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Abstract— The nonlinear robust stability theory of Georgiou
and Smith (IEEE Trans. Auto. Control, 42(9):1200–1229, 1997)
is generalized to the case of notions of stability with bias terms.
An example from adaptive control illustrates non trivial ro bust
stability certificates for systems which the previous unbiased
theory could not establish a non-zero robust stability margin.
This treatment also shows that the BIBO robust stability results
for adaptive controllers in French (IEEE Trans. Auto. Contr ol,
53(2):461–478, 2008) can be refined to show preservation of
biased forms of stability under gap perturbations. In the
nonlinear setting, it also is shown that, in contrast to LTI
systems, the problem of minimizing nominal performance is not
equivalent to maximizing the robust stability margin.

1. INTRODUCTION

The fundamental nonlinear robust stability framework de-
veloped by Georgiou and Smith [8] considers the classical
closed loop system:

[P, C] :
y1 = Pu1, u2 = Cy2,
u0 = u1 + u2, y0 = y1 + y2,

(1.1)

as depicted in Figure 1, and develops a generalisation of the
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Fig. 1. The closed-loop[P, C].

linear gap metric and associated robust stability results on the
basis of a robust stability margin,bP,C , which is taken to be
the inverse of the induced norm of the closed loop operator
ΠP//C :

ΠP//C :

(

u0

y0

)

7→

(

u1

y1

)

. (1.2)

Under appropriate well posedness assumptions, the main
robust stability theorem states that if[P, C] is gain stable
(that is‖ΠP//C‖ < ∞), and if

δ(P, P1) < bP,C := ‖ΠP//C‖
−1 (1.3)

then [P1, C] is gain stable (‖ΠP1//C‖ < ∞). Hereδ denotes
the nonlinear gap metric, as described later in Section 3,
and is a notion of distance between plants which renders
typical unmodelled dynamics small: e.g. for linear plants,
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small multiplicative, inverse multiplicative, and co-prime fac-
tor perturbations are small in this sense, as are small time
delays to proper continuous time plants (here we think ofP
as the model, andP1 as the ‘real’ system).

To account for nonlinear gains, a regional version and a
gain function version of the robust stability theorem were also
given. All versions of the robust stability theorem assume that
the plant and the controller map zero inputs to zero outputs
(P (0) = 0, C(0) = 0) and that the closed loop operator
ΠP//C has an induced norm or a gain function.

However, there are important instances in which these
sufficient conditions for robust stability generically fail; and
yet for which robustness results should apply and for which,
to date, either relatively ad-hoc methods have been utilized
to establish robust stability, or no such robust stability cer-
tificates have been established. Many such systems can be
handled by developing a robust stability theory based on an
underlying notion of stability which includes bias terms; for
such notions of stability see [2], [10]. The first important
class of examples are systems whose response depends on
a non-zero initial condition, and which do not start at an
equilibrium, see [7] for an alternative biased approach to such
examples. The second class of systems are those for which
P (0) = 0, C(0) = 0 but whose closed loop operatorΠP,C is
discontinuous at0, thus precluding the existence of a (local)
finite gain. Most adaptive controllers fall within this category
[3]. A third class of examples includes systems which include
inherent offsets, arising e.g. from quantization errors, sensors
biases etc. Another such class of feedback systems include
high gain controller designs which attenuate the effects of
unknown nonlinearities by nonlinear high gain feedback, and
which do not cancel the effect of the nonlinearities.

In this paper, we take an important class of examples from
adaptive control to motivate the approach. In this setting,
the need for a bias does not arise from an offset from a
single specified trajectory, so the approach of [7] is not
applicable. For this class of adaptive controllers we interpret
the known BIBO robust stability results of [4] to provide
an interpretation based on biased stability. This approach
provides a much more satisfactory approach to the underlying
theory than the relatively ad-hoc techniques developed in
[4], and shows the stronger result that stability with bias is
preserved under sufficiently small gap perturbations.

The remainder of the paper is structured as follows. In
Section 2 we introduce the system theoretic setting and
notation. In Section 3 we introduce the gap metric and the
notions of the robust stability margin and nominal and robust
performance. Section 4 considers the motivating example
from adaptive control whereby it is shown that biases are
present. Section 5 establishes the main regional robust stabil-



ity result. In Section 6 we consider the result specialised to
the case of linear plants, before revisiting the adaptive control
theory in Section 7. In Section 8 we consider the special case
of global robust stability and the implications of the robust
stability result for the formulation of appropriate optimization
problems in nonlinear control design. We draw conclusions
in Section 9. Due to space consideration, some proofs are
omitted.

2. SYSTEMS

The material in this section is based on [4], [5], [6], [8].
Let T denote either the discrete half-axis time setN or the

continuous time counterpart,R+. For ω ∈ T ∪ {∞}, let Sω

denote the set of all locally integrable maps[0, ω) → X where
X is a nonempty set. For ease of notation defineS := S∞. For
τ ∈ T , ω ∈ T ∪{∞}, 0 < τ < ω define a truncation operator
Tτ : Sτ → S and a restriction operatorRτ : Sω → Sτ as
follows:

Tτv(t) =

{

v(t), t ∈ [0, τ)
0, otherwise

,

Rτv(t) = v(t), t ∈ [0, τ).

We defineV ⊂ S to be asignal spaceif, and only if, it
is a vector space. Suppose additionally thatV is a normed
vector space and that the norm‖ · ‖ = ‖ · ‖V is (also) defined
for signals of the formTτv, v ∈ Vτ , τ > 0. We can define a
norm‖·‖τ onSτ by ‖v‖τ = ‖Tτv‖, for v ∈ Sτ . We associate
spaces as follows:

• V [0, τ) = {v ∈ Sτ | v = Rτw, w ∈ V , ‖v‖τ < ∞}, the
interval space;

• Ve = {v ∈ S | ∀ τ > 0 : Rτv ∈ V [0, τ ]}, the extended
space;

• Vω = {v ∈ Sω | ∀ τ ∈ (0, ω) : Rτv ∈ V [0, τ)}, for 0 <
ω ≤ ∞; and

• Va =
⋃

ω∈(0,∞] Vω, the ambient space.

A signal spaceV is said to be truncation complete ifV [0, τ)
is complete for all0 < τ < ∞.

A mappingQ : Ua → Ya is said to becausal if for all
x, y ∈ Ua andτ ∈ dom(x) ∩ dom(y)

Rτx = Rτy ⇒ Rτ (Qx) = Rτ (Qy).

Let P : Ua → Ya and C : Ya → Ua be causal mappings
representing the plant and the controller, respectively and con-
sider the system of equations (1.1) corresponding to Figure
1. For w0 = (u0, y0)

T ∈ W := U × Y a pair (w1, w2) =
((u1, y1)

T , (u2, y2)
T ) ∈ Wa × Wa, Wa := Ua × Ya, is a

solution if, and only if, (1.1) holds ondom(w1, w2).
Let Xw0

:=
{

(w1, w2) ∈ W2
a | (w1, w2) solves (1.1)

}

be
the set of all solutions, which may be empty. The closed
loop system[P, C] is said to have theexistence property,
if Xw0

6= ∅ for all w0 ∈ W , and theuniqueness property,
if for all w0 ∈ W and (ŵ1, ŵ2), (w̃1, w̃2) ∈ Xw0

, we have
(ŵ1, ŵ2) = (w̃1, w̃2) on dom(ŵ1, ŵ2) ∩ dom(w̃1, w̃2).

Throughout the paper we assume that all closed loop
systems under consideration satisfy the uniqueness property
(but not necessarily the existence property).

For eachw0 ∈ W , define ωw0
∈ T ∪ {∞}, by the

property [0, ωw0
) :=

⋃

(ŵ1,ŵ2)∈Xw0
dom(ŵ1, ŵ2) and define

(w1, w2) ∈ Wa ×Wa, with dom(w1, w2) = [0, ωw0
), by the

propertyRt(w1, w2) ∈ Xw0
for all t ∈ [0, ωw0

). This induces
the operator

HP,C : W → Wa ×Wa, w0 7→ (w1, w2) .

For Ω ⊂ W the closed loop system[P, C] given by (1.1), is
said to be:

• locally well posed onΩ if, and only if, it has the
existence and uniqueness properties and the operator
HP,C

∣

∣

Ω
: Ω → Wa ×Wa, w0 7→ (w1, w2), is causal;

• globally well posed onΩ if, and only if, it is locally well
posed onΩ andHP,C(Ω) ⊂ We ×We.

For the plant operatorP and the controller operatorC
define thegraph GP of the plant and thegraph GC of the
controller, respectively, as follows:

GP :=

{(

u
Pu

) ∣

∣

∣

∣

u ∈ U , Pu ∈ Y

}

⊂ W ,

GC :=

{(

Cy
y

) ∣

∣

∣

∣

Cy ∈ U , y ∈ Y

}

⊂ W .

Next define the operators

ΠP//C : W → Wa, w0 7→ w1,

and
ΠC//P : W → Wa, w0 7→ w2.

Clearly,HP,C =
(

ΠP//C , ΠC//P

)

andΠP//C +ΠC//P = I.
For normed signal spacesX , V and Ω ⊂ X define the

following:

(i) A causal operatorQ : X → Va is calledgain stable on
Ω if, and only if, Q(Ω) ⊂ V , Q(0) = 0 and

∥

∥Q
∣

∣

Ω

∥

∥

X ,V
:= sup

τ>0, x∈Ω
Rτ x 6=0

‖RτQx‖τ

‖Rτx‖τ
< ∞ .

(ii) A causal operatorQ : X → Va is called (γ, β) gain
stable with bias onΩ if, and only if, Q(Ω) ⊂ V and

‖RτQx‖τ ≤ γ‖Rτx‖τ + β, ∀x ∈ Ω , τ > 0.

(iii) A causal operatorQ : X → Va is called gain stable
with uniform bias onΩ if, and only if, Q(Ω) ⊂ V and
there existsβ ≥ 0 such that for allR > 0 there exists
γ(R) > 0 such that:

‖RτQx‖τ ≤ γ(R)‖Rτx‖τ + β,

for all x ∈ Ω ∩ BR, τ > 0.
(iv) A causal operatorQ : X → Va is called gain-function

stable onΩ (or gf-stable onΩ) if, and only if,Q(Ω) ⊂ V
and the nonlineargain-function

g
[

Q
∣

∣

Ω

]

: (r0,∞) → [0,∞) ,

r 7→ g
[

Q
∣

∣

Ω

]

(r) := sup
x∈Ω,τ>0

‖Rτ x‖τ∈(r0,r]

‖RτQx‖τ ,

is defined, wherer0 := inf
x∈Ω

‖x‖X < ∞.

It is important to observe that in contrast to some treatments
of gain functions, we do not requireg[Q](0) = 0 (if r0 = 0).

Definition 2.1: Let R ≥ 0. A causal operatorF : X1 → X2

between normed spacesX1,X2 which is gain stable with



uniform bias is said to have gainγR[F ] and biasβR[F ]
defined as:

βR[F ] = inf







β ≥ 0

∣

∣

∣

∣

∣

∣

∃γ ≥ 0 such that
‖TτFx‖ ≤ γ‖Tτx‖ + β,
∀x ∈ X1 ∩ BR, ∀τ ≥ 0







,

γR[F ] = inf
ε>0

inf







γ ≥ 0

∣

∣

∣

∣

∣

∣

‖TτFx‖ ≤ γ‖Tτx‖
+βR[F ] + ε,

∀x ∈ X1 ∩ BR, τ ≥ 0







.

For normed signal spacesU , Y andW := U × Y and the
causal operatorP : Ua → Ya and C : Ya → Ua define the
following:

(i) The closed-loop system[P, C] given by (1.1) with the
associated operatorΠP//C : W → Wa is said to be
BIBO W-stableif, and only if, it is globally well posed
andHP,C(W) ⊂ W ×W.

(ii) Let Ω ⊂ W . The closed-loop system[P, C] given
by (1.1) with the associated operatorΠP//C : W → Wa

is said to begain stable (with (uniform) bias) onΩ if,
and only if, ΠP//C is gain stable (with (uniform) bias)
on Ω.

(iii) Let Ω ⊂ W . The closed-loop system[P, C] given
by (1.1) with the associated operatorΠP//C : W → Wa

is said to begain-function stable onΩ if, and only if,
ΠP//C is gain-function stable onΩ.

For all the above stability definitions, if an object is (gain)
stable (with bias) onΩ = W , then it is said to be globally
(gain) stable (with bias).

The notion of gain function stability and gain stability with
uniform bias as closely related as the following lemma shows:

Lemma 2.2:The following statements are equivalent:

1) [P, C] is gain function stable.
2) [P, C] is gain stable with uniform bias.

3. GAP DISTANCES AND ROBUST PERFORMANCE

MARGINS

Throughout this paper, our principal measure of perfor-
mance of a closed loop system[P, C] is given by:

AP,C(r) := sup
‖w0‖≤r

‖ΠP//Cw0‖.

Let Γ denote a set of causal operatorsUa → Ya corresponding
to the admissible plants. GivenP, P1 ∈ Γ and a distance
measure~δ : Γ × Γ → [0,∞], the robust stability margin is
defined as follows:

BP,C(r) = sup
{

ε > 0 |~δ(P, P1) < ǫ, AP1,C(r) < ∞
}

and the robust performance margin is defined to be:

ABP,C(r, η) = sup{ε > 0 | ~δ(P, P1) < ǫ,

AP1,C(r) ≤ (1 + η)AP,C(r)}

A. The Linear Gap

We letR(U ,Y) denote the set of linear operatorsP : Ue →
Ye specified by rational transfer functions.H∞ denotes the
Banach space of complex valued functions that are analytic
and bounded on the open half planeC+ with norm:‖f‖H∞ =
ess supω∈R

|f(jω)|. RH∞ is the subset ofH∞ consisting of
rational functions. The pairN, D ∈ RH∞ are said to be
normalized right co-prime factors overRH∞ of a transfer

function P , if P = ND−1 and N∗N + D∗D = I. The set
of all such(N, D) is denoted byNRCF(P ).

For the case ofΓ = R(L2(R+), L2(R+)), C ∈
R(L2(R+), L2(R+)) and we let~δ0 denote the directedH2

gap metric:

~δ0(P1, P2) = inf




∆N

∆D



∈∇

∥

∥

∥

∥

(

∆N

∆D

)∥

∥

∥

∥

H∞
. (3.1)

where∇ is the set of all

(

∆N

∆D

)

∈ RH∞ such thatP2 =

(N1 + ∆N )(D1 + ∆D)−1 and (N1, D1) ∈ NRCF(P1).
It is well known thatAP,C(r) = b−1

P,Cr, BP,C(r) = bP,C ,
wherebP,C = ‖ΠP//C‖

−1. If

~δ(P, P1) ≤ ε with ε ≤
ηbP,C

1 + bP,C + η
, η ≥ 0,

then

ε < bP,C and
1 + ε

1 − ε‖ΠP//C‖
≤ 1 + η.

By Theorem 1 of [8], we have

‖ΠP1//C‖ ≤
1 + ε

1 − ε‖ΠP//C‖
‖ΠP//C‖ ≤ (1 + η)‖ΠP//C‖.

This showsAP1,C(r) ≤ (1 + η)AP,C(r). Hence

ABP,C(r, η) ≥
ηbP,C

1 + bP,C + η
for all η, r ≥ 0. (3.2)

B. The Un-Biased Regional Nonlinear Gap

Let Γ denote the set of all causal operatorsUa → Ya.
GivenP1, P2 ∈ Γ and a subsetΩ ⊂ V of a complete normed
signal spaceV , define the (possibly empty) set

OΩ
P1,P2

:=







Φ

∣

∣

∣

∣

∣

∣

Φ: GP1
∩ Ω → GP2

is causal
and Rτ (Φ − I) is compact
for all τ > 0







, (3.3)

and the nonlinear directed gap [8]:

~δΩ(P1, P2) =

{

ℓ if OΩ
P1,P2

6= ∅ ,

∞ if OΩ
P1,P2

= ∅.
(3.4)

where

ℓ = inf
Φ∈OΩ

P1,P2

sup
x∈GP1

∩Ω, τ>0
Rτ x 6=0

‖Rτ (Φ − I)|GP1
x‖τ

‖Rτx‖τ
.

Various equivalent expressions for the (global) nonlineargap
can be found in [1], [9], including formulae based on non-
linear coprime factorisations closely related in form to (3.1).
TheL2(R+) nonlinear gap is a generalisation of the standard
definition of theH2 gap~δ0(·, ·) [8], [11], in the sense that if
P1, P2 ∈ R(L2(R+), L2(R+)), and either~δ0(P1, P2) < 1 or
~δ0(P2, P1) < 1, then it is shown in [7, Proposition 5] that if
Ω = BR := {w ∈ L2(R+) | ‖w‖L2(R+) ≤ R}, R > 0, then
~δ0(P1, P2) = ~δΩ(P1, P2).

For nonlinear systems, we haveAP,C(r) ≤ ‖ΠP//C |Br
‖r.

However, in contrast to the linear setting, the robust stability
margin is also in general dependent on the disturbance level



r > 0, and the parallel projection gain only provides a lower
bound:

BP,C(r) ≥

(

sup
0<‖(u0,y0)‖≤R

‖ΠP//C(u0, y0)‖

‖(u0, y0)‖

)−1

=: ‖ΠP//C |BR
‖−1, (3.5)

for some appropriate choice ofR > r see [8]. Furthermore,
neither reverse inequality necessarily hold. So the robustper-
formance marginABP,C(r, η) for general nonlinear systems
cannot be estimated as simply as in the linear system case.
However, if AP,C(r) satisfies certain growth assumptions,
then we are still able to estimateABP,C(r, η) as shown in
the following lemma.

Lemma 3.1:Suppose that 1) forr > 0 and ε ∈
(0, ‖ΠP//C |Ω‖

−1), there existsR ≥ r such that

BR ⊂ Ω and ‖ΠP//C |BR
‖ ≤

R − r

Rε
;

2) there exists a functionf : [0,∞)× (1,∞) → [0,∞) such
that

AP,C(kr) ≤ f(r, k)AP,C(r) for k, r ≥ 0. (3.6)

Then

ABP,C(r, η) ≥

sup
ε>0

{

(1 + ε)f

(

r,
1

1 − ε‖ΠP//C |BR
‖

)

≤ 1 + η

}

. (3.7)

Note that for linear systems, assumptions 1) and 2) are
satisfied withR = 1/(1 − ε‖ΠP//C‖) andf(r, k) = k, and
inequality (3.7) reduce to inequality (3.2).

It follows that the minimization of‖ΠP//C |Br
‖ remains,

as in the LTI case, a sensible design objective, since a small
‖ΠP//C |Br

‖ ensures both a good robust stability margin and
good nominal performance. However, as we will see next, it
is not always possible to achieve‖ΠP//C |BR

‖ < ∞, even
when a sensible robust stability margin should exist.

4. A MOTIVATING EXAMPLE

The potential lack of tightness of the lower bound (3.5) is
not pathological [3], [4]; many adaptive controllers have the
property

BP,C(r) > 0 for all r ≥ 0 (4.1)

whilst

sup
‖u0,y0‖≤r

(

‖ΠP//C(u0, y0)‖

‖(u0, y0)‖

)

= ∞ for all r > 0. (4.2)

This arises due to a problem with small signal behaviour,
where whilst ΠP//C(0) = 0, the operatorΠP//C is not
continuous at0 – which precludes the existence of a ‘local
finite gain’.

An explicit example of this (in anL2 setting) is given by
the plant

P (θ)(u1) = y1 where ẏ1 = θy1 + u1 y1(0) = 0, (4.3)

with θ > 0 and the controller:

C(y2)(t) = u2(t)

u2(t) = −k(t)
1
4 y2(t)

k̇(t) = y2
2 . (4.4)

It has been shown that this closed loop is BIBO stable in
an L2(R+) setting, see [4]. Clearlyu0 = y0 = 0 implies
u1, y1 = 0, ie. ΠP//C(0) = 0, but for any disturbance
(arbitrarily small) which movesy1 6= 0, the system is unstable
unless there exists a time at whichk(t) ≥ θ4, ie.‖y2‖L2[0,t] ≥
θ2. Hence for allǫ > 0, ∃u0, y0, ‖(u0, y0)‖ ≤ ǫ

‖ΠC//P ‖ ≥
‖(u2, y2)

T ‖

‖(u0, y0)T ‖
≥

θ2

ǫ
→ ∞ as ǫ → 0.

Hence ‖ΠP//C‖ = ∞, and this is caused by a lack of
continuity at0.

However, let us first note that this discontinuity is addressed
in [4] by appendingθ onto the input space, for then an
inequality of the form:

‖(u1, y1, θ)‖U×Y×R ≤ g(‖(u0, y0)‖U×Y , |θ|), (4.5)

was constructed, and from this it was shown in [4] that
BP (θ),C(r) > 0, ie. we have a non zero but disturbance
dependent robustness margin. Hence both (4.1) and (4.2) hold.

Similar conclusions apply if we take the more standard
adaptive controller withu2(t) = −k(t)y2(t) in (4.4), since
an inequality of the form (4.5) was established in [6], from
which the construction of [4] similarly yieldsBP (θ),C(r) > 0.
Similar conclusions also hold in a MIMO setting [6].

5. REGIONAL ROBUST STABILITY

In the context of a notion of stability with bias, it is natural
to adopt this notion of stability to assess the ‘gap’ between
the graphs ofP andP1. Hence forΩ ⊂ W define the set:

~∆(P1, P2;Ω) =
{

(~δ, ~σ) ∈ R
2
+ : ∃Φ ∈ OΩ

P1,P2
s.t.

‖Rτ (I − Φ)x‖ ≤ ~δ‖x‖τ + ~σ, ∀x ∈ GP1
∩ Ω

}

whereOΩ
P1,P2

is given by (3.3). Thus the set~∆(P1, P2; Ω)
consists of all possible gains and biases which describe the
deviation from the identity of mapsΦ between the graphs
of P and P1 restricted toΩ. In contrast to the nonlinear
gap (3.4), there are now two parameters~δ, ~σ describing this
‘gap’, and there is no natural way to reduce this to a single
distance measure. Since there are different ways of defining
a distance measure, see Section 6 below, we elect to present
the main regional robust stability result without making such
choices, i.e. the description of the ‘gap’ betweenP1 andP2

remains described by the two dimensional set∆(P1, P2; Ω)
of all possible gains and biases.

In the rest of this paper, unless specified otherwise, we
always letU , Y be truncation complete normed signal spaces,
let W = U × Y, and suppose that for allτ > 0, there exists
a continuous mappingEτ : W [0, τ ] → W such that

Rτx = Rτ (Eτx), for all x ∈ W [0, τ).

An operatorQ : W → W is said to berelatively continuous
if for all τ > 0 and for all operatorsΨ : W → W with RτΨ
compact, the operatorRτΨQ : W → W [0, τ) is continuous.

Theorem 5.1:ConsiderP : Ua → Ya, P1 : Ua → Ya and
C : Ya → Ua. Let R > 0, 0 < ǫ < 1. Suppose(~δ, ~σ), (γ, β) ∈
R

2
+ are such that:

(~δ, ~σ) ∈ ∆(P, P1; Ω)



where Ω = B
(

γ ρ(ǫR)
ǫ + β

)

⊂ W , ρ(R) = R + ~σ + ~δβ,

[P, C] is (γ, β) gain stable with bias onB
(

ρ(ǫR)
ǫ

)

⊂ W and

ΠP,C is relatively continuous. If[P1, C] has the uniqueness
property and

~δγ < 1 − ǫ (5.1)

then the closed-loop system[P1, C] is (γ1, β1) gain stable
with bias onB(ǫR) and

γ1 = γ
1 + ~δ

ǫ
, β1 = β +

(

~σ + ~δβ
)

(

1 + γ
1 + ~δ

ǫ

)

.

We remark that if the operatorRτΦ used to defineQw is
locally incrementally stable, i.e.

sup
Rτ w1 6=Rτ w2

‖Rτ w1‖,‖Rτ w2‖≤r

‖RτΦw1 − RτΦw1‖τ

‖Rτw1 − Rτw2‖τ
< ∞,

then the relative continuity requirement forΠP,C can be
replaced by thatRτΠP,C is continuous.

6. ROBUST STABILITY AND PERFORMANCE

We have already observed that in Theorem 5.1 the set
∆(P, P1; Ω) ⊂ R2

+ plays the role of the gap distance in the
unbiased robust stability theorem, and that as a 2-dimensional
description of the ‘gap’ betweenP andP1, it does not define
a distance between the two plants. Some possible scalar
measures are:

1) Gap defined with respect to the smallest gain:

~δR(P1, P2)

= inf
{

~δ ≥ 0 | ∃~β s.t. (~δ, ~β) ∈ ~∆(P1, P2; BR)
}

.

Correspondingly we define the bias:

~βR(P1, P2) = inf
{

~β ≥ 0 | ∃~β s.t.

(~δR(P1, P2), ~β) ∈ ~∆(P1, P2; BR)
}

.

2) Gap defined with respect to the smallest bias:

~δR(P1, P2) = inf
{

~δ ≥ 0 | (~δ, ~βR) ∈ ~∆(P1, P2; BR)
}

where

~βR = inf
{

~β ≥ 0 | ∃~δ s.t. (~δ, ~β) ∈ ~∆(P1, P2; BR)
}

.

3) Gap defined at a given bias level~β > 0:

~δR(P1, P2) = inf
{

~δ ≥ 0 | (~δ, ~β) ∈ ~∆(P1, P2; BR)
}

.

Note that~δR(P1, P2) at bias levelβ = 0 recovers the
nonlinear gap (3.4).

We now specialize to the case where the gap between
the plant can be described without biases as in (3.4), which
incorporates the case of linear plants inR(L2(R+), L2(R+)).
That is, in the following,~δ is given by (3.4) withΩ = W .
This is a special case of both 2. and 3. above. This special
case is important for the adaptive control setting considered
in sections 4 and 7, where the plant is linear, hence the gap
can be measured by~δ0, and the bias arises from the nonlinear
controller. As theP and P1 do have a finite nonlinear gap
then this coincides with the distance measure in 2. above,

whilst in relation to case 3. we are just considering the gap
at bias level0.

Corollary 6.1: Suppose[P, C] is (γ(·), β) gain stable with
uniform bias andΠP//C is relatively continuous. Let0 < ǫ <
1. If [P1, C] has the uniqueness property and

~δ(P, P1)γ

(

R + ~δ(P, P1)β

ǫ

)

< 1 − ǫ (6.1)

then the closed-loop system[P1, C] is (γ1(R), β1) gain stable
with bias onB(R) where:

γ1(R) = γ

(

R + ~δ(P, P1)β

ǫ

)(

1 + ~δ(P, P1)

ǫ

)

,

β1 = β(1 + ~δ(P, P1)βµ) with

µ = 1 + γ

(

R + ~δ(P, P1)β

ǫ

)

1 + ~δ(P, P1)

ǫ
.

Corollary 6.2: ConsiderP, P1 ∈ R(U ,Y). Suppose[P, C]
is (γ(·), β) gain stable with uniform bias. Then:

BP,C(R) ≥ sup
ǫ∈(0,1)

{

r > 0

∣

∣

∣

∣

rγ

(

R + rβ

ǫ

)

< 1 − ǫ

}

.

Corollary 6.3: Suppose[P, C] is (γ(·), β) gain stable with
uniform bias andΠP//C is relatively continuous. Suppose
that

1) for r > 0 and ε ∈
(

0, BP,C(r)
)

, there existsR such
that

r + ε(γ(R)R + β) ≤ R;

2) there exists a functionf : [0,∞) × (1,∞) × (1,∞) →
[0,∞) such that for allr ≥ 0, k1, k2 ≥ 1

AP,C(k1r + k2) ≤ f(r, k1, k2)AP,C(r).

Then

ABP,C(r, η) ≥ sup{ε ≥ 0 : ε satisfies (6.2) below},

(1 + ε)f

(

r,
1

1 − εγ(R)
,

εβ

1 − εγ(R)

)

≤ 1 + η. (6.2)

If 2) is replaced by
2’) r 7→ r−ε(γ(r)r+β) is invertible with a non-decreasing

inversehε,β(r) and there exists a functiong : R
3
+ → [0,∞)

such that for allr ≥ 0

AP,C(hε,β(r)) ≤ g(r, ε, β)AP,C(r)

Then

ABP,C(r, η) ≥ sup{ε ≥ 0 : (1 + ε)g(r, ε, β) ≤ 1 + η}.

7. ROBUST STABILITY FOR ADAPTIVE CONTROL

Let us consider the adaptive controller (4.4) from Section
4.

From [4] it is known that this controller has closed loop
stability properties for minimum phase, relative degree one
linear plants with possible high frequency, in particular any
plant of the form (4.3) forθ ∈ R.

In particular, it was shown in [4] that there exists a
continuous functiong : R2

+ → R+ such that (4.5) holds, and
it was further shown that BIBO stability was preserved for
sufficiently small gap perturbations ofP (θ).



We now show that in fact gain stability with uniform bias
is preserved for sufficiently small gap perturbations ofP (θ).
The explicit inequality (4.5) in [4] can be rearranged to see
that for fixedθ, ΠP (θ)//C is gain stable with uniform bias:

‖ΠP (θ)//Cw0‖ ≤ γ(‖w0‖)‖w0‖ + β. (7.1)

It now follows from Corollary 6.1 that gain stability with uni-
form bias is preserved for sufficiently small gap perturbations
of P (θ) given by inequality (6.1).BP,C(r), ABP,C(r) can be
obtained from Corollaries 6.2 and 6.3. As in Section 4, similar
conclusions apply (also in the MIMO setting) if we take the
more standard adaptive controller withu2(t) = −k(t)y2(t)
in (4.4), since an inequality of the form (4.5) was also
established in [6].

8. GLOBAL ROBUST STABILITY

By applying Theorem 5.1 in a global setting we obtain the
following global result:

Theorem 8.1:ConsiderP : Ua → Ya, P1 : Ua → Ya and
C : Ya → Ua. Suppose(~δ, ~σ) ∈ ∆(P, P1;W), [P, C] is
(γ, β) gain stable with bias onW and ΠP//C is relatively
continuous. If[P1, C] has the uniqueness property and~δγ <
1−ǫ for someε ∈ (0, 1), then the closed-loop system[P1, C]
is (γ1, β) gain stable with bias onW and

γ1 = γ
1 + ~δ

ǫ
, β1 = β +

(

~σ + ~δβ
)

(

1 + γ
1 + ~δ

ǫ

)

.

We remark that in contrast to the approach to derive the (un-
biased) global results in [8], here we impose a compactness
requirement in the definition ofOW

P1,P2
. In turn this stronger

requirement on the mapsΦ results in substantially weaker
assumptions on[P1, C]. In [8] it was required that[P1, C] was
globally well posed, and e.g. in [5] the alternative requirement
of regularly well posed was used. Here, the only requirement
is that[P1, C] satisfies the uniqueness property. This is weaker
than either the assumption of global or regular well posedness,
and is often straightforward to verify (in contrast to the
existence property of well posedness assumptions which is
often hard to verify a-priori).

9. CONCLUDING REMARKS

We have presented a generalisation to the nonlinear robust
stability theory of Georgiou and Smith [8] which allows a
notion of stability with bias terms. This approach contrasts to
the alternative biased approach of [7] as it does not measure
the gain w.r.t. a single offset ‘bias’ trajectory, and is applicable
in situations where the need for a bias arises for other reasons,
e.g. from a lack of continuity ofΠP//C at 0 as in the adaptive
control example. This extension is significant for the provision
of robust stability certificates for the many nonlinear systems
for which no induced gain exists, and yet robust stability
guarantees can still be given. We have illustrated this by an
example from adaptive control where an induced gain does
not exist.

We now draw attention to an significant difference between
the nonlinear biased setting and the linear unbiased case. An
important feature of the standard robust stability theory for
LTI systems, is that the problem of maximizing the robust
stability marginBP,C(r) is equivalent to minimizing the nom-
inal performanceAP,C(r), sinceBP,C(r) = ‖ΠP//C‖−1 =

rA−1
P,C(r). Not only is this optimization tractable (in the

L2 setting minimizing‖ΠP//C‖
−1 forms the standardH∞

problem), but it shows that optimizing nominal performance
and the robust stability margin is equivalent.

This equivalence breaks down in the global nonlinear
biased setting, as one can see that the robust stability margin
BP,C(r) is maximised by minimising the nominal closed loop
gain γ[ΠP//C ], whereas the nominal performance,AP,C(r),
is a function of both the gain γ[ΠP//C ] and the bias
β[ΠP//C ]. Thus optimizing the robust stability margin, i.e. by
minimizing the gain term, will produce sub-optimal nominal
performance. We can therefore conclude that robust stability
and (nominal) performance constraints must both be specified
in any sensible optimization.

Similar reasoning does not directly apply in the regional
setting, since the situation is more complex: the bias deter-
mines the region over which the gain in computed, and hence
the bias does affect the robust stability margin. However it
is clear that the resulting optimizations are different, and
hence the conclusion that nominal performance and robust
stability margin optimization differ still holds. Thus any
sensible formulation of an optimal robust design in this setting
must independently specify requirements forboth nominal
performance and robust stability margins.
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