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Abstract— We propose a model predictive control approach
to path-following problems of constrained nonlinear systems.
We directly consider input and state constraints. Furthermore,
we introduce an extended corridor path-following problem,
which allows to add spatial degrees of freedom to the path
formulation. We give sufficient stability conditions for predictive
solutions to 1d and corridor path-following problems. To
illustrate the performance of our approach we discuss the
example of an autonomous vehicle subject to input constraints.

Index Terms— Nonlinear model predictive control, corridor
path-following, input and state constraints, stability.

I. INTRODUCTION

Classical controller design either aims at setpoint stabi-
lization or intends to track dynamically varying reference
signals and trajectories. Recently, path-following has been
proposed to provide an alternative problem formulation to
trajectory tracking [1], [2]. While in tracking problems the
reference trajectory defines when the system should be where
in the state space the main idea of path-following is different:
Design a controller, that affects both the system as well
as the timing when to be where on a reference path. And
additionally, it should guarantee that the system moves as
close as possible to and along the path through the state
space. In fact, path-following provides a suitable framework
for different problem formulations: Ship or flight course
control, the car-parking problem or the control of robots and
CNC-machines [4], [13]. It is also appropriate for control
problems arising in batch crystallization [11].

Existing path-following approaches are limited, since input
constraints are not explicitly considered [1], [2], [13]. In
this contribution we propose a solution to the path-following
problem for nonlinear systems subject to constraints on
inputs and states. In order to consider constraints the pro-
posed control scheme relies on nonlinear model predictive
control (NMPC) [6], [8], [9]. Since NMPC can be applied
to tracking problems (see [10] for early results) we point
out the difference between tracking and path-following in
detail in Section II. As mentioned, to follow a parametrized
reference path through the state space means to design a
control scheme which affects both - the systems behavior
and the evolution of the (parametrized) reference. This is
related to the reference governor approach, which has been
previously discussed in the context of predictive control, see
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e.g. [3], [12]. Mainly, these results rely on two control loops:
An inner one, which affects the system directly and an outer
one, which controls the reference evolution. In contrast, we
propose a method that relies on one control loop.

In Section III we present our main result: An NMPC
approach to solve the path-following problem for nonlinear
systems subject to input and state constraints while guar-
anteeing stability. The presented results extend those given
in [5]. Mainly, we show that the proposed nonlinear model
predictive path-following control (MPFC), which regards the
path parameter as an additional state variable, provides a
suitable control setup for the path-following problem. We
also give sufficient stability conditions. While other works
on path-following consider output-feedback [1], [2], [13], we
rely on state feedback. In Section IV we illustrate our scheme
by simulations of an autonomous vehicle. In Section V we
extend our scheme to consider spatial degrees of freedom in
the path definition and the controller design.

II. PATH-FOLLOWING AND TRACKING

Consider a continuous time, nonlinear system of the form

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (1)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm define state and
input constraints. The objective of trajectory tracking is to
design a controller, such that the system state x(t) tracks
a time-dependent reference signal r(t). Often, the reference
trajectory r(t) is assumed to be generated by a known or
unknown exo-system. By defining the error variable

et(t) := x(t) − r(t) (2)

the tracking problem can be reformulated as a setpoint
stabilization problem: lim

t→∞
et(t) = 0.

Path-following refers to a different control problem. In-
stead of tracking a time-dependent reference trajectory r(t)
a parametrized reference path has to be followed. This path
is given by a regular curve P ⊂ X in the state space Rn

P =
{

p(θ) ∈ Rn : θ ∈ [θ̂, 0] 7→ p(θ)
}

. (3)

The path P is specified by the map p : [θ̂, 0] 7→ Rn, which
projects the negative real interval [θ̂, 0] to the state space Rn.
Note, that the path parameter θ ≤ 0 and thus the path P is
called negatively parametrized. It ends in the origin p(θ =
0) = 0. Additionally, we assume the map p to be bijective
and sufficiently often continuously differentiable. Using the
path definition (3), the path-following error is defined:

ep(t) := x(t) − p(θ(t)). (4)
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The control objective is to guarantee that the path-following
error converges lim

t→∞
ep(t) = 0.

As mentioned the reference signal for tracking problems
r(t) is directly time dependent and explicitly specifies when
to be where in the state space. In path-following the time
plays a secondary role. Although the path parameter θ(t) is
in general time-dependent, its time evolution θ̇ is not given
a priori. Rather, it is obtained in the controller to achieve
forward movement and error minimization. While in tracking
a specific reference trajectory r(t) has to be tracked in the
time domain, in path-following the objective is to follow one
p(θ(t)) ∈ P as good as possible. In the remain of this work
we consider the following control problem.

Path-Following Problem
Design a controller to satisfy the following:

P1 Path convergence: The path-following error vanishes
asymptotically lim

t→∞
ep(t) = 0.

P2 Forward motion: θ̇(t) > 0 holds for all θ(t) ∈ [θ̂, 0).
P3 Constraint satisfaction: The state and input con-

straints x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊂ Rm are
respected for all t ≥ 0.

III. MODEL PREDICTIVE PATH-FOLLOWING

Subsequently, we propose a scheme for nonlinear model
predictive path-following control to solve the considered
problem. Our main idea is: Treat the path parameter as an
additional state variable in an expanded predictive setup and
obtain its evolution and the real system input by solving an
open-loop optimal control problem.

To solve the path-following problem a sampled data
NMPC strategy is considered. Predicted system states and
inputs are denoted by x̄(·) and ū(·). In contrast to standard
NMPC approaches (see e.g. [6], [8], [9]) the cost functional
to be minimized at all sampling instances tk = kδ is given
by

J (x̄, ū, θ, v) =
∫ tk+TP

tk

F (x̄, ū, θ, v) dτ

+ E (x̄(tk + TP ), θ(tk + TP )) , (5)

where F (·) denotes the cost function and E(·) is the end
penalty. Besides x̄ and ū the cost functional depends on the
path parameter θ and a not yet defined path parameter input
v. The proposed control strategy is the repeated solution of
the open-loop optimal control problem1

minimize
ū(·), v(·)

J (x̄, ū, θ, v) , (6)

which is subject to the system model and the constraints

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk), (7a)
∀τ ∈ [tk, tk + TP ] : x̄(τ) ∈ X , ū(τ) ∈ U , (7b)
x̄(tk + TP ) ∈ E ⊆ X ⊆ Rn. (7c)

1Assuming for simplicity that the minimum is actually attained.

The terminal region E restricts the predicted state x̄(·) to
a specific region at the end of each prediction, i.e. at time
tk + Tp the state needs to be in the set E .

Besides these somehow standard constraints additional
path-following constraints have to be respected:

θ̇(τ) = g(θ(τ), v(τ)), θ(tk) = θ(tk | θ(tk−1)), (8a)

∀τ ∈ [tk, tk + TP ] : θ(τ) ∈ [θ̂, 0], v(τ) ∈ V. (8b)

These extra constraints describe the evolution of the path,
which is specified by the timing law θ̇ = g(θ, v). The virtual
input v controls the evolution of θ. Please note, that the
timing law g(·) is usually not given a priori. Actually, it is
an additional degree of freedom in the controller design. To
solve the ODE (8a) an initial condition θ(tk) is necessary
at every sampling instance tk. If an initial path point p0 =
p(θ0) is given a priori, then the corresponding value of the
path parameter θ0 serves as an initial condition for the first
sampling instant. If no starting point p0 is given, a path point
close to x0 should be calculated by (locally) solving the
minimum distance problem minimize

θ
∥x0 − p(θ)∥. At all

following sampling instances the corresponding value of the
previous one is used θ(tk) = θ(tk|θ(tk−1)). The solution of
(5)–(8) leads to the optimal input trajectory u⋆(t | x(tk))
which is applied during the time interval t ∈ [tk, tk + δ].

As mentioned before the proposed MPFC scheme given
by (5) – (8) is an extended NMPC scheme. The open-loop
optimal control problem is expanded by the virtual state θ
and by the virtual input v. Essentially, v controls the path
parameter evolution θ̇. In general, the proposed approach
will not lead to a time-optimal path evolution. Actually,
considering the MPFC scheme path convergence is more
important than speed.

STABILITY OF MPFC

In the following, we present sufficient stability conditions
for the proposed expanded NMPC scheme. The assumptions
follow well-known stability results, see e.g. [6], [8], [9]:
A1 The state constraint set X ⊆ Rn is closed and connected

and contains the origin in its interior.
A2 U ⊆ Rm is compact and the origin is contained in the

interior of U .
A3 f : Rn×Rm 7→ Rn from (1) is a continuous and locally

Lipschitz vector field. Furthermore, f(0, 0) = 0.
A4 For all initial conditions in the region of interest and any

piecewise continuous input function u(·) : [0, TP ] 7→ U ,
(1) has a unique continuous solution.

A5 The cost function F : X × U × [θ̂, 0] × V 7→ R is
continuous and positive definite in the domain X ×U ×
[θ̂, 0] × V .

To ensure stability of the proposed MPFC scheme we addi-
tionally assume:
A6 The path P is given by a regular, sufficiently often dif-

ferentiable, negatively parametrized and bijective map
p, such that ∀θ ∈ [θ̂, 0] : θ 7→ p(θ) ∈ X ⊆ Rn and
p(0) = 0 hold.
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A7 The timing law is chosen such that g(θ, v) has equiv-
alent properties as required for f(x, u) in assumptions
A3 and A4. Furthermore, ∀ v ∈ V and ∀ θ ∈ [θ̂, 0) :
g(θ, v) > 0, where V ⊆ R is compact and contains 0
in its interior.

If these assumptions are fulfilled, then the following holds.

Theorem 1 (Stability of MPFC)
Consider the path-following problem for (1) as given by P1–
P3 and assume that assumptions A1–A7 are fulfilled. Suppose
that:
(i) The terminal region E is compact and P ⊆ E . The

terminal penalty E(x, θ) is continuously differentiable,
positive semidefinite and E(0, 0) = 0 holds.

(ii) For all (x, θ) ∈ E × [θ̂, 0] there exists a pair of
admissible inputs (uE , vE) ∈ U × V such that

∇E(x, θ) ·
(

f(x, uE)
g(θ, vE)

)
+ F

(
x, θ, uE , vE

)
≤ 0 (9)

and the solutions of ẋ = f(x, uE) and θ̇ = g(θ, vE)
starting at (x, θ) ∈ E × [θ̂, 0] stay in E × [θ̂, 0] for all
times.

(iii) The NMPC open-loop optimal control problem is feasi-
ble for t0.

Then, for the closed-loop system defined by (1), (5)–(8), the
path-following error ep(t) = x(t)−p(θ(t)) converges to zero
for t → ∞. Furthermore, the region of attraction is given
by the set of states for which the open-loop optimal control
problem (5)–(8) has a feasible solution.

Proof: The proof of Theorem 1 consists of two steps.
First, we show that the proposed MPFC scheme is equivalent
to setpoint stabilization in different coordinates. In these
coordinates we apply well-known stability results for NMPC.
Second, we demonstrate how the stability conditions map
back to the original coordinates.

Step 1: Consider the change of coordinates

T : ( x
θ ) 7→ y =

(
x−p(θ)

θ

)
, ( u

v ) 7→ w = ( u
v ) . (10)

In the new coordinates y, w the control scheme (5)–(8) is
equivalent to a NMPC setpoint stabilization in Rn+1, thus
we apply NMPC stability conditions directly, see e.g. [8],
[9]. These are in fact equivalent to the conditions (i) and
(iii).

In y, w coordinates the augmented system dynamics are
ẏ = f̃(y, w) = (ẋ − ∂p

∂θ θ̇, θ̇)T . The terminal region in y, w

coordinates is the image of E × [θ̂, 0] under T from (10).
The invariance condition inside the terminal region is given
by

∇Ẽ(y) · f̃(y, w) + F̃ (y, w) ≤ 0. (11)

Step 2: To map this condition back to the original coor-
dinates x, θ, u, v we use

∂Ẽ(y)
∂y

= ∇E(x, θ) ·
(
In×n ∂p

∂θ
01×n 1

)
.

If we apply this relation the invariance condition (9) follows
immediately.

In fact, Theorem 1 directly guarantees the main parts of
the path-following problem: Path convergence (P1) and
constraint satisfaction (P3). Furthermore, assumption A7
requires the timing law θ̇ = g(θ, v) to be chosen such that
θ̇ > 0 is positive for all admissible v ∈ V and all θ ∈ [θ̂, 0).
Hence the forward motion of the system along the path is
also ensured (P2).

CALCULATION OF STABILIZING END PENALTIES

In general, the calculation of suitable terminal penalties
E(x, θ) and terminal regions E is difficult [6]. Subsequently,
we use the fact that the vector fields f and g appear decou-
pled in (9) to find suitable terminal regions and penalties for
the proposed MPFC scheme. The main idea of the following
considerations is to use the path P as terminal region. This
means to project the invariance condition (9) onto the virtual
state θ. Therefore, the cost to drive the system along the path
can be calculated in dependence of θ, if some known inputs
uE and vE guarantee, that the system follows the path. If
such inputs are known we only need to check, that for all
θ ∈ [θ̂, 0] the costs to follow the path along converge to zero
and are upper bounded along θ.

To this end assume that the cost function F (·) for the
MPFC problem is

F (x, θ, u, v) =
∥∥∥∥x − p(θ)

θ

∥∥∥∥2

Q

+
∥∥∥∥u − ũ
v − ṽ

∥∥∥∥2

R

, (12)

where ∥x, θ∥2
Q = xT Qx + q̂θ2, Q,R are strictly positive

definite matrices and q̂ > 0. We use the structure of (9) to
derive the following corollary to Theorem 1.

Corollary 1 (Stabilizing ”Zero” End Penalty for MPFC)
Suppose that:
(i) The terminal region E is equivalent to the path P .

(ii) For all θ ∈ [θ̂, 0) there exists a pair of admissible inputs
uE and vE which guarantee, that the system follows the
path P with θ̇ = g(θ, vE) > 0.

(iii) A positive scalar ϵ is known, such that for all θ ∈ [θ̂, 0]

ϵ >
q̂θ2 +

∥∥ uE−ũ
vE−ṽ

∥∥2

R

−g(θ, vE) · θ
≥ 0. (13)

(iv) The optimal control problem (5)-(8) has a feasible
solution for t0.

Then, for the closed-loop given by (1), (5)-(8), the end
penalty E(θ) = ϵ

2θ2 guarantees, that x(t) − p(θ(t)) con-
verges to zero for t → ∞.

Proof: The corollary expresses the idea to eliminate the
state x from the invariance condition (9) of Theorem 1. Our
proof directly follows this idea.

Please note, that the path P is a compact set, since it
is the image set of the closed real interval [θ̂, 0] under the
continuous map p from (3). Start at a point on the path P and
apply admissible inputs uE and vE . These inputs are designed
such that the system follows the trajectory given by p(θ(t)),
where θ̇ = g(θ, vE). Then, the cost function F (·) from (12)
depends only on the arguments θ, u, v since on P it holds
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that x = p(θ). This leads to a simplified invariance condition
in E = P

∇E(θ) · g(θ, vE) + q̂θ2 +
∥∥ uE−ũ

vE−ṽ

∥∥2

R
≤ 0. (14)

To obtain the stability condition (13) choose the end penalty
as E(θ) = ϵ

2θ2 and rearrange (14).

IV. EXAMPLE: AUTONOMOUS VEHICLE

To exemplify the proposed MPFC scheme an autonomous
vehicle in a fixed coordinate frame is considered(

ẋ1
ẋ2
ẋ3

)
=
(

u1 cos(x3)
u1 sin(x3)
u1 tan(u2)

)
. (15)

The states x1 and x2 describe the position in the x1-x2 plane.
x3 is the yaw angle. u1 refers to the speed of the vehicle
and u2 is the steering angle. The system inputs are subject
to the constraints u1 ∈ [0, 6] and u2 ∈ [−0.63, 0.63].

The path P to be followed is given by

P =
{

p(θ) ∈ Rn : [θ̂, 0] 7→ p(θ) =
(

θ
ρ(θ)

arctan( ∂ρ
∂θ )

)}
, (16)

where ρ(θ) = −α log(γ/(β + |θ|)) · sin(ωθ) and θ̂ = −30.
The coefficients of ρ(θ) are given by α = 6, β = 5, γ =
20, ω = 0.35. From the definition of the path (16) it can
be deduced, that the vehicle should always follow the curve
(θ, ρ(θ))T along a tangential direction.

The considered cost function is defined by (12)
and the weighting matrices are given by Q = 8 ·
diag(104, 105, 105, 1

16 ) and R = diag(10, 10, 1). As men-
tioned previously the path evolution is a degree of freedom in
the controller design. It is chosen as θ̇ = g(θ, v) = −λθ+v,
where λ = −10−3 and v ∈ [0, 6]. The initial condition
is θ0 = −30. Please note, that the chosen path evolution
satisfies assumption A7. Since we want to apply Corollary
1, the terminal region is chosen to equal the path from (16):
E = P .

To apply Corollary 1 we need to know inputs signals uE
and vE . If the system starts on P and the path evolution
θ̇ is defined by vE , then p(θ(t)) is a reference trajectory.
Therefore, if vE is defined, we need to determine the input
uE that guarantees the tracking of p(θ(t)).

Actually, the considered system (15) is differentially flat
and a flat output is given by y = (x1, x2)T (see [7] for details
on differential flatness). Regarding (p1(θ(t)), p2(θ(t)))T as
a reference trajectory for the considered flat output of (15),
it is straightforward to use the flatness property to derive an
input which tracks p(θ(t))(

u1

u2

)
=

(
θ̇·

q

1+( ∂ρ
∂θ )2

arctan

„

“

1+( ∂ρ
∂θ )2

”− 3
2 · ∂2ρ

∂θ2

«

)
. (17)

This input signal depends on the path parametrization p(θ)
and the parameter evolution specified by θ̇ = g(θ, v). For
vE = 0 the input (17) is admissible. Also note, that for
vE = 0 the second input does not vanish at the end of the
path, the reference value for u2 is set to ũ2 = u2|θ=0 and

ũ1 = 0. It can be verified, that for θ → 0 the cost on the path
converges faster to zero than the second order polynomial
−1

ϵ∇E · g. This is equivalent to

lim
θ→0

q̂θ2+
‚

‚

‚

u1−ũ1
u2−ũ2

‚

‚

‚

2

R

10−3·θ2 = 0.

Investigating the simplified invariance condition (14) for
different values of ϵ > 0 shows, that for ϵ = 1740 the
conditions of Corollary 1 are fulfilled.

Figure 1 shows simulation results for the considered
autonomous vehicle (1). The results are obtained using the
software package OPTCON [11] and Matlab. Plot a) shows
the vehicle movement in the x1-x2 plane.

The solid black curve depicts the path-following result,
the dashed black curve the result for trajectory tracking for
θ̇ = const. = 4.1. The solid gray line shows the projection
of the reference to the x1-x2 plane. Both approaches make
the vehicle reach the path. Due to the input constraint on u1

the tracking approach fails in the last turn, since the reference
trajectory is not feasible under the given input constraints.
Plot b) shows the input signals, while c) and d) illustrate state
signals for both path-following and tracking. Please note, that
all system inputs u1,2 and the virtual path parameter input v
are obtained by repeated optimizations during the application
of the proposed MPFC scheme. Comparing the reference
evolution for tracking and path-following shows, that the
MPFC controller first slows down the reference evolution
(0 ≤ t ≤ 2, plot c)) and then speeds it up for t > 2. Finally,
the vehicle reaches at the origin.

V. CORRIDOR PATH-FOLLOWING

The main idea of path-following is to relax the timing
constraint on a given path. From a practical point of view,
however, exact path-following is often not required if the
system moves through a specified corridor of the state
space, which contains the path. Application examples for
the extended setup are keeping a vehicle on track with a
given width or flying a plane in a specified air corridor.
Subsequently, we will outline how additional spatial degrees
of freedom can be implemented into an extension of the
proposed MPFC setup. First, we introduce the concept and
formal definition of the corridor path-following problem.
Second, we show that the MPFC scheme is applicable to
this extended problem. Sufficient stability conditions are also
presented. Finally, we briefly discuss an example.

So far, the a priori known path is defined as a curve in the
state space P = {p(θ) ∈ Rn : θ ∈ [θ̂, 0] 7→ p(θ)}, see (3).
To take additional spatial degrees of freedom into account
this formulation is extended to

Pk =
{
pk(Θ) ∈ Rn : Θ ∈ [Θ,Θ] ⊂ Rk 7→ pk(Θ)

}
. (18)

Here Pk is the set of admissible paths. It is given by the
map pk : Θ ∈ Rk 7→ pk(Θ) ∈ Rn, k < n, where Θ =
(θ1, . . . , θk)T ∈ Rk is the vector of the path parameters.
The domain of Θ is the vector valued interval [Θ, Θ]. For
the first component of Θ the interval θ1 ∈ [θ̂1, 0] is given. θ1

specifies the direction and orientation of the objective system
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Fig. 1. Simulation results: Application of the MPFC scheme to an autonomous vehicle.

movement in the path corridor Pk. The other components
θi ≤ θi ≤ θi, i = 2 . . . k describe the additional spatial
degrees of freedom in Pk. The endpoint is pk(Θ = 0) = 0.
Similar to the 1d case discussed previously, the map pk is
bijective and sufficiently often continuously differentiable.
The set Pk is a k-dimensional surface in the state space Rn.

The main idea of the extended setup is, that the system
should move first into the path region Pk and second inside
Pk in a specified direction given by θ1 to the origin. In
contrast to the 1d path-following both the timing and the state
space geometry of the reference are not completely specified
a priori. The reference in the state space can be influenced
by varying the additional parameters θ2 . . . θk.

Corridor Path-Following Problem
Given a system subject to input and state constraints (1),
design a controller to satisfy the following:
E1 Path convergence: The system movement through the

state space converges to the path corridor Pk. Hence
lim

t→∞
x(t) − pk(Θ(t)) = 0. Furthermore, the end of the

path lies in the origin: ∀i = 1 . . . k : lim
t→∞

θi = 0.

E2 Forward motion: θ̇1(t) > 0 holds for all t > 0 and
all θ1 ∈ [θ̂1, 0).

E3 Constraint satisfaction: The state and input con-
straints x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊂ Rm are
respected for all t ≥ 0.

The MPFC setup proposed earlier in Section III can be
used to solve the extended setup. Similarly to the 1d path-
following problem the vector Θ is used as virtual state in the
sketched MPFC formulation.

Instead of one additional state and input this leads to k
virtual states Θ = (θ1 . . . θk)T . The evolution of these states
is described by an ODE Θ̇ = g(Θ, v), where the vector field
is given by g : Rk ×Rk 7→ Rk. In fact, g should be chosen

such that Θ is controllable by v.
We derive sufficient stability conditions for the proposed

MPFC scheme in the same kind and manner as in Theorem
1. Assume A1-A4 are as stated in Section III. Furthermore,
the subsequently stated modified assumptions are made:

A5* The cost function F : X × U × [Θ, Θ] × V 7→ R is
continuous and positive definite in the domain X ×U ×
[Θ, Θ] × V .

A6* The path Pk is given by a sufficiently often continuously
differentiable, regular, negatively parametrized and bi-
jective map pk, such that ∀Θ ∈ [Θ,Θ] : Θ 7→ pk(Θ) ∈
X ⊆ Rn and pk(0) = 0 hold.

A7* g(Θ, v) : Rk × Rk 7→ Rk has equivalent properties
as required for f(x, u) in assumptions A3 and A4.
Furthermore, ∀ v ∈ V and ∀ θ1 ∈ [θ̂1, 0) : θ̇1 > 0,
where V ⊂ Rk is compact and 0 ∈ V .

The following theorem holds:

Theorem 2
Consider the extended path-following problem for (1) as
given by E1–E3 and assume that assumptions A1–A4 and
A5*–A7* are fulfilled. Suppose that:

(i) The terminal region E is compact and Pk ⊆ E . The
terminal penalty E(x,Θ) is continuously differentiable,
positive semidefinite and E(0, 0) = 0 holds.

(ii) For all (x,Θ) ∈ E × [Θ, Θ] there exists a pair of
admissible inputs (uE , vE) ∈ U × V such that

∇E(x, Θ) ·
(

f(x, uE)
g(Θ, vE)

)
+ F

(
x,Θ, uE , vE

)
≤ 0 (19)

and the solutions of ẋ = f(x, uE) starting at x ∈ E stay
in E , while the solutions of Θ̇ = g(Θ, vE) starting at
Θ ∈ [Θ, Θ] stay in [Θ, Θ] for all times and lim

t→∞
Θ(t) =

0.
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(iii) The NMPC open-loop optimal control problem is feasi-
ble for t0.

Then, for the closed-loop system defined by (1), (5)–(8), the
path-following error ep(t) = x(t) − pk(Θ(t)) converges to
zero for t → ∞. Furthermore the region of attraction is
given by the set of states for which the open-loop optimal
control problem has a feasible solution.

The proof follows the one of Theorem 1and is thus
omitted. In fact, the crucial steps in the proof of Theorem 1
do not explicitly rely on the fact that the path was considered
to be 1-dimensional only. Please note, that the path corridor
Pk is not a constraint for the state. Only the reference is
restricted to lie within the corridor pk(Θ(t)) ∈ Pk.

EXAMPLE

Consider the autonomous vehicle from Section IV. For this
system a corridor path-following problem can be defined.
The new control objective is not to converge to the path P
given by (16) but to converge to a region in the neighborhood
of the path. More formally, the vehicle movement should
converge to a path corridor P2 = {q(Θ) ∈ R3 : Θ 7→ q(Θ)}
which is given by

q(Θ) = p(θ1) +

−θ2· ∂ρ
∂θ1

∥(θ1,ρ(θ1))∥−1

θ2·∥(θ1,ρ(θ1))∥−1

arctan
“

∂θ2
∂θ1

”

 . (20)

The path parameter domain is given by Θ = (θ1, θ2)T ∈
[−30, 0] × [−1.25, 1.25] ⊂ R2. As in the previous example
the path parameters dynamics are chosen as linear ODEs
θ̇1 = −10−3θ1 + v1 and θ̇2 = −10−2θ2 + v2, where the
virtual inputs v1 and v2 belong to v1 ∈ [0, 6], v2 ∈ [−5, 5].

Figure 2 shows the simulation results for this example. The
black dash-dot lines mark the projection of P2 into the x1-x2

plane and the dashed gray line depicts the projection of P
from (16) into the x1-x2 plane. The solid Grey line shows the
reference q(Θ(t)) calculated by the controller in the x1-x2

plane. The dashed black line depicts the system movement, if
the proposed MPFC scheme is applied to the extended path-
following problem. The MPFC controller drives the vehicle
to the set P2. Inside the set it follows the reference q(Θ(t)),
which is specified by the repeated online optimizations of
the MPFC scheme.

VI. CONCLUSIONS AND OUTLOOK

In this contribution we propose a model predictive control
approach for different nonlinear path-following problems.
Our control scheme explicitly considers input and state con-
straints while guaranteeing stability. Novel stability results
-based on the idea to use the path as terminal region- for
the usual 1d path-following problem have been presented.
Furthermore, a corridor path-following problem considering
additional spatial degrees of freedom in the path description
has been introduced. We show that the proposed MPFC setup
is also suitable for the extended problem. Future works will
focus on inherent robustness properties of MPFC and the
calculation of tubes as terminal regions.

Fig. 2. Simulation results for 2d corridor path-following.
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