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A Time-Periodic Lyapunov Approach for Motion Planning of
Controllable Driftless Systems on SU(n)

H. B. Silveira, P. S. Pereira da Silva and P. Rouchon

Abstract— For a right-invariant and controllable driftless sys-
tem on SU(n), we consider a time-periodic reference trajectory
along which the linearized control system generatessu(n): such
trajectories always exist and constitute the basic ingredient
of Coron’s Return Method. The open-loop controls that we
propose, which rely on a left-invariant tracking error dynamics
and on a fidelity-like Lyapunov function, are determined from
a finite number of left-translations of the tracking error an d
they assure global asymptotic convergence towards the periodic
reference trajectory. The role of these translations is to avoid
being trapped in the critical region of this Lyapunov-like
function. The convergence proof relies on a periodic version
of LaSalle’s invariance principle and the control values are
determined by numerical integration of the dynamics of the
system. Simulations illustrate the obtained controls forn = 4
and the generation of the C–NOT quantum gate.

I. INTRODUCTION

Consider the right-invariant driftless system

Ẋ =

m∑

k=1

ukHkX, X(0) = I, (1)

where X ∈ Mn is the state,Mn is the Banach space
of squaren × n matrices with complex entries endowed
with the Euclidean norm,H = {H1, . . . , Hm} ⊂ su(n),
uk ∈ R are the controls, andI is the identity matrix of
Mn. The periodic motion planning problemfor this system
is formulated as follows. Given agoal stateX∞ ∈ SU(n)
and T > 0, find a smooth periodicreference trajectory
Xr: R+ → SU(n) of period T , with Xr(0) = X∞, and
determine continuous open-loop controlsuk: R+ → R, for
1 ≤ k ≤ m, in a manner that the tracking error between the
trajectoryX : R+ → SU(n) of (1) andXr converges to zero
as t → ∞, that is,limt→∞[X(t)−Xr(t)] = 0.

We remark that there is no loss of generality in as-
suming that X(0) = I in (1). Indeed, since system
(1) is right-invariant, if (X(t), (u1(t), . . . , um(t))), for
t ∈ R+, is a solution of (1) withX(0) = I, then
(X(t)X0, (u1(t), . . . , um(t))), for t ∈ R+, is a solution of
(1) with initial conditionX(0) = X0 ∈ SU(n). Therefore,
if the periodic motion planning problem has been solved for
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system (1) withX(0) = I, it is straightforward to show that
it will also be solved for (1) withX(0) = X0 ∈ SU(n).

The main result of this paper is the determination of
a solution for the periodic motion planning problem. This
is established by Theorem 2 in Section 2, whose only
assumption is that system (1) regular, in the sense of
Definition 1 in Section 2. The results of Coron’s Return
Method show that such condition is always met in case
the system is controllable on SU(n) (see Remark 2 in
Section 2). Loosely speaking, by finding an appropriate
reference trajectoryXr, using the time-dependent change of
coordinatesZ = Z(X, t) = X†Xr(t), which corresponds
to the tracking error on the group SU(n), and defining an
adequate “feedback”, we determine an algorithm that obtains,
in a finite number of steps, continuous open-loops controls
uk, for every 1 ≤ k ≤ m, which assure that the tracking
errorX −Xr converges to zero ast → ∞. This algorithm
relies on Lyapunov-like convergence results inspired in the
periodic version of LaSalle’s invariance principle presented
in [11], and in thead-conditionstabilization method of [6]. In
a certain sense, we have used the real part of the trace of the
left-invariant tracking errorZ as a Lyapunov-like function,
that is,V (Z) = ℜ(tr(Z)). In the case of quantum systems,
V can then be seen as a fidelity-like Lyapunov function.

The problem of steering a quantum system from a given
initial state to an arbitrary final state, which can be regarded
as a particular case of the periodic motion planning problem
here formulated, has recently been treated in [8] using a
flatness-based approach and in the book [4] (see also the
references therein), where many quantum control techniques
used in the literature are grouped together and explained in
detail, such as Lyapunov-based methods, optimal control and
decompositions of SU(n). Our Lyapunov-like approach has
no restrictions on the goal stateX∞ ∈ SU(n) and onn, as
long as system (1) is regular.

The layout of the paper is as follows. Section 2 is
entirely dedicated to the proof of Theorem 2 mentioned
above. Simulations illustrate in Section 3 the generation of
the Controlled-NOT (C–NOT) gate for a quantum system
with n = 4. Appendix presents the proof of the important
convergence result of Theorem 1 in Section 2.

II. M AIN RESULT

Based on (1), we define thereference system

Ẋr =

m∑

k=1

ur
kHkXr, Xr(0) = X∞ ∈ SU(n), (2)
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whereXr ∈ Mn and the smooth time functionsur
k: R → R

are still to be specified.
Definition 1: System (1) is said to beregular when, given

T > 0, there exist smooth periodic functionsuT
k : R → R

of period T , for all 1 ≤ k ≤ m, such that the solution
XT

r : R+ → SU(n) of (2), with XT
r (0) = I andur

k = uT
k ,

is also periodic of periodT and satisfies

span{Bj
k(0), 1 ≤ k ≤ m, j ∈ N} = su(n), (3)

where N is the set of natural numbers (including zero),
A(t) =

∑m

k=1 u
T
k (t)Hk ∈ su(n), B0

k(t) = HkX
T
r (t),

Bj+1
k (t) = −A(t)Bj

k(t) + Ḃj
k(t), 1 ≤ k ≤ m, j ∈ N, t ∈ R.

Remark 1:Note thatA: R → su(n), Bj
k, Ḃj

k: R → Mn

are smooth and also have periodT , for every1 ≤ k ≤ m,
j ∈ N. Hence, they are bounded mappings.

Remark 2:Note that the linearized control system of (2)
(or of (1)) along the trajectory(XT

r , (u
T
1 , . . . , u

T
m)) is given

by Ẋℓ
r = A(t)Xℓ

r +
∑m

k=1 wkB
0
k(t), wk ∈ R. Based on

Coron’s Return Method (see [2], [3]), it can be shown that
(1) is regular in case Lie(H) = su(n). We recall that (1) is
controllable on SU(n) if and only if Lie(H) = su(n) [1].

For simplicity, we shall assume throughout this paper that
system (1) is regular, thatT > 0 has been fixed and that
the functionsur

k in (2) were specified accordingly, that is,
ur
k = uT

k , for 1 ≤ k ≤ m. Moreover, we also assume that
the goal stateX∞ ∈ SU(n) is fixed. DefineXr: R → SU(n)
as Xr = XT

r X∞. Note thatXr is the solution of (2)
with Xr(0) = X∞ and thatXr also has periodT . It
will be shown afterwards thatXr can indeed be used as a
reference trajectory. We also adopt the following notations.
The imaginary unit ofC is denoted byı and if z ∈ C, then
ℜ(z) is its real part andℑ(z) its imaginary part.

It is straightforward to verify from (1) and (2) that the
time-dependent change of coordinates

Z = Z(t,X) = X†Xr(t), for all (t,X) ∈ R×Mn,

along with the time-varying control shift

vk , ur
k(t)−uk = uT

k (t)−uk, for all t ∈ R, 1 ≤ k ≤ m,

determine the left-invariant “closed-loop system”

Ż = ZX†
r(t)

m∑

k=1

vkHkXr(t), Z(0) = X∞ ∈ SU(n), (4)

for all (t, Z) ∈ R×Mn. If we can find continuous functions
vk: R+ → R, for each1 ≤ k ≤ m, such that

lim
t→∞

Z(t) = lim
t→∞

X†(t)Xr(t) = I, (5)

whereZ: R+ → SU(n) is the solution of system (4) and
X : R+ → SU(n) is the solution of system (1) with the
continuous open-loop controls

uk(t) = uT
k (t)− vk(t), for all t ∈ R+, 1 ≤ k ≤ m,

it is then clear that

lim
t→∞

[X(t)−Xr(t)] = 0, (6)

thus solving the periodic motion planning problem.

Let V : Mn → R be defined by

V (X) = ℜ(tr(X)), for all X ∈ Mn, (7)

and consider theauxiliar system

Ẇ = WX†
r(t)

m∑

k=1

fkak(t,W )HkXr(t), (8)

where (t,W ) ∈ R × Mn, fk 6= 0 is a fixed real number,
1 ≤ k ≤ m, and

ak(t,W ) = fkV(WX†
r (t)HkXr(t)). (9)

Notice that the “closed-loop” system (4) with “feedbacks”
vk = fkak(t, Z) is nothing but the auxiliar system (8)–(9).
Note also thatV in (7) is linear and that, forX ∈ SU(n),
we have −n ≤ V (X) ≤ n and V (X) = n if and
only if X = I. Furthermore, by construction,̇V(t,W ) =∑m

k=1 ak(t,W )2 ≥ 0, for all (t,W ) ∈ R×Mn.
In what follows, we shall show how the next theorem,

which is a Lyapunov-like convergence result for the auxiliar
system with Lyapunov-like functionV (W ) = ℜ(tr(W )),
and whose proof is deferred to Appendix, determines con-
tinuous functionsvk: R+ → R, for 1 ≤ k ≤ m, such that (5)
is satisfied for the “closed-loop” system (4). We remark that
the properties ofV stated above are essential in the proof.
Our approach to solve the periodic motion planning problem
is then summarized in Theorem 2.

Theorem 1:Consider the set

G = {x ∈ R : x =

n∑

i=1

ℜ(λi), for someλi ∈ C such

that |λi| = 1,

n∏

i=1

λi = 1,ℑ(λ1) = · · · = ℑ(λn)}.

Then,G is a finite set,n ∈ G andn = max(G). Further-
more, lettingδ be the maximal element of the setG \ {n},
we have that, for allq = (t0,Wt0) ∈ R× SU(n),

V (Wt0 ) > δ ⇒ lim
t→∞

Wq(t) = I,

whereWq: R → SU(n) is the solution of (8)–(9) with initial
conditionWq(t0) = Wt0 .

Suppose thatV (X∞) > δ. In Theorem 1, we choose
q = (0, X∞) ∈ R × SU(n). Therefore,limt→∞ Wq(t) = I.
Hence, the smooth “feedbacks”vk: R+ → R defined as

vk(t) , fkak(t, Z(t)) = f2
kV(X

†(t)HkXr(t)),

for t ∈ R+, 1 ≤ k ≤ m, assure thatZ(t) = Wq(t), for
t ∈ R+. Indeed, compare (4) with (8)–(9). Thus, (5) holds.

Now, assume thatV (X∞) ≤ δ. For this case, based
on continuity arguments, we determine an adequate (con-
tinuous) path fromX∞ to I which, in a certain sense,
reduces the problem to the situation whereV (X∞) > δ.
In order to achieve this, the main idea is to find a path
Z: [0, 1] → SU(n), with Z(0) = X∞ and Z(1) = I,
and obtain0 = θ0 < θ1 < · · · < θN−1 < θN = 1,
such thatV (Z(θℓ+1)

†Z(θℓ)) > δ, for all 0 ≤ ℓ ≤ N − 1.
It thus follows from Theorem 1 that, for1 ≤ ℓ ≤ N ,



limt→∞ Z(θℓ)Wℓ(t) = Z(θℓ), where Wℓ: R → SU(n)
is the solution of (8)–(9) with initial conditionWℓ(Tℓ) =
Z(θℓ)

†Z(θℓ−1) ∈ SU(n), where0 = T1 < · · · < TN+1 are
such thatWℓ(Tℓ+1) ≈ I. Loosely speaking, we then “glue”
together the left-translationsZ(θ1)W1, . . . , Z(θN )WN in an
appropriate manner in order to define a continuous solution
(Z(t), (v1(t), . . . , vm(t))), for t ∈ R+, of system (4) that
satisfies (5). We remark that, for every1 ≤ ℓ ≤ N , it is as if
we were in the caseV (X∞) > δ. In the sequel, we formalise
these arguments in detail and determine an algorithm which
obtains, inN steps, continuous functionsvk: R+ → R, for
1 ≤ k ≤ m, such that (5) holds.

It is a standard result that anyX∞ ∈ SU(n) can be written
as X∞ = M †diag(exp ıλ1, . . . , exp ıλn)M , whereM is a
unitary matrix,λ1, . . . , λn ∈ R and

∑n

i=1 λi = 0. Consider
the pathZ: [0, 1] → SU(n) from X∞ to I defined by

Z(θ) = M †diag(exp ıλ1(1− θ), . . . , exp ıλn(1 − θ))M,

for all θ ∈ [0, 1]. Let a, b ∈ [0, 1]. Hence,Z(b)†Z(a) =
M †diag(exp ıλ1(b− a), . . . , exp ıλn(b− a))M and there-
fore V (Z(b)†Z(a)) =

∑n

j=1 cos(λj(b − a)). Since the
function γ: [0, 1] → R defined byγ(θ) =

∑n

j=1 cos(λjθ),
for all θ ∈ [0, 1], is continuous withγ(0) = n, there exists
ν > 0 such thatγ(θ) > δ in case|θ| < ν, for all θ ∈ [0, 1]
(indeed, chooseǫ = n− δ > 0). Hence,V (Z(b)†Z(a)) > δ
whenever|b− a| < ν, for all a, b ∈ [0, 1], and there exists a
non-zeroη ∈ N such that, for allN ≥ η,

V (Z
†

ℓ+1Zℓ) =

n∑

j=1

cos(λj∆) > δ, (10)

for all 0 ≤ ℓ ≤ N − 1, whereZℓ = Z(θℓ), θℓ = ℓ∆,
for every 0 ≤ ℓ ≤ N , with ∆ = 1/N . Note thatZ0 =
Z(0) = X∞ andZN = Z(1) = I. Let N ≥ η and consider
the continuous functionβ: Mn × Mn → R defined by
β(X,Y ) = V (Y †X), for all (X,Y ) ∈ Mn × Mn. Since
SU(n)×SU(n) is compact,β|(SU(n)×SU(n)) is uniformly
continuous. Therefore, by (10), there existsµ > 0 such that,
for all X ∈ SU(n) and0 ≤ ℓ ≤ N − 1, we have

‖X − Zℓ‖ < µ ⇒ V (Z
†

ℓ+1X) > δ (11)

(indeed, chooseǫ =
∑n

j=1 cos(λj∆) − δ > 0 and consider
the sup norm onMn×Mn). The aforementioned algorithm
is described below. Recall thatZ0 = X∞ andZN = I.

Algorithm 1: Let X∞ ∈ SU(n). Choose any non-zero
N ∈ N in a manner that (10) holds. DefineT1 = 0 and
W0(T1) = I. For every1 ≤ ℓ ≤ N−1, choose a real number
Tℓ+1 > Tℓ such thatV (Z

†

ℓ+1ZℓWℓ(Tℓ+1)) > δ, where
Wℓ: R → SU(n) is the solution of the auxiliar system (8)–(9)
with initial conditionWℓ(Tℓ) = Z

†

ℓZℓ−1Wℓ−1(Tℓ) ∈ SU(n).
Define

Z(t) = ZℓWℓ(t) ∈ SU(n), for t ∈ [Tℓ, Tℓ+1),

vk(t) = fkak(t,Wℓ(t)) ∈ R, 1 ≤ k ≤ m, for t ∈ [Tℓ, Tℓ+1).

If TN > TN−1 has been chosen as above, define

Z(t) = WN (t) ∈ SU(n), for t ≥ TN ,

vk(t) = fkak(t,WN (t)) ∈ R, 1 ≤ k ≤ m, for t ≥ TN ,

whereWN : R → SU(n) is the solution of (8)–(9) with initial
conditionWN (TN) = ZN−1WN−1(TN ) ∈ SU(n). �

Some remarks are in order. First of all, from the rea-
soning preceding Algorithm 1, we know that there al-
ways exists some non-zeroN ∈ N such that (10) is
true. Furthermore, Theorem 1 and property (11) assure
that Tℓ+1 > Tℓ can always be chosen as required in the
algorithm, for every1 ≤ ℓ ≤ N − 1. It is also clear
that (Z(t), (v1(t), . . . , vm(t))), for t ∈ R+, determined by
the algorithm is a continuous solution of the “closed-loop”
system (4). Indeed, compare (4) with (8)–(9). Finally, since
V (Z

†

NZN−1WN−1(TN)) = V (ZN−1WN−1(TN )) > δ,
Theorem 1 implies thatlimt→∞ WN (t) = I. However,
Z(t) = WN (t), for t ≥ TN . Therefore, the continuous
functionsvk: R+ → R determined by Algorithm 1 are such
that (5) is satisfied. We have thus shown our main result:

Theorem 2:Assume that system (1) is regular, in the sense
of Definition 1. GivenX∞ ∈ SU(n), T > 0 and “feedback
gains”f2

k > 0, considerXT
r : R → SU(n) anduT

k : R → R as
in Definition 1, for1 ≤ k ≤ m. DefineXr = XT

r X∞. Then,
there exist continuous open-loop controlsuk: R+ → R,
for 1 ≤ k ≤ m, such that (6) is satisfied. In other
words, the periodic motion planning problem always has a
solution when (1) is regular. More precisely, ifV (X∞) > δ,
where δ is as in Theorem 1, then the smooth open-loop
controls uk(t) = uT

k (t) − f2
kV(X

†(t)HkXr(t)), obtained
by numerical integration, fort ∈ R+, 1 ≤ k ≤ m, assure
that (6) holds. Otherwise, in caseV (X∞) ≤ δ, then by
following Algorithm 1 we determine continuous functions
vk: R+ → R, for 1 ≤ k ≤ m, such that the corresponding
continuous open-loop controlsuk(t) = uT

k (t) − vk(t), for
t ∈ R+, assure that (6) is satisfied.

III. QUANTUM MECHANICAL EXAMPLE

After some approximations, an appropriate change of
coordinates, scalings and simplifications, a controlled quan-
tum system consisting of two coupled spin-1

2 particles with
Heisenberg interaction and driven by an external electromag-
netic field, can be modeled as [4]

Ẏ = (D +Dxux +Dyuy +Dzuz)Y, Y (0) = I, (12)

whereY ∈ M4 (n = 4), the controlsux, uy, uz ∈ R are the
x, y, z components of the electromagnetic field, respectively,
D = diag(3ı,−ı,−ı,−ı), Dx = HR

14 − 3HR
23, Dy = HR

13 +

3HR
24, Dz = HR

12 − 3HR
34 ∈ su(4), and HR

ij = (hR,ij
kℓ ),

HI
ij = (hI,ij

kℓ ) ∈ su(4) are the matrices with entries

hR,ij
ij = 1, hR,ij

ji = −1, hR,ij
kℓ = 0, for k, ℓ 6= i, j,

hI,ij
ij = hI,ij

ji = ı, hI,ij
kℓ = 0, for k, ℓ 6= i, j,

respectively, for all1 ≤ i < j ≤ n.
Now, in order to remove the drift termDY in (12), we

define, as usual, the time-dependent change of coordinates



X = Φ(t, Y ) = e−DtY , for all (t, Y ) ∈ R ×M4. In these
coordinates, (12) is described as1

Ẋ = (Cxux + Cyuy + Czuz)X, X(0) = I, (13)

where

Cx = e−DtDxe
Dt =




0 0 0 e−ı4t

0 0 −3 0
0 3 0 0

−eı4t 0 0 0


 ,

Cy = e−DtDye
Dt =




0 0 e−ı4t 0
0 0 0 3

−eı4t 0 0 0
0 −3 0 0


 ,

Cz = e−DtDze
Dt =




0 e−ı4t 0 0
−eı4t 0 0 0

0 0 0 −3
0 0 3 0


 ,

for all t ∈ R. We choose the real controlsux, uy, uz as

ux = (u1 + ıu2)e
ı4t + (u1 − ıu2)e

−ı4t,

uy = (u3 + ıu4)e
ı4t + (u3 − ıu4)e

−ı4t,

uz = (u5 + ıu6)e
ı4t + (u5 − ıu6)e

−ı4t,

(14)

respectively, for allt ∈ R, whereu1, . . . , u6 ∈ R are the
new controls. By applying the rotating wave approximation
(RWA) (see e.g. [9], [4], [5]) to system (13)–(14), which con-
sists in considering only the terms that are time-independent
and in disregarding all the oscillating ones, we obtain the
following time-independent driftless system

Ẋ = (u1H
R
14+u2H

I
14+u3H

R
13+u4H

I
13+u5H

R
12+u6H

I
12)X,

(15)
with initial conditionX(0) = I. It is straightforward to ver-
ify that Lie({HR

14, H
I
14, H

R
13, H

I
13, H

R
12, H

I
12}) = su(4), i.e.

the system is controllable on SU(4). Hence, Coron’s Return
Method implies that the system is regular (see Remark 2)
and therefore Theorem 2 can be applied. We chooseT = 1
and as goal state the C–NOT (Controlled-Not) gate

X∞ =




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0


 ∈ SU(4),

which is one of the universal gates and has great importance
in quantum information theory [7], [5]. It is easy to see from
the proof of Theorem 1 thatG = {−4, 0, 4} with δ = 0.
SinceV (X∞) = 2 > 0, Theorem 2 implies that the smooth
open-loop controlsuk(t) = u1

k(t)− f2
kV(X

†(t)HkXr(t)) =
u1
k(t)−vk(t), for t ∈ R+, 1 ≤ k ≤ 6, obtained by numerical

integration, assure thatlimt→∞[X(t)−Xr(t)] = 0, for any
“feedback gains”f2

k > 0. Here, u1
k = uT

k with T = 1,
and H1 = HR

14, H2 = HI
14, H3 = HR

13, H4 = HI
13,

H5 = HR
12, H6 = HI

12. However, the periodic functions

1In quantum mechanics, this description is usually called the interaction
picture or interaction representation.

u1
1, . . . , u

1
6 are not known explicitly. Coron’s Return Method

only establishes their existence. Fortunately, for system(15),
symbolic computation software packages have shown that if
we define them asu1

k(t) =
∑nf

ℓ=1 akℓ sin(2πℓt), for t ∈ R,
1 ≤ k ≤ 6, with nf > 1 and whereakℓ ∈ R are randomly
chosen from the uniform distribution on the interval[−a, a]
with “sufficiently large” a > 0, then it is “very likely” that
dim(span{Bj

k(0), 1 ≤ k ≤ 6, 0 ≤ j ≤ 6}) = 15, that is, (3)
holds (recall that dim(su(4)) = 15). And, when (3) is true,
it follows that limt→∞[X(t)−Xr(t)], whereXr = X1

rX∞.
We remark that sinceu1

k is an odd periodic function with
periodT = 1, the solutionX1

r : R → SU(n) in Definition 1
is also periodic with periodT = 1. Note thata and nf

determine the “excitation level” ofu1
k. Forfk = 1, computer

simulations have suggested that asa andnf get larger, the
faster the convergence of the tracking errorX −Xr to zero
(assuming that dim(span{Bk

j (0)}) = 15, of course).
The obtained simulation results are now presented for

fk = 1, a = nf = 5 and akℓ having as values the
corresponding entries of the matrixA = (akℓ) below

A =




−2.00 −1.39 4.66 4.31 1.80
−0.31 −1.54 0.92 −3.20 −2.18
−4.69 −0.31 1.75 3.94 −1.11
−2.79 0.77 4.09 2.34 3.46
2.19 0.60 −0.27 0.43 −3.75

−0.18 −4.44 −1.38 −4.58 2.59




.

With these choices, we have indeed verified that
dim(span{Bk

j (0)}) = 15. Figure 1 exhibits the convergence
of ‖X −Xr‖ to zero (Euclidean norm onM4). We see that
the norm of the tracking error is non-increasing. In Figure 2,
the controlsu1, u2 (top) and the “feedbacks”v1, v2 (bottom)
on the time interval[0, 10] are shown. Notice thatvk is
relatively small in comparison with the controluk, for
k = 1, 2. Therefore, the controluk is relatively close tou1

k

as defined above, fork = 1, 2. In order not to overwhelm
the presentation, we have chosen not to exhibituk, vk, for
3 ≤ k ≤ 6. They have, however, a similar behavior and a
similar order of magnitude as fork = 1, 2.
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Fig. 1. Convergence of the norm of the tracking error to zero.

IV. CONCLUDING REMARKS

In the solution here presented for the periodic motion
planning problem, the only needed assumption is that system
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Fig. 2. Controlsu1, u2 and “feedbacks”v1, v2 on the interval[0, 10].

(1) is regular, which requires that the periodic functionsuT
k

satisfying (3) are explicitly known. Nevertheless, this will
hardly be the case in general. For this reason, currently under
investigation is the explicit determination ofur

k in (2) in a
manner that Theorem 1 still holds under assumptions other
than the regularity of system (1).
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APPENDIX

In order to prove Theorem 1, we need first a few inter-
mediate definitions and results. For simplicity, we consider
throughout this section thatq = (t0,Wt0) ∈ R × SU(n) is
fixed and thatWq: R → SU(n) denotes the solution of the
auxiliar system (8)–(9) with initial conditionWq(t0) = Wt0 .

Definition 2: [11] A point W ∈ Mn is called a limit
point of Wq if there exists a real sequence{tm} such that
limm→∞ tm = ∞ and limm→∞ Wq(tm) = W . The set of
all limit points of Wq is called thelimit set of Wq and is
denoted byΩ(Wq).

Remark 3:Since SU(n) is a compact subset ofMn, it is
clear thatΩ(Wq) is a non-empty subset of SU(n).

Proposition 1: [11] limt→∞ d(Wq(t),Ω(Wq)) = 0.
The next 2 lemmas are essential in the proof of the

important convergence result of Theorem 3 given below,
which was inspired in the periodic version of LaSalle’s
invariance principle presented in [11] and in thead-condition
stabilization method of [6].

Lemma 1:Let W : R → Mn be a continuously differen-
tiable mapping such thatlimt→∞ Ẇ (t) = 0. Suppose that
{tm} is a real sequence such thatlimm→∞ tm = ∞ and
limm→∞ W (tm) = W . Then, for everyǫ ∈ R, we have that
limm→∞ W (tm + ǫ) = W .

Proof: Let ǫ ≥ 0 and m ∈ N. We have that
W (tm+ ǫ)−W (tm) =

∫ tm+ǫ

tm
Ẇ (t) dt. Thus, the inequality

‖W (tm + ǫ) −W (tm)‖ ≤ |ǫ| supt∈[tm,tm+ǫ] ‖Ẇ (t)‖ holds.
The assumptions then imply thatlimm→∞ W (tm+ ǫ) = W .
For ǫ < 0, we can proceed in an analogous manner.

Lemma 2:Consider thatW ∈ Ω(Wq), j ∈ N and let
1 ≤ k ≤ m. Assume thatlimt→∞ Ẇq(t) = 0 and that
limt→∞ V(Wq(t)X

†
r (t)B

j
k(t)X∞) = 0, whereBj

k is as in
(3). Then,V(WX†

∞Bj
k(0)X∞) = 0.

Proof: Let W ∈ Ω(Wq). By definition, there exists
a real sequence{tm} such that limm→∞ tm = ∞ and
limm→∞ Wq(tm) = W . Now, for eachm ∈ N, there
exists ℓm ∈ Z such thatsm = tm − ℓmT ∈ [0, T ), where
T > 0 is the period ofXr and of Bj

k (see Remark 1).
Since [0, T ] is compact, there exists a subsequence{smi

}
in which limi→∞ smi

= θ ∈ [0, T ]. Let {tmi
} be the

corresponding subsequence of{tm}. Define the sequences
{t∗mi

} and {s∗mi
} as t∗mi

= tmi
− θ and s∗mi

= smi
− θ,

respectively. We have thatlimt→∞ Ẇq(t) = 0 as well
as limt→∞ V(Wq(t)X

†
r (t)B

j
k(t)X∞) = 0 (assumptions).

Therefore, by definition,limi→∞ s∗mi
= 0, and Lemma 1

gives thatlimi→∞ Wq(t
∗
mi

) = limi→∞ Wq(tmi
− θ) = W .

Hence, the continuity and periodicity ofXr and of Bj
k

imply that limi→∞ V(Wq(t
∗
mi

)X†
r (t

∗
mi

)Bj
k(t

∗
mi

)X∞) =

limi→∞ V(Wq(t
∗
mi

)X†
r (s

∗
mi

)Bj
k(s

∗
mi

)X∞) =

V(WX†
∞Bj

k(0)X∞) = 0.
Theorem 3:Consider the subsetE = {W ∈ SU(n) :

V(WX†
∞Bj

k(0)X∞) = 0, for all j ∈ N, 1 ≤ k ≤ m},
whereBj

k is as in (3). Then,limt→∞ d(Wq(t), E) = 0 and
E is non-empty.

Proof: Due to Proposition 1, it suffices to prove that the
non-empty limit setΩ(Wq) of the solutionWq is contained in
the setE. We remark that sinceV: Mn → R is a continuous
linear function, there existsc > 0 such that|V(X)| ≤ c‖X‖,
for all X ∈ Mn. Furthermore, it follows from (2), (8)–(9),
Remark 1 and the compactness of SU(n) that each of the
mappingsXr, X†

r , Wq, Bj
k, Ẋr, Ẋ†

r , Ẇq, Ḃj
k is bounded,

for everyj ∈ N, 1 ≤ k ≤ m.
Consider the functionsα: R → R, bjk: R × Mn → R,

βj
k: R → R defined respectively as

α(t) = V(Wq(t)), for all t ∈ R,

bjk(t,W ) = V(WX†
r (t)B

j
k(t)X∞), (t,W ) ∈ R×Mn,

βj
k(t) = bjk(t,Wq(t)), for all t ∈ R,

for j ∈ N, 1 ≤ k ≤ m. We will prove by induction that

lim
t→∞

βj
k(t) = lim

t→∞
V(Wq(t)X

†
r (t)B

j
k(t)X∞) = 0, (16)

for j ∈ N, 1 ≤ k ≤ m. From (8)–(9) and the definition of
b0k, we have thatV̇(t,W ) =

∑m

k=1 f
2
kb

0
k(t,W )2 ≥ 0 and

V̈(t,W ) = 2
∑m

k=1 f
2
k ḃ

0
k(t,W )b0k(t,W ), whereḃ0k(t,W ) =

V(WX†
r (t)

∑m

ℓ=1 f
2
ℓ b

0
ℓ(t,W )HℓB

0
k(t)X∞) + b1k(t,W ) and

f1, . . . , fm ∈ R are non-zero, for(t,W ) ∈ R × Mn.
Since V̇ is a non-negative function, we conclude thatα is
a non-decreasing function bounded from above such thatα̈
is bounded. Hence,limt→∞ α(t) exists and is finite. This
relation along with Barbalat’s Lemma (see e.g. [10]) give
that limt→∞ α̇(t) =

∑m

k=1 f
2
k b

0
k(t,Wq(t))

2 = 0. Thus,
limt→∞ β0

k(t) = limt→∞ V(Wq(t)X
†
r (t)B

0
k(t)X∞) = 0,

for each1 ≤ k ≤ m, from which (8)–(9) imply that

lim
t→∞

Ẇq(t) = 0. (17)



Now, consider the induction hypothesis

lim
t→∞

βj
k(t) = lim

t→∞
V(Wq(t)X

†
r (t)B

j
k(t)X∞) = 0, (18)

for some j ∈ N and all 1 ≤ k ≤ m. We have that
ḃjk(t,W ) = V(WX†

r (t)
∑m

ℓ=1 f
2
ℓ b

0
ℓ(t,W )HℓB

j
k(t)X∞) +

bj+1
k (t,W ), for all 1 ≤ k ≤ m, (t,W ) ∈ R×Mn. Straight-

forward computations show thaẗβj
k is bounded because

β̈j
k(t) = b̈jk(t,Wq(t)), for all 1 ≤ k ≤ m, t ∈ R. Hence,

(18) and Barbalat’s Lemma imply thatlimt→∞ βj+1
k (t) =

limt→∞ V(Wq(t)X
†
r (t)B

j+1
k (t)X∞) = 0, for 1 ≤ k ≤ m.

We have thus proved that (16) is true. At this moment, it
is simple to prove thatΩ(Wq) ⊂ E. Indeed, assume that
W ∈ Ω(Wq) ⊂ SU(n). Then, (16), (17) and Lemma 2 imply
thatV(WX†

∞Bj
k(0)X∞) = 0, for eachj ∈ N, 1 ≤ k ≤ m.

Lemma 3:Consider the subsetF = {W ∈ SU(n) :
V (W ) =

∑n

i=1 ℜ(λi), for someλi ∈ C such that|λi| =
1,
∏n

i=1 λi = 1,ℑ(λ1) = · · · = ℑ(λn)}. Then,I ∈ F and
limt→∞ d(Wq(t), F ) = 0.

Proof: According to Theorem 3, it suffices to show
the inclusionE ⊂ F . Let W ∈ E ⊂ SU(n). It is a
well-known result in linear algebra thatW ∈ SU(n) can
be decomposed asW = Mdiag(λ1, . . . , λn)M

†, whereM
is unitary, λ1, . . . , λn ∈ C, |λi| = 1 and

∏n

i=1 λi = 1.
Thus, V (W ) =

∑n

i=1 ℜ(λi) and V(WX†
∞Bj

k(0)X∞) =

V(diag(λ1, . . . , λn)(X∞M)†Bj
k(0)(X∞M)) = 0, for each

1 ≤ k ≤ m, j ∈ N. Since X∞M is unitary, it
is clear thatN : su(n) → su(n) defined byN(Y ) =
(X∞M)†Y (X∞M), for everyY ∈ su(n), is a linear surjec-
tive isomorphism. Now, by assumption, system (1) is regular
and (3) is satisfied. Hence,V(diag(λ1, . . . , λn)X) = 0, for
everyX ∈ su(n), and thusV(diag(λ1, . . . , λn)Dℓ) = 0, for
each1 ≤ ℓ ≤ n, whereD1 = diag(ı,−ı, 0, . . . , 0), D2 =
diag(0, ı,−ı, 0, . . . , 0), . . . , Dn−1 = diag(0, . . . , ı,−ı) and
Dn = diag(ı, 0, . . . , 0,−ı) are the canonical diagonal matri-
ces ofsu(n). From the diagonal structure ofD1, . . . , Dn, we
conclude thatλ1, . . . , λn must satisfyℑ(λ1) = · · · = ℑ(λn).
This implies thatW ∈ F and thereforeE ⊂ F .

The proof of Theorem 1 is given below.
Proof: It is clear thatn = max (G) becauseI ∈ F .

We will first show thatG is finite. Let x ∈ G. Then, there
exist λ1, . . . , λn ∈ C such thatx =

∑n

j=1 ℜ(λj) with (i)∏n

j=1 λj , (ii) |λj | = 1 and (iii) ℑ(λ1) = · · · = ℑ(λn).
Property (ii) implies thatλj = eıθj , for someθj ∈ R, and it
follows from (iii) that λj = λ1 = eıθ1 or λj = eı(π−θ1), for
each1 ≤ j ≤ n. Let n1 be the number ofj ∈ {1, . . . , n}
such thatλj = λ1 and definen2 = n − n1. Therefore,
x = n1 cos(θ1) + n2 cos(π − θ1) = (n1 − n2) cos(θ1) with
n1, (n2+1) ∈ {1, . . . , n} andn1+n2 = n. If n1 = n2, then
x = 0. Thus, assume thatn1 6= n2. From property (i) we
obtain thateın1θ1eın2(π−θ1) = 1. Hence, there existsk ∈ Z

such thatn1θ1+n2(π−θ1) = 2kπ. This relation implies that
θ1 = (2k − n2)π/(n− 2n2). Note thatn1, n2, k depend on
x ∈ G and thatn2, n1−n2 can only assume a finite number
of values. If we show thatθ1 can only assume a finite number
of values, we will have shown that the same holds forx ∈ G,

which implies thatG is finite. It is clear that the function
η: Z → R defined asη(ℓ) = cos((2ℓ − n2)π/(n − 2n2)),
for all ℓ ∈ Z, has period|n − 2n2| > 0. Thus, the values
assumed byθ1 must be finite in number.

Now, the convergence result will be shown. Recall that,
for all X ∈ SU(n), we have that−n ≤ V (X) ≤ n and that
V (X) = n if and only if X = I. Let δ = max(G \ {n}).
SinceG is finite, we have that

δ < x ≤ n ⇒ x = n, for all x ∈ G. (19)

Suppose thatV (Wt0 ) > δ. Since SU(n) is compact and
V : Mn → R is continuous, it follows thatV |SU(n) is
uniformly continuous. Define the functionα: R → R by
α(t) = V(Wq(t)), for t ∈ R. Recall that, by construction,
we have thatV̇(t,W ) =

∑m

k=1 ak(t,W )2 ≥ 0, for all
(t,W ) ∈ R × Mn. Note thatak and V̇ are smooth, for
each 1 ≤ k ≤ m. Since V̇ is a non-negative function,
we conclude thatα is a smooth non-decreasing function.
Therefore,V (Wq(t)) ≥ V (Wt0) > δ, for all t ≥ t0. The
uniform continuity ofV |SU(n) then implies that there exists
µ > 0 such that

‖X−Wq(t)‖ < µ ⇒ V (X) > δ, for t ≥ t0, X ∈ SU(n)
(20)

(indeed, chooseǫ = V (Wt0) − δ > 0). The convergence
result of Lemma 3 means that

∀ǫ > 0 ∃T ∈ R ∀t ≥ T ∃α(t) ∈ F s.t. ‖α(t)−Wq(t)‖ < ǫ.

Let ǫ > 0 and defineǫ = min(ǫ, µ). Thus,

∀t ≥ T ∃α(t) ∈ F s.t. ‖α(t)−Wq(t)‖ < ǫ ≤ µ,

for someT ∈ R. Define T̃ = max(T , t0) and let t ≥ T̃ .
Sinceα(t) ∈ F ⊂ SU(n) and V (F ) ⊂ G, (20) gives that
δ < V (α(t)) ∈ G. However,δ < V (α(t)) ≤ n. Therefore,
from (19), we obtain thatV (α(t)) = n, which implies that
α(t) = I. We have thus shown thatlimt→∞ Wq(t) = I.
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