, ® L) = vec(V') with V' as above angec(V) the
(I,® L) vec| : image of V" under the vectorization mayec. Dgfiningl_’] =
X : Ik ® Q, we haveU vec(V) = vec(V) and sinceU is an
@ Qk orthogonal transformatiomank U7 (I,, ® L)U = rank(I,, ®
whereL = (Ly;) € R¥<kn with L;; € R™*" defined by~ L). Therefore L (f o7)|o = 0 implies (Q1,..., Q) € VN
ToSO(n)F = ToCs. [ ]
Obviously, synchronization can only be achieved for con-
k nected communication graphs. For a disconnected graph,
Ly = Zaiﬂ'Miﬂ' : numbering the agents in order to makeblock-diagonal,
5=1 one readily shows thatink L < n(k — 1).
L andf can be considered as generalizations of the Laplacian The maximalrank L = n(k — 1) can only be achieved for
matrix and Laplacian-based quadratic cost functions oftem suitably large number of agents.
used in the context of synchronization algorithms. Proposition 2: If rank L = n(k — 1) thenk > 2n.
Since Zle L;; = 0 Vi, we haverank L < n(k — 1). Proof: Define the vectors
If this bound is tight we can prove strong convergence - T T T En
properties of our gradient system. G = (005,00, 0,95, 0,.. )7 € R
Theorem 2:If rank L = n(k — 1), then where they;; entries appear agh and;jth R™-components
(a) output synchronizatioty, = state synchronizatiotys; of g;;. Further define thén x k(k — 1)/2 matrix
(b) C, = Cs is the set of stable equilibria of (3);
(c) C, = Cs is locally exponentially stable.
Proof: (&) Considerf(X,...,Xs) with X; € R™*".  whose columns are given by the;g;; for i < j, sorted by
C, C S where S is the subspace of global minima of the(i, j) in lexicographic order. Thed, = PP andrank L =
quadratic formf on (R™*™)¥. In addition,S 2 V with V' rank P < min{n(k — 1), k(k — 1)/2}. Thereforerank L. =
the subspac® = {(X1,...,X;) € R™*")* | Xy =...= (k—1)nrequiresn(k — 1) < k(k—1)/2,ie.2n<k =
X € R™*™}If rank L = n(k — 1), thenrank I, ® L = It is important to note that Theorem 2 providesuficient
n?k —n? and S is n?-dimensional, likeV, thusS = V. condition for state synchronization. Thus Proposition &dt

1
— | vec
2

Lij = —ayMy forij,

P = (ai2th2 ais13 -+ G323 G2af24 ---) (4)



a necessary condition for state synchronization. Forimgta Using a straightforward extension of the arguments in [20]

state synchronization 0§O(3) can be ensured with = we see that; is locally asymptotically stable. Exponential
4 fully connected agents and suitably chosgp although stability can be proved similarly to Theorem 2(c). ]
Proposition 2 is not satisfied. We can now derive the exponential stability of the time-

varying system from the averaged one.
Theorem 3:If the communication graph is connected and
In applications one can be faced with a situation where thssumption 1 holds, then for sufficiently small> 0 the
reference vectorg;; time-varying, i.e. they;; are smooth state synchronization sé€t; is locally asymptotically stable
functionsR — S™~!. This setting is in fact favorable for for (5).
state synchronization, as the output map can sweep in time Proof: The proof uses some facts on reductive homoge-

IV. TIME-VARYING REFERENCE VECTORS

different directions of the state space. neous spaces; we refer the reader to e.g. [4] for detailsALet
For technical reasons, we introduce a scaling paranzeteithe subgroud (@, ..., Q) | @ € SO(n)} of SO(n)*. Define
in (3), i.e. we consider foi = 1...k the system the compact homogeneous spate = SO(n)*/A, with
A acting onSO(n)* by right multiplication, and canonical

projectionr: SO(n)® — M. SinceSO(n)* is compact,M
d _ T T T
w@i =€Qi (Z aij skew((Q; yij)(Q; ij) )) ®) s a reductive homogeneous space and we eddipwith
J=1 the Riemannian metric induced by the product metric on

with time-varyingy;; (t). Feedback law (5) can be construedSO(n)k-

as the gradient, with respect to the state space variafles, o Assumee = 1. Since (5) and (6) equivariant under the
action of A = {(Q,...,Q) | Q € SO(n)} on SO(n)* by

1 right multiplication, they respectively induce a time-yiag
f(Q1,-..,Qp,t) = Z Zaij §||QiTyz‘j ) = Qv ®I”. vector field F(z,t) and a time-invariant vector field'(z)
=< on M. Note that for anyA-equivariant, time-varying vector
However, because this cost function explicitly depends ofield X (Q,t) on SO(n)* one has
time, it does not necessarily decrease along the trajestofi " "
the closed loop system and thus is not a Lyapunov function. TQw/ X(Q,t)dt = / Tom(X(Q,1))dt
Using an averaging approach, we show thatis locally ty t
asymptotically stable for this time-varying gradient feadk
if a persistent excitation condition on the outputs holds:
Assumption 1:For alli,j =1...k, i # j,

k

where the integral is taken on the tangent spaces (with fixed
Q). This means that vector field is the time average of
F. The image of state synchronization s€f under the

_ ) 1 [t T canonical projectionr is a single point which we denote by
M;; = lim % /_fyij(s)yii(s) ds p € M. For both vector fields, thanks to their equivariance
) . ) S on SO(n)k, pointp € M has the same stability properties as
exists and is strictly positive definite. setCs, C SO(n)*. Thusp is exponentially stable under.
Assumption 1 ensures that the system given by the averaggg M;;(t) = yi;(t)yi;(t)T and characterize the difference
agent dynamics (w.l.o.g. for= 1) between actual and averaged system by
PP S || skew(QT M ;Q;) — skew(QT My; (£)Q;)|I2
7Qi= Q; Zaij skew (Q; Mi;Q;) (6) vl v ’
J=1 A calculus argument shows that there is a positive contiauou
exists and that the whole relative-state space (i.e. aledim function ¢: R"*" — R such that, for(Qi,...,Qk) €

sions of theQTQ; variable,V i, 5) is actually observed by SO(n)",

integrating the output maps. The averaged system has the o

same convergence properties as the gradient system wiith ful || skew(Q7 M;Q;) — skew(Q7 M;;(1)Q;)

state observations introduced in [20]. < p(Myj — My;(t)) distp((Q1, ..., Qk), Cs)?,
Proposition 3: If the communication graph is connected,

then the state synchronization $&f is exponentially stable where dist; denotes the Euclidean distance Rf(">"),

I?

for the averaged system (6). Since M;;(t) belongs to a compact set for alle R, there
Proof: System (6) is a gradient system for the averagei$ a uniform upper bound; > 0 for ¢(M;; — M;;(t)), such
cost function (note that th€); do not depend o) that
t -
7(@15 cet Qk) = thm % f(Q17 R} Qka S)dS || SkeW(Q;FMZ]Q']) B SkeW(Q?MZ](t)Q])“Q
— 00 7t

<c diStE((Ql, . . ~7Qk‘)7os)2~

k
= Z aij [Mi;(Qi — Qj)|1*. Denoting the time-varying vector field (5) o8O(n)"
i,j=1 by Fso(Q1,...,Qk,t) and the averaged one (6) by



Fso(Q1,...,Qx), we have Feedback law (3) becomes

to k .
/ Fso(Q.....Qu) — Fso(Qu... .,Qk,wdtH < = 3 e shew((p; — )T QR (2 — )
t1 j=1 p ?

k to . . . .
y k TNLQ5) — sk T M (DO | dt Thanks to the invariance properties of the feedback law, it
2 aj/tl | skew(Q7 M35 Q;) = skew(Q7 My, (HQ5)] is implementable in body frame, i.e. without requiring a

k common inertial frame.
1/2 5. Simulation results of our output feedback control law on
< a;i(te —t1)cy’ " distg((Q1,-..,Qk), Cs ’ .
Z itz =t)ey =(@ ) Ce) SO(3) with k = 6 are represented on Figure 1. Interconnec-
B 1/2 . tion among agents is taken to be all-to-all. Initial oriditias
=#E e’ (t2 —t1) distp((Q1,..., Qk), Cs). Q:(0), i = 1...k, are independently randomly chosen in
Projecting fromSO(n)* to M we get SO(3). Eachlplot shows the time eyolution of the maximal
output error3[|Q7 yi; — QT yi;||* (faint red curve) and of
t2 . .
— . the maximal state errgfQ; — Q;| (thick blue curve) among
/t F(x) — F(m,t)dt” < #FEcy(tz —t1) dist(z,p) all agent pairs. Initial conditions are randomly chosenhia t

' ) ) ) _ whole state space (i.e. not restricted to a neighborhood of
where dist is now the Riemannian distance angl > 0 a synchronization).

suitable cons_tz_ant. Using local chgrts aroynave see now For Figure 1a, the y;; are defined by (7) with randomly
that the conditions of Theorem 3 in [2] hold for p&i’ ') independently chosefixed p;. Output synchronization is
and hence the time-varying systdfiz, dt) is asymptotically  qickly reached, but orientations (i.e. states) only cagpee
stable for' sufﬁugntly largé. A charjge of tlmescales yields towards each other very slowly. Note that defining by
asymptotic stability ofC; for the time-varying system (5) (7) |eads to a particular case where condition of Theorem 2

for sufficiently smalle. _ - B s never satisfied and locally exponential convergence fis no
One can give quantitative estimates for a sufficiently smaljaranteed.

¢ based on the averaging theory [2]. However, these rather, contrast, if they;; are not restricted by (7), i.e. not

technical issues are beyond the scope of this paper. relative positions, it appears that state synchronizatn
quickly reached fork > 4 fully connected agents; this is
illustrated on Figure b. with k¥ = 6 agents. Numerical
experiments indicate that the condition of Theorem 2 is
To illustrate our theory, we consider the problem ofgenerically satisfied fok > 6.
synchronizing theattitudes of £ rigid bodies which only Finally, Figure 1c again imposes (7) but with quasi-
measure relativgpositionsin body frame. This setting is periodically varying positionsp; = p;i(1 + cos(t)) +
proposed in [17]. pi2cos(0.3t) + pi3cos(0.7t) for randomly chosen
The attitude of each rigid body is given ly; € SO(3), Ppi1,pi2,pis € R®. State synchronization is recovered.
the transformation from the body fixed frame into an arbiNote that this observation is made with a reasonable
trary common inertial frame. In addition, the rigid bodiesfrequency for the time-varying;.
have positiong; (t), ..., px(t) € R?, which can be constant
or time-varying. If agent: is connected to agenj, it
observes, e.g. by an onboard camera, the direction of theln this paper we considered the problem of distributed
relative position ofj in its body fixed frame; this observation synchronization for agents whose states evolveSoh(n)

4,J=1

2,j=1

V. APPLICATION: ATTITUDE SYNCHRONIZATION FROM
RELATIVE POSITION MEASUREMENTS

VI. CONCLUSION

corresponds t@)? y;; where and which exchange only partial state information along
communications links. We proposed a gradient algorithm
yij = (v = pi)/llp; — pill- (") based on a cost function on the output space of the sys-

tem. For fixed output maps this algorithm locally converges
to the set of output synchronization states. We discussed
the relationship between output synchronization and state

from our initial setting; thus results that are generic ie th synchron!zat?on and gave a ;ufficient conditioq for OUtPUt
context of Sections Ill and IV are not necessarily generigynchron!zatlon t.o. coincide with state synchromzaﬂorlhm
here anymore. e_xponent_lal stability of the state synchronlzat!on setr Fo
Dynamics (1),%622- — Qyu, corresponds to assuming thattlme-varymg output maps, we used an averaging approach
control inputs are the angular velocitieg, ws, w? in body to prove that local convergence to the set of state synchro-
nization states is obtained with less communication links

Then i sends this information tgj, which itself sends
—Q]Tyij to 4; the sign is easily corrected. Note that (7)
introduces a linear dependence amongghethat is absent

frame, with o :
and weaker conditions on the instantaneous output map.
0 —wi wh The algorithm is illustrated on an attitude synchronizatio
u; = | wi 0 —wif. problem where agents exchange only their relative position

—wh Wi 0 observed in body frames.
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Fig. 1. Maximal output error (faint red) and state error (thidue) among pairs of agents applying (3) 8@ (3) for k = 6. a: Fixed y;; defined by

(7). b: Fixed y;; not restricted to (7)c: Time-varyingy;; defined by (7).
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