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Abstract— The nonlinear robust stability theory of Georgiou  small multiplicative, inverse multiplicative, and co-pr fac-
and Smith (IEEE Trans. Auto. Control, 42(9):1200-1229, 199)  tor perturbations are small in this sense, as are small time

is generalized to the case of notions of stability with biaserms. delays to proper continuous time plants (here we thin#of
An example from adaptive control illustrates non trivial ro bust . ,
as the model, an@,; as the ‘real’ system).

stability certificates for systems which the previous unbiaed i ; : )
theory could not establish a non-zero robust stability mardn. To account for nonlinear gains, a regional version and a
This treatment also shows that the BIBO robust stability resilts  gain function version of the robust stability theorem wdsma
for adaptive controllers in French (IEEE Trans. Auto. Control,  gjven. All versions of the robust stability theorem assuhat t
53(2):461-478, 2008) can be refined to show preservation of he plant and the controller map zero inputs to zero outputs

biased forms of stability under gap perturbations. In the - B
nonlinear setting, it also is shown that, in contrast to LTI (P(0) = 0, C(0) = 0) and that the closed loop operator

systems, the problem of minimizing nominal performance is ot 11p//c has an induced norm or a gain functi(?n. _
equivalent to maximizing the robust stability margin. However, there are important instances in which these

sufficient conditions for robust stability generically Ifeand
yet for which robustness results should apply and for which,
The fundamental nonlinear robust stability framework deto date, either relatively ad-hoc methods have been uiilize
veloped by Georgiou and Smith [8] considers the classic#& establish robust stability, or no such robust stabiligy-c
closed loop system: tificates have been established. Many such systems can be
handled by developing a robust stability theory based on an
(1.1) underlying notion of stability which includes bias termer f
such notions of stability see [2], [10]. The first important
as depicted in Figure 1, and develops a generalisation of thiass of examples are systems whose response depends on
a non-zero initial condition, and which do not start at an
equilibrium, see [7] for an alternative biased approachuths

1. INTRODUCTION

y1 = Puy, ug = Cypo,

PC
[ ) Up = U1 + U2, Yo =Y1 + Y2,

+ W — 1 examples. The second class of systems are those for which
o Q— P P(0) =0, C(0) = 0 but whose closed loop operatfp, ¢ is
T _l discontinuous a0, thus precluding the existence of a (local)
C O Yo finite ga_in. Most adaptive conf[rollers fall within thig cgl_:ey
Ug Y2+ [3]. A third class of examples includes systems which inelud

inherent offsets, arising e.g. from quantization erroessers
biases etc. Another such class of feedback systems include
high gain controller designs which attenuate the effects of
unknown nonlinearities by nonlinear high gain feedbacki an
linear gap metric and associated robust stability resultthe ~ which do not cancel the effect of the nonlinearities.

basis of a robust stability margihp ¢, which is taken to be  In this paper, we take an important class of examples from
the inverse of the induced norm of the closed loop operat@daptive control to motivate the approach. In this setting,

Fig. 1. The closed-loopP, C1].

pyc: the need for a bias does not arise from an offset from a
o uy single specified trajectory, so the approach of [7] is not
pyc: 0 = vy ) (1.2) applicable. For this class of adaptive controllers we mter

the known BIBO robust stability results of [4] to provide
e interpretation based on biased stability. This approach
provides a much more satisfactory approach to the underlyin
theory than the relatively ad-hoc technigques developed in

8(P,P) < bpc = |py el (1.3) [4], and shows the stronger result that stability .With bigs i

preserved under sufficiently small gap perturbations.
then [Py, C] is gain stable|(Ilp, /¢ || < c0). Hered denotes  The remainder of the paper is structured as follows. In
the nonlinear gap metric, as described later in Section 8ection 2 we introduce the system theoretic setting and
and is a notion of distance between plants which rendeftation. In Section 3 we introduce the gap metric and the
typical unmodelled dynamics small: e.g. for linear plantspotions of the robust stability margin and nominal and robus
. . N performance. Section 4 considers the motivating example
School of Electronics and Computer Science University aftSampton, . L .

Southampton SO17 1BJ, United Kingdonb@cs. sot on. ac. uk, ~ [rom adaptive control whereby it is shown that biases are

nmcf @cs. sot on. ac. uk present. Section 5 establishes the main regional robust-sta

Under appropriate well posedness assumptions, the m
robust stability theorem states that [iP, C] is gain stable
(that is ||TIp/ /|| < oc), and if



ity result. In Section 6 we consider the result specialised tpropertyR; (w1, ws2) € Xy, for all ¢ € [0, w,, ). This induces
the case of linear plants, before revisiting the adaptiverob the operator

theory in Section 7. In Section 8 we consider the special case
of global robust stability and the implications of the robus Hpc : W = Wa xWa, wo > (wr,w2).

stability result for the formulation of appropriate optiration  For () c W the closed loop systeriP, C] given by (1.1), is
problems in nonlinear control design. We draw conclusionggid to be:

in Section 9. Due to space consideration, some proofs are,

- locally well posed onf) if, and only if, it has the
omitted.

existence and uniqueness properties and the operator
2. SYSTEMS Hp7c‘Q Q- W, x W,, wo — (wl,wg), is causal;

The material in this section is based on [4], [5], [6], [8]. ° globally well posed of? if, and only if, it is locally well
Let 7 denote either the discrete half-axis time Keor the posed o2 and Hp.c(£2) C We x We.
continuous time counterpaik.,. Forw € 7 U {oc}, let S,, Fpr the plant operato and the controller operataf
denote the set of all locally integrable mdpsw) — X where define thegraph Gp of the plant and thegraph Go of the
X is a nonempty set. For ease of notation define- S... For ~ controller, respectively, as follows:

T€T,we TU{x}, 0 <7 < w define a truncation operator u
T, : S, — S and a restriction operataR, : S, — S, as P = { (P ) u€lU, Pue y} cw,
follows: .
Too(t) = v(t), te€][0,7) gc:_{< y) C’yeu,yey}CW.
T 0, otherwise ’ y
Roo(t) =v(t), telo,7). Next define the operators
We definey C S to be asignal spacef, and only if, it HOp/jc: W — Wa, wo — wr,
is a vector space. Suppose additionally tivats a normed
vector space and that the notm| = || - || is (also) defined

; . II W =W, .
for signals of the formil’.v, v € V,, 7 > 0. We can define a c//P - oz

norm||-||; onS; by ||v|l- = ||T-v||, forv € S;. We associate Clearly, Hpc = (Hp//c,HC//P) andIlp;/c +c/p = 1.

spaces as follows: For normed signal space¥, V and Q2 C X define the
e V[0,7) = {v eS8 |v=Rw, weV,]|v|, < oo}, the following:
interval space (i) A causal operator): X — V), is calledgain stable on
e Ve ={ve8S|Vr>0: RveV[0,r7]}, the extended Q if, and only if, Q(Q) Cc V, Q(0) =0 and
e | R, Qe
eV, ={vesS,|VTre(0,w): RrveV[0,7)}, for0 < ||Q|QHXV:: sup < 00
w < oo; and ' >0, ;%Q IR~

o Va = Uae(0,00] Vo the ambient space
A signal spac#’ is said to be truncation completelif{0, )
is complete for all0 < 7 < .

A mapping@: U, — Y, is said to becausalif for all IR Qx| < ~|Rrz|| + 8, VYzreQ, 7>0.
x,y € U, andr € dom(z) N dom(y)

(i) A causal operatorQ: X — V, is called (vy,3) gain
stable with bias o} if, and only if, Q(Q) C V and

(i) A causal operatorQ: X — V, is called gain stable
Rz = Ry = R.(Qz) = R, (Qy). with uniform bias onQ if, and only if, Q(Q) ¢ V and
there exists3 > 0 such that for allR > 0 there exists

Let P : U, ., andC : Y, U, be causal mappings
Y Yo — PPINg ~v(R) > 0 such that:

representing the plant and the controller, respectivetycam-

sider the system of equations (1.1) corresponding to Figure IR, Qx| < ~v(R)|R.x|~ + B,

1. Forwg = (ug,y0)T € W :=U x Y a pair (w1, ws) =

((u1,51)7, (u2,42)7) € Wa X Wa, Wy i= Uy x Vo, is @ forallz €e QN Bg, 7 > 0. . _ _

solution if, and only if, (1.1) holds odom (w:, ws). (iv) A causal operato): X — V, is called gain-function
Let Xy, = { (w1, w2) € W2 | (w1, ws) solves (1.1) be stable o2 (or gf-stable o) if, and only if, Q(Q2) C V

the set of all solutions, which may be empty. The closed and the nonlineagain-function
loop system[P,C] is said to have thexistence property

if Xy, # 0 for all wy € W, and theuniqueness property 9[Qlg] : (ro,00) = 10,00),
if for all wy € W and (i, wy), (1, W2) € Xy, We have r—glQ|y] (r) = sup  [|R-Qxl|-,
(12)1,’(2)2) = (12)1, 1D2) on dOIn(’LZ)l,’LDQ) N dOIn(’LZ)l,’LDQ). ||Rfseﬁﬁ2,j7€—(>r?)7]

Throughout the paper we assume that all closed loop , )
systems under consideration satisfy the uniqueness pyoper IS defined, wherey := inf [][x < oo
(but not necessarily the existence property). It is important to observe that in contrast to some treatment
For eachwy € W, definew,, € 7 U {oc}, by the of gain functions, we do not requirdQ](0) = 0 (if 7o = 0).
property [0, ww,) = U, 0,)ex,, dom(di,w2) and define  Definition 2.1: Let R > 0. A causal operatoF: X; — &
(w1, w2) € Wy X Wy, with dom(wq, we) = [0, w.,), by the between normed space¥;, X> which is gain stable with



uniform bias is said to have gaifg[F] and bias3g[F] function P, if P = ND~! and N*N + D*D = I. The set

defined as: of all such(N, D) is denoted byNRCF(P).
3y > 0 such that For the case ofl = R(J;Q(IR{+),L2(R+))_, C €
BrlF] =inf{ 8> 0| |[T,Fz| < |Trz| + B8, v, R(LQ(R+_),L2(R+)) and we letd, denote the directed!,
Vaz € X, N Bg, Y7 >0 gap metric:
| T-Fal| < || T-| 2 . . An
Yr[F] = inf inf {7 > 0 +Br[F] +¢, 7. do(P1, P2) = Amf Ap )|l (3-1)
= Vz € XyNBr, 7>0 AN>6V
For normed signal spacés, ¥ andW :=U x ) and the D
causal operatoP: U, — Y, andC: Y, — U, define the A
following: whereV is the set of all AN € RH™ such thatP, =
. . . D
(i) The closed-loop systerfi, C] given by (1.1) with the (7, 4+ A\ )(D; + Ap)~! and (N;, Dy) € NRCF(P,).
associated operatdip,;c: W — W, is said to be It is well known thatAp o (r) = 513_,107”’ Bpo(r) = bpe,

BIBO W-stableif, and only if, it is globally well posed
andHpc(W) C W x W.
(i) Let Q@ C W. The closed-loop systemiP, C| given 2 nbp,c

wherebpc = [[p /|7t If

. . (PP )<e withe< ———=— n>0,
by (1.1) with the associated operaldp,,c: W — W, 1+bpc+n
is said to begain stable (with (uniform) bias) of if,

. : . . . . then
and only if, ITp, ¢ is gain stable (with (uniform) bias) 14¢
on (. e<bpc andil—s”l‘[ H <140.

(i) Let © C W. The closed-loop systemP, C] given ple
by (1.1) with the associated operaidp,,: W — W, By Theorem 1 of [8], we have
is said to begain-function stable orf) if, and only if, 14+¢
. : : < - - < .

IIp//c is gain-function stable of. IMp, /el < 1—¢[[Tp) el ey el < (1 +n)Hpcll

For all the above stability definitions, if an object is (dain

stable (with bias) o2 = W, then it is said to be globally This showsAp, ¢(r) < (1+n)Apc(r). Hence

(gain) stable (with bias). nbp.c
The notion of gain function stability and gain stability tit ABpc(rn) 2 +————
; ) . 1+bpc+n

uniform bias as closely related as the following lemma shows _ _ _
Lemma 2.2:The following statements are equivalent: ~ B. The Un-Biased Regional Nonlinear Gap

1) [P, C] is gain function stable. Let I' denote the set of all causal operatdfs — V,.
2) [P,C] is gain stable with uniform bias. Given P, P, € T and a subse® c V of a complete normed
signal space’, define the (possibly empty) set

for all n,r > 0. (3.2)

3. GAP DISTANCES AND ROBUST PERFORMANCE
MARGINS ®: Gp, NQ) — Gp, is causal
, (3.3)

Throughout this paper, our principal measure of perfor- Op, p, = { ®| and R.(® — I) is compact

mance of a closed loop systeR, C] is given by: for all 7 > 0
Apc(r) == sup |[[Ip; cwoll. and the nonlinear directed gap [8]:
wo || <r . . , " 0%1 N # 7
LetI" denote a set of causal operattfs— ), corresponding oo (P1, Pp) = 0o if 0%1:1:’2 = 0. (3.4)

to the a@missible plants. GiveR, P, € T' and a distance
measures: I' x I' — [0, <], the robust stability margin is where

defined as follows: |R-(® —1I)|gp x|+
- {= inf sup !
BP,C(T) = sup {6 >0 | 5(Pa Pl) <€, AP1,C(T) < OO} @EO%I)P2 z€Gp, NQ, 7>0 ”RT:EHT
R,x#0

and the robust performance margin is defined to be:

-

Various equivalent expressions for the (global) nonlirgssw

ABpc(r,n) =sup{e > 0| d(P,P) < e, can be found in [1], [9], including formulae based on non-
linear coprime factorisations closely related in form tol§3
A < (1 A
po(r) < (L+m)Apo(r)} The L?(R, ) nonlinear gap is a generalisation of the standard
A. The Linear Gap definition of theH, gapdo(-,-) [8], [11], in the sense that if

We letR (4, ) denote the set of linear operatdes i/, — P, P> € R(L?*(R+), L*(R+)), and eitherdo (P, ) < 1 or
V. specified by rational transfer function&> denotes the do(FP2, 1) < 1, then it is shown in [7, Proposition 5] that if
Banach space of complex valued functions that are analyi¢ = Br = {w € L*(R4) | [|w]r2r,) < R}, R > 0, then
and bounded on the open half plafie with norm:|| f|l3~ =  00(P1, P2) = da(P1, Ps).
esssup,,cp | f(jw)|. RH™ is the subset 0#{*> consisting of For nonlinear systems, we havir ¢ (r) < [[Ilp/,c|B, ||r.
rational functions. The pailV,D € RH™ are said to be However, in contrast to the linear setting, the robust 8tgbi
normalized right co-prime factors ovéR H*° of a transfer margin is also in general dependent on the disturbance level



r > 0, and the parallel projection gain only provides a lower It has been shown that this closed loop is BIBO stable in

bound: an L?(R,) setting, see [4]. Clearly,y = yo = 0 implies
I -1 up,y1 = 0, ie. Ilp/,c(0) = 0, but for any disturbance
Bpo(r) > sup M (arbitrarily small) which moves; # 0, the system is unstable
o<owo)l<k (10, %0)ll unless there exists a time at whikft) > 64, ie. ||yz|| 20,4 >
= |TpyclBal ™ (3.5) 6°. Hence for alle > 0, Juo, yo, ||(u0,y0)|\ <e
for_ some appropriate c.hoice at > T see [8]. Furthermore, e, Pl > ||(UQ,y2) || >2 5 ase— 0.
neither reverse inequality necessarily hold. So the ropeist 1 (uo, yo) T ||
formance margimdBp ¢ (r,n) for general nonlinear systems Hence |IIp,,¢|| = oo, and this is caused by a lack of

cannot be estimated as simply as in the linear system cag@ntiny
However, if Apc(r) satisfies certain growth assumptions,
then we are still able to estimatéBp (r,n) as shown in
the following lemma.

Lemma 3.1:Suppose that 1) forr > 0 and ¢

ity ato.

However, let us first note that this discontinuity is addeelss
in [4] by appendingf onto the input space, for then an
inequality of the form:

(0,|Tp)/clal 1), there existsR > r such that (w1, 1, O)luxyxr < g([l (wo, yo)luxy,160]),  (4.5)
R—r was constructed, and from this it was shown in [4] that
B Q and |II < : i .
" C Iy /sl Re '’ Bp),c(r) > 0, ie. we have a non zero but disturbance

2) there exists a functioff : [0, c0) x (1,00) — [0, 00) such dependent robustness margin. Hence both (4.1) and (4 &) hol
that Similar conclusions apply if we take the more standard
adaptive controller withus(t) = —k(¢)y2(¢) in (4.4), since
Apc(kr) < f(r,k)Apc(r) fork,r > 0. (3:6)  an inequality of the form (4.5) was established in [6], from
Then which the construction of [4] similarly yieldB p ) o (r) > 0.

Similar conclusions also hold in a MIMO setting [6].
ABpc(r,n) >
1 5. REGIONAL ROBUST STABILITY

Sub {(1 T E)f(r 1_ €||HP//c|BR|> 1+ ’7} (3.7) In the context of a notion of stability with bias, it is natura
Note that for linear systems, assumptions 1) and 2) ate adopt this notion of stability to assess the ‘gap’ between
satisfied withR = 1/(1 — ¢||llp,,¢||) and f(r, k) = k, and  the graphs of” and P,. Hence forQ2 C WV define the set:
inequality (3.7) reduce to inequality (3.2). . _— )
It follows that the minimization of|IIp,,c|p, || remains, AP, PiQ2) = {(5’0) €R} : P € Op, p, st
as in the LTI case, a sensible design objective, since a small N o
ITIp/,c|B. || ensures both a good robust stability margin and 1B (I = @)zl < O}, + 7, Yo € Gp O Q}

good nominal performance. However, as we will see next, Where(’)g . IS given by (3.3). Thus the sei(Pl,Pg;Q)
is not always possible to achieV@lp) c[p.| < oo, even  qnqigts "ot al possible gains and biases which describe the
when a sensible robust stability margin should exist. deviation from the identity of map® between the graphs
4. A MOTIVATING EXAMPLE of P and P; restricted to{. In contrast to the nonlinear
The potential lack of tightness of the lower bound (3.5) igap ,(3'4)’ there are now tWo parameteys’ desc_rlbmg th'_s
not pathological [3], [4]; many adaptive controllers hame t 9P’ and there is no natural way to reduce this to a single
property dlstgnce measure. Since ther(_e are different ways of defining
Bpe(r) >0 forallr >0 (4.1) a d|stapce measure, see Sec_t|_on 6 belovx_/, we elect_to present
the main regional robust stability result without makingisu
whilst choices, i.e. the description of the ‘gap’ betweBnand P,
ITLp, (w0, yo)|| remains described by the two dimensional A&tP;, P»; )
su (W of all possible gains and biases.
In the rest of this paper, unless specified otherwise, we
This arises due to a problem with small signal behaV|0u5|WayS let4, Y be truncation complete normed signal spaces,
where whilstllp/;c(0) = 0, the operatorllp/ /¢ is NOt ety =1/ x ), and suppose that for all > 0, there exists

) =00 forallr>0. (4.2)

lwo,yoll <7

continuous ab — which precludes the existence of a ‘localy continuous mapping. : W10,7] — W such that
finite gain’. ’

An explicit example of this (in arL? setting) is given by R;x = R, (E.z), for all z € W[0, 7).
the plant

An operator@ : W — W is said to berelatively continuous
P(0)(u1) = y; where 51 = 0y; +uy y1(0) =0, (4.3) ifforall >0 and for all operator® : W — W with R, ¥
compact, the operatd®, ¥Q : W — W[0, ) is continuous.
Theorem 5.1:ConsiderP: U, — Y,, Pr: Uy — Va and
Cly2)(t) = wua(t) C:Y, — U, LetR> 0,0 < e < 1. Supposés, d), (v, 3) €
us(t) —k(t) bya(®) R% are such that:

k) = 2. (4.4) (0,3) € A(P, P; Q)

with @ > 0 and the controller:



whereQ) = B (7@ + ﬁ) CW,p(R)=R+7d+ 53, whilst in relation to case 3. we are just considering the gap

. , L o(eR) at bias level.
[P C] _IS (’Y’ﬁ_) gain staple with bias ot ( € ) - W and Corollary 6.1: SupposéP, C] is (v(+), ) gain stable with
Ilpc is relatively continuous. I{Fy, C] has the uniqueness  niform pias andlp,c is relatively continuous. Let < ¢ <
property and

S 1. If [P, C] has the unigueness property and
By <1 5.1) [Py, C] q ' property
then the closed-loop systef#, C] is (11, 81) gain stable E(P, Pr)y (W) <l-—e (6.1)
with bias onB(eR) and €

145 . 1435 then the closed-loop systeff;, C| is (y1(R), 1) gain stable
==, Bi= B+ (F+38)( 17— ). with bias onB(R) where:
€ €
We remark that if the operatd®,® used to defin),, is R+6(P,P)3 1+6(P,Py)
locally incrementally stable, i.e. n(R) =~ c p ’
sup ||RT(I)U)1 - RT(I)’LU1||T < o0, ﬁl _ ﬁ(l + g(P, Pl)ﬁﬂ) with
Rrwi#Rrwz ”RTwl - RTwQHT N <
| Rrwall, | Rrwa||<r =14~ R+0(PP)B 1+6(P5P1).
then the relative continuity requirement féfp - can be € €
replaced by thaR. 115 ¢ is continuous. Corollary 6.2: ConsiderP, P, € R(U,)). SupposdP, C]

6. ROBUST STABILITY AND PERFORMANCE

is (v(+), 8) gain stable with uniform bias. Then:
; R+rp3
We have already observed that in Theorem 5.1 the set Bpc(R) > sup 7 >0|ry . <l—-€,.

A(P, Py;Q) C R% plays the role of the gap distance in the c€(0,1) . . _
unbiased robust stability theorem, and that as a 2-dimeakio un%g:ﬁ:'i?;f'zhgﬁj pposei{sP,rgl]alsv(e"?( )(’:g r)lt?naﬂgussta%i Wlt)hse
description of the ‘gap’ betweeR and P;, it does not define p//C y - =upp

a distance between the two plants. Some possible scal
measures are:

ar1) forr > 0 ande € (0, Bp,c(r)), there existsR such

that
1) Gap defined with respect to the smallest gain: r+e(v(R)R + ) < R;
Or(P1, P) 2) there exists a functioff : [0, 00) % (1,00) x (1,00) —
— inf {52 0] 3Fs.t. (5,7) e &(Pl,PQ;BR)} . [0,00) such that for allr > 0, k1, k> > 1
Correspondingly we define the bias: Apc(kir + ko) < f(r, ki, ko) Ap,c(r).

—

Br(Py1, Pz) = inf {52 0|34 s.t.
(r(P1, P2), ) € A(Pi, P2 Br) |

2) Gap defined with respect to the smallest bias: (1+ a)f(r, 1 1 o 66(3)) <1in (62)
- - . - —& —&
6R(P1,P2) = 1nf{§ >0 | (6,6}{) S A(Pl,PQ;BR)} If 2) is replaced by

where 2") r — r—e(y(r)r+0) is invertible with a non-decreasing

I . . I inverseh. g(r) and there exists a function: RS — [0, c0)
Br = mf{/@ > 0|3 s.t.(0,0) € A(P17P2§BR)} - such that for allr > 0

3) Gap defined at a given bias levél> 0: Apc(hes(r)) < g(re,B)Apc(r)

Then
ABp.c(r,n) > sup{e > 0 : ¢ satisfies (6.2) beloy

Sr(Py, Py) = inf {52 01](5,5) e &(Pl,PQ;BR)}. Then

R ) AB r,m) >sup{e >0: (1+¢)g(r,e,8) <1+n}.
Note thatér(P;, P») at bias level5 = 0 recovers the pe(rm) p{ ( )a( 8) n
nonlinear gap (3.4). 7. ROBUST STABILITY FOR ADAPTIVE CONTROL

We now specialize to the case where the gap betweenLet us consider the adaptive controller (4.4) from Section
the plant can be described without biases as in (3.4), whieh
incorporates the case of linear plantsiiL?(R.), L2(R4.)). From [4] it is known that this controller has closed loop
That is, in the foIIowing,g is given by (3.4) withQ = W. stability properties for minimum phase, relative degree on
This is a special case of both 2. and 3. above. This specialear plants with possible high frequency, in particulay a
case is important for the adaptive control setting consider plant of the form (4.3) fo € R.
in sections 4 and 7, where the plant is linear, hence the gapln particular, it was shown in [4] that there exists a
can be measured b@; and the bias arises from the nonlinearcontinuous functiory: R — R such that (4.5) holds, and
controller. As theP and P; do have a finite nonlinear gap it was further shown that BIBO stability was preserved for
then this coincides with the distance measure in 2. abovsyfficiently small gap perturbations &f(6).



We now show that in fact gain stability with uniform biaSTA;}C(r). Not only is this optimization tractable (in the
is preserved for sufficiently small gap perturbations”ip). L2 setting minimizing||IIp,,c|~* forms the standard?..
The explicit inequality (4.5) in [4] can be rearranged to seeroblem), but it shows that optimizing nominal performance
that for fixedd, I1p (), /¢ is gain stable with uniform bias: and the robust stability margin is equivalent.

This equivalence breaks down in the global nonlinear
ey scwoll < y(lwol) lwoll + 8. (7.1) d J

biased setting, as one can see that the robust stabilityimarg
It now follows from Corollary 6.1 that gain stability with in

Bp c(r) is maximised by minimising the nominal closed loop
form bias is preserved for sufficiently small gap pertudnagi gain~[II, /|, whereas the nominal performancép ¢ (r),
of P(¢) given by inequality (6.1)Bp c(r), ABpc(r) canbe is a function of both the gain y[IIp;,c] and the bias
obtained from Corollaries 6.2 and 6.3. As in Section 4, @imil 5[I1p,,c]. Thus optimizing the robust stability margin, i.e. by
conclusions apply (also in the MIMO setting) if we take theminimizing the gain term, will produce sub-optimal nominal
more standard adaptive controller with(t) = —k(t)y2(t) performance. We can therefore conclude that robust stabili

in (4.4), since an inequality of the form (4.5) was alsaand (nominal) performance constraints must both be spécifie

established in [6].

8. GLOBAL ROBUST STABILITY

in any sensible optimization.
Similar reasoning does not directly apply in the regional
setting, since the situation is more complex: the bias deter

By applying Theorem 5.1 in a global setting we obtain the,ines the region over which the gain in computed, and hence

following global result:

Theorem 8.1:Consider]i: U, —» Yo, Pr: U, — Yy, and
C:)Y, — U, Suppose(d,d) € A(P,P;W), [P,C] is
(7,8) gain stable with bias oV andIlp, - is relatively
continuous. If[P;, C] has the uniqueness property aﬁd<
1—e€ for somee € (0, 1), then the closed-loop systefft;, C]

the bias does affect the robust stability margin. However it
is clear that the resulting optimizations are differentd an
hence the conclusion that nominal performance and robust
stability margin optimization differ still holds. Thus any
sensible formulation of an optimal robust design in thisisgt
must independently specify requirements fusth nominal

is (v1,3) gain stable with bias oV and
=1t =gt (5458) (144120 )
We remark that in contrast to the approach to derive the (un[-]
biased) global results in [8], here we impose a compactness
requirement in the definition 039%‘1132. In turn this stronger
requirement on the map$ results in substantially weaker [3]
assumptions of?;, C]. In [8] it was required thaltP;, C| was
globally well posed, and e.g. in [5] the alternative requoiest 4]
of regularly well posed was used. Here, the only requirement
is that[P;, C] satisfies the uniqueness property. This is weakef!
than either the assumption of global or regular well posssine [6]
and is often straightforward to verify (in contrast to the
existence property of well posedness assumptions which is
often hard to verify a-priori). 7

9. CONCLUDING REMARKS (8]

We have presented a generalisation to the nonlinear robust
stability theory of Georgiou and Smith [8] which allows a
notion of stability with bias terms. This approach consast
the alternative biased approach of [7] as it does not measutél
the gain w.r.t. a single offset ‘bias’ trajectory, and is bgable
in situations where the need for a bias arises for other nsaso
e.g. from a lack of continuity ofl p, ;- at0 as in the adaptive
control example. This extension is significant for the psam
of robust stability certificates for the many nonlinear sys$
for which no induced gain exists, and yet robust stability
guarantees can still be given. We have illustrated this by an
example from adaptive control where an induced gain does
not exist.

We now draw attention to an significant difference between
the nonlinear biased setting and the linear unbiased case. A
important feature of the standard robust stability theany f
LTI systems, is that the problem of maximizing the robust
stability marginBp () is equivalent to minimizing the nom-
inal performancedp ¢ (r), since Bpc(r) = ||l ol ™ =

performance and robust stability margins.
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