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Feedback generation of quantum Fock states by discrete QND measures

Mazyar Mirrahimi, Igor Dotsenko and Pierre Rouchon

Abstract— A feedback scheme for preparation of photon
number states in a microwave cavity is proposed. Quantum
Non Demolition (QND) measurement of the cavity field provides
information on its actual state. The control consists in injecting
into the cavity mode a microwave pulse adjusted to increase the
population of the desired target photon number. In the ideal
case (perfect cavity and measures), we present the feedback
scheme and its detailed convergence proof through stochastic
Lyapunov techniques based on super-martingales and other
probabilistic arguments. Quantum Monte-Carlo simulations
performed with experimental parameters illustrate convergence
and robustness of such feedback scheme.

I. I NTRODUCTION

In [10], [5], [4] QND measures are exploited to detect
and/or produce highly non-classical states of light trapped in
a super-conducting cavity (see [6, chapter 5] for a description
of such QED systems and [1] for detailed physical models
with QND measures of light using atoms). For such experi-
mental setups, we detail and analyze here a feedback scheme
that stabilize the cavity field towards any photon-number
states (Fock states). Such states are strongly non-classical
since their photon numbers are perfectly defined. The control
corresponds to a coherent light-pulse injected inside the
cavity between atom passages. The overall structure of the
proposed feedback scheme is inspired of [3] using a quantum
adaptation of the observer/controller structure widely used
for classical systems (see, e.g., [7, chapter 4]). The observer
part of the proposed feedback scheme consists in a discrete-
time quantum filter, based on the observed detector clicks, to
estimate the quantum-state of the cavity field. This estimated
state is then used in a state-feedback based on Lyapunov
design, the controller part. In theorems 1 and 2 we prove the
convergence almost surely of the closed-loop system towards
the goal Fock-state in absence of modeling imperfections
and measurement errors. Simulations illustrate this results
and show that performance of the closed-loop system are
not dramatically changed by false detections for10% of the
detector clicks. In [2] similar feedback schemes are also
addressed with modified quantum filters in order to take
into account additional physical effects and experimental
imperfections. [2] focuses on physics and includes extensive
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closed-loop simulations whereas here we are interested by
mathematical aspects and convergence proofs.

In section II, we describe very briefly the physical system
and its quantum Monte-Carlo model. In section III the feed-
back is designed using Lyapunov techniques. Its convergence
is proved in theorem 1. Section IV introduces a quantum
filter to estimate the cavity state necessary for the feedback:
convergence of the closed-loop system (quantum filter and
feedback based on the estimate cavity state) is proved in
theorem 2 assuming perfect model and detection.This section
ends with Theorem 3 proving a contraction property of the
quantum filter dynamics. Section V is devoted to closed-loop
simulations where measurement imperfections are introduced
for testing robustness.

The authors thank Michel Brune, Serge Haroche and Jean-
Pierre Raimond for useful discussions and advices.

II. T HE PHYSICAL SYSTEM AND ITS JUMP DYNAMICS
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Fig. 1. The microwave cavity QED setup with its feedback scheme (in
green).

As illustrated by figure 1, the system consists inC a
high-Q microwave cavity, inB a box producing Rydberg
atoms, inR1 andR2 two low-Q Ramsey cavities, inD an
atom detector and inS a microwave source. The dynamics
model is discrete in time and relies on quantum Monte-Carlo
trajectories (see [6, chapter 4]). It takes into account theback-
action of the measure. It is adapted from [5] where we have
just added the control effect.

Each time-step indexed by the integerk corresponds to
atom numberk coming fromB, submitted then to a first
Ramseyπ/2-pulse inR1, crossing the cavityC and being
entangled with it, submitted to a secondπ/2-pulse inR2

and finally being measured inD. The state of the cavity
is described by the density operatorρk. Here the passage
from the time stepk to k + 1 corresponds to the projective
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measurement of the cavity state, by detecting the state of the
Rydberg atom numberk after leavingR2. During this same
step, an appropriate coherent pulse (the control) is injected
into C. Denoting, as usual, bya the photon annihilation
operator and byN = a†a the photon number operator, the
density matrixρk+1 is related toρk through the following

jump-relationships:ρk+1 =
D(αk)MkρkM

†

k
D(−αk)

Tr(MkρkM
†

k)
where

• the measurement operatorMk =Mg (resp.Mk =Me),
when the atomk is detected in the state|g〉 (resp.|e〉)
with

Mg = cos

„

φR + φ

2
+Nφ

«

, Me = sin

„

φR + φ

2
+Nφ

«

.

(1)

Such measurement process corresponds to an off-
resonant interaction between atomk and cavity where
φR is the direction of the second Ramseyπ/2-pulse (R2

in figure 1) andφ is the de-phasing-angle per photon.
• The probabilityPg,k (resp.Pe,k) of detecting the atom
k in |g〉 (resp. |e〉) is given by Tr(MgρkMg) (resp.
Tr (MeρkMe).

• D(αk) is the displacement operator describing the co-
herent pulse injection,D(αk) = exp(αk(a

† − a)), and
the scalar controlαk is a real parameter that can be
adjusted at each time stepk.

The time evolution of the stepk to k + 1, in fact, consists
of two types of evolutions: a projective measurement and
a coherent injection. For simplicity sakes, we will use
the notation ofρk+ 1

2

, to illustrate this intermediate step.
Therefore,

ρ
k+ 1

2

=
MkρkM

†
k

Tr
“

MkρkM
†
k

” , ρk+1 = D(αk)ρk+1

2

D(−αk) (2)

In the sequel, we consider the finite dimensional approx-
imation defined by a maximum of photon number,nmax. In
the truncated Fock basis(|n〉)0≤n≤nmax, N corresponds to
the diagonal matrix(diag(n))0≤n≤nmax, ρ is a (nmax + 1) ×
(nmax + 1) symmetric positive matrix with unit trace, and
the annihilation operatora is an upper-triagular matrix with
(
√
n)1≤n≤nmax as upper diagonal, the remaining elements

being0. We restrict to real quantities since the phase of any
Fock state is arbitrary. We set it here to0.

III. F EEDBACK SCHEME AND CONVERGENCE PROOF

We aim to stabilize the Fock state with̄n photons char-
acterized by the density operatorρ̄ = |n̄〉 〈n̄|. To this end
we choose the coherent feedbackαk such that the value of
the Lyapunov functionV (ρ) = 1 − Tr (ρρ̄) decreases when
passing fromρk+ 1

2

to ρk+1. Note that, forα small enough,
the Baker-Campbell-Hausdorff formula yields the following
approximation

D(α)ρD(−α) ≈ ρ− α[ρ, a† − a] +
α2

2
[[ρ, a† − a], a† − a] (3)

up to third order terms. Therefore, forαk small enough, we
have

Tr
“

D(αk)ρk+ 1

2

D(−αk)ρ̄
”

=

Tr
“

ρ
k+ 1

2

ρ̄
”

− αkTr
“

[ρ
k+ 1

2

, a
† − a]ρ̄

”

+
α2
k

2
Tr
“

[[ρ
k+ 1

2

, a
† − a], a† − a]ρ̄

”

.

Thus the feedback

αk = c1Tr
(

[ρ̄, a† − a]ρk+ 1

2

)

(4)

with a gainc1 > 0 small enough ensures that

Tr (ρ̄ρk+1)− Tr
“

ρ̄ρ
k+ 1

2

”

≥ c1

2

˛

˛

˛Tr
“

[ρ̄, a† − a]ρ
k+ 1

2

” ˛

˛

˛

2

, (5)

since Tr
(

[ρk+ 1

2

, a† − a]ρ̄
)

= −Tr
(

[ρ̄, a† − a]ρk+ 1

2

)

. Fur-

thermore, the conditional expectation of Tr
(

ρ̄ρk+ 1

2

)

know-
ing ρk is given by

E
“

Tr
“

ρ̄ρ
k+ 1

2

”

| ρk
”

= Pg,kTr

 

ρ̄MgρkM
†
g

Pg,k

!

+ Pe,kTr

„

ρ̄MeρkM
†
e

Pe,k

«

= Tr (ρ̄ρk)

since [ρ̄,Mg] = [ρ̄,Me] = 0 andM †
gMg + M †

eMe = 11.
Thus

E (Tr (ρ̄ρk+1) | ρk) ≥ E

(

Tr
(

ρ̄ρk+ 1

2

)

| ρk
)

= Tr (ρ̄ρk)

and consequently, the expectation value ofV (ρk) decreases
at each sampling time:

E (V (ρk+1)) ≤ E (V (ρk)) . (6)

Considering the Markov processρk, we have therefore shown
thatV (ρk) is a super-martingale bounded from below by 0.
When V reaches its minimum0, the Markov processρk
has converged tōρ. However, one can easily see that this
super-martingale has also the possibility to converge towards
other attractors, for instance other Fock states which are all
the stationary points of the closed-loop Markov process but
with V (ρ) = 1 instead of0. Following [9], we suggest the
following modification of the feedback scheme:

αk =

8

>

<

>

:

c1Tr
“

[ρ̄, a† − a]ρ
k+ 1

2

”

if V (ρk) ≤ 1− ε

argmax
α∈[−ᾱ,ᾱ]

Tr
“

ρ̄D(α)ρ
k+ 1

2

D(−α)
”

if V (ρk) > 1− ε

(7)
with c1, ε, ᾱ > 0 constants.

Theorem 1: Consider (2) and assume that for alln ∈
{0, . . . , nmax} we haveφR+φ

2 +nφ 6= 0 mod (π/2) and that

#



cos2
„

φR + φ

2
+ nφ

«

| n ∈ {0, . . . , nmax}
ff

= n
max + 1.

Take the switching feedback scheme (7) withᾱ > 0. For
small enoughc1 > 0 and ε > 0, the trajectories of (2)
converge almost surely towards the target Fock stateρ̄.

Remark 1: The second part of the feedback (7), dealing
with states near the bad attractors, is not explicit and may
seem hard to compute. Note that, this form has been partic-
ularly chosen to simplify the proof of the Theorem 1 and



in practice, one can take it to be any constant control field
exciting the system around these bad attractors and ensuring
a fast return to the inner set.

Remark 2: The controller gain c1 can be tuned
in order to maximize at each sampling timek,
Tr

(

D(αk)ρk+ 1

2

D(−αk)ρ̄
)

for ρk+ 1

2

near ρ̄. Up to
third order term inρk+ 1

2

− ρ̄, (3) yields to

Tr
“

D(αk)ρk+ 1

2

D(−αk)ρ̄
”

= Tr
“

ρ̄ρ
k+ 1

2

”

+

“

Tr
“

[ρ̄, a† − a]ρ
k+ 1

2

””2
„

c1 − c21
2

Tr
“

[ρ̄, a† − a][ρ̄, a† − a]
”

«

.

Thus c1 = 1/Tr
(

[ρ̄, a† − a][ρ̄, a† − a]
)

≈ 1/(4n̄ + 2) for
nmax ≫ n̄ implies a maximum decrease at the sampling time,
up to third-order terms inρk − ρ̄.
In order to prove the Theorem 1, we need some classical
tools from stochastic processes namely the Doob’s inequality
and the Kushner’s asymptotic invariance Theorem [8]. These
results are been recalled in the Appendix.

Proof of Theorem 1. It is divided in 3 steps: in a first
step, we show that for small enoughε and by applying the
second part of the feedback scheme, the trajectories starting
within the set{ρ | V (ρ) > 1− ε} reach in one step the set
{ρ | V (ρ) ≤ 1 − 2ε} and this with probability 1; next, we
show that trajectories starting within the set{ρ | V (ρ) ≤
1 − 2ε}, will never hit the set{ρ | V (ρ) > 1 − ε} with a
uniformly non-zero probabilityp > 0; finally, we will show
that, the trajectories of the quantum filter converge towards ρ̄
for almost all trajectories that never hit the set{ρ | V (ρ) >
1− ε}. This is then an immediate conclusion of the Markov
property that the trajectories of the quantum filter with the
feedback scheme (7) will converge almost surely towardsρ̄.

Step 1: We start by considering the process starting on the
level set{ρ | V (ρ) = 1}. We have the following lemma:

Lemma 1: Considerρ a well-defined density matrix such
that Tr(ρρ̄) = 0. We have

min
s∈{g,e}

max
α∈[−ᾱ,ᾱ]

Tr
`

ρ̄D(α)MsρM
†
sD(−α)

´

Tr
“

MsρM
†
s

” > 0.

We denote any argument of the above min-max problem by
ᾱ(ρ) ∈ [−ᾱ, ᾱ].
Proof of Lemma 1: Define ρs =

MsρM
†
s

Tr(MsρM
†
s )
, s ∈ {g, e}.

The matricesMg andMe being diagonal, we trivially have
Tr (ρsρ̄) = 0. Let us fix s and assume that for allα ∈
[−ᾱ, ᾱ],

Tr (ρ̄D(α)ρsD(−α)) = 0. (8)

Decomposingρs as a sum of projectors we haveρs =
∑m

k=1 λk,s |ψk,s〉 〈ψk,s| , where λk,s are strictly positive
eigenvalues andψk,s are the associated normalized eigen-
states ofρs (m = 1 corresponds to the case whereρs is a
projector). The equation (8), clearly, implies

〈ψk,s | D(−α)n̄〉 = 0, ∀k ∈ {1, · · · ,m},∀α ∈ [−ᾱ, ᾱ]. (9)

Fixing onek ∈ {1, · · · ,m} and takingψ = ψk,s, noting
thatD(−α) = exp(−α(a†−a)) and derivingj times versus
α around0 we get

〈

ψ | (a† − a)j n̄
〉

= 0, ∀j = 0, . . . , nmax. (10)

But the family
(

(a† − a)j n̄
)

0≤j≤nmax is full rank. This is a
direct consequence of [11, Theorem 4]. It is proved there that
the truncated harmonic oscillatord

dt
|φ〉t = −(ıN+v(t)(a†−

a)) |φ〉t , is completely controllable with the single scalar
control v(t). If the rank r of

(

(a† − a)p |n̄〉
)

0≤p≤nmax is
strictly less thatnmax+1, then according to Cayley-Hamilton
Theorem the rank of the infinite family

(

(a† − a)p |n̄〉
)

p≥0

is also r. Take |ξ〉, a state orthogonal to this family. For
any controlv(t), the state|φ〉t starting from |n̄〉 remains
orthogonal to|ξ〉. Thus it will be impossible to find a control
v(t) steering|φ〉t from |n̄〉 to |ξ〉.

Since the rank of
(

(a† − a)p |n̄〉
)

0≤p≤nmax is maximum,
(10) implies|ψk〉 = 0 and leads to a contradiction.�

Applying the compactness of the space of density matri-
ces, we directly have the following corollary:

Corollary 1: There exists anǫ > 0 such that

inf
ρ∈{Tr(ρρ̄)<ǫ}

Tr
`

ρ̄D(ᾱ(ρ))MsρM
†
sD(−ᾱ(ρ))

´

Tr
“

MsρM
†
s

” > 2ǫ (11)

for s = g, e and whereᾱ(ρ) is defined in Lemma 1.
Proof of Corollary 1: We take

δ = inf
ρ∈{Tr(ρρ̄)=0}

min
s∈{g,e}

Tr
`

ρ̄D(ᾱ(ρ))MsρM
†
sD(−ᾱ(ρ))

´

Tr
“

MsρM
†
s

” .

By Lemma 1 and the compactness of the set{ρ | Tr (ρρ̄) =
0}, we know thatδ > 0. By continuity of Tr(ρρ̄) with respect
to ρ and by compactness of the space of density matrices,
there existsγ > 0 such that

inf
ρ∈{Tr(ρρ̄)<γ}

min
s∈{g,e}

Tr
`

ρ̄D(ᾱ(ρ))MsρM
†
sD(−ᾱ(ρ))

´

Tr
“

MsρM
†
s

” >
δ

2
.

Therefore, by takingǫ = min(γ, δ/4), clearly, (11) holds
true.�

Through this corollary, we have shown that whenever the
Markov process hits the set{Tr (ρρ̄) < ǫ}, it is immediately
rebounded to the set{Tr (ρρ̄) > 2ǫ} and this with probabil-
ity 1.

Step 2: Let us assume that the process starts within the
set{Tr (ρρ̄) > 2ǫ}.

Lemma 2: Initializing the Markov process within the set
{ρ | V (ρ) ≤ 1 − 2ǫ}, ρk will never hit the set{ρ | V (ρ) >
1− ǫ} with a probabilityp > ǫ

1−ǫ
> 0.

Proof of Lemma 2: By (6), the processV (ρk) is, clearly, a
supermartingale. One only needs to use the Doobs inequality
(cf. Appendix, Theorem 4) and we have

P ( sup
0≤k<∞

V (ρk) > 1− ǫ) <
V (ρ0)

1− ǫ
≤ 1− 2ǫ

1− ǫ
,

and thusp > 1− (1− 2ǫ)/(1− ǫ) = ǫ/(1− ǫ). �
We have shown that starting within the inner set

{Tr (ρρ̄) ≥ 2ǫ} there is a uniform non-zero probability
of ǫ/(1 − ǫ) for the process, to never hit the outer set
{Tr (ρρ̄) < ǫ}.

Step 3:
Lemma 3: The sample pathsρk remaining into the set

{Tr (ρρ̄) > ǫ} converge in probability tōρ ask → ∞.



Proof of Lemma 3: Consider the functionW(ρ) = 1 −
Tr (ρρ̄)2 . For s = g, e, setρs =

MsρM
†
s

Tr(MsρM
†
s )

. We have

W(ρg) = 1− Tr
`

ρM†
g ρ̄Mg

´2

Tr
“

MgρM
†
g

”2 ,

= 1−

˛

˛

˛ cos
“

φR+φ

2
+ n̄φ

” ˛

˛

˛

4

Tr
“

MgρM
†
g

”2 Tr (ρρ̄)2 , (12)

and similarly

W(ρe) = 1−

˛

˛

˛ sin
“

φR+φ

2
+ n̄φ

” ˛

˛

˛

4

Tr
“

MeρM
†
e

”2 Tr (ρρ̄)2 . (13)

Furthermore, wheneverα is given by the first part of the
feedback law, we have

W(D(α)ρD(−α))−W(ρ) ≤ −2ǫc1

˛

˛

˛Tr
“

[ρ̄, a† − a]ρ
” ˛

˛

˛

2

, (14)

where we have applied (5) together with the fact that

|Tr (D(α)ρD(−α)ρ̄) |+ |Tr (ρρ̄) | ≥ 2ǫ

since ρ is inside the set {Tr (ρρ̄) > ǫ}. Apply-
ing (2), (12), (13) and (14) for the paths never leaving the
set{Tr (ρρ̄) > ǫ}, we have

E (W(ρk+1) | ρk)−W(ρk) ≤ −2ǫc1

˛

˛

˛Tr
“

[ρ̄, a† − a]ρ
k+ 1

2

” ˛

˛

˛

2

−

0

@

˛

˛

˛ cos
“

φR+φ

2
+ n̄φ

”

|4

Tr
“

MgρkM
†
g

” +

˛

˛

˛ sin
“

φR+φ

2
+ n̄φ

”

|4

Tr
“

MeρkM
†
e

” − 1

1

ATr (ρkρ̄)
2 .

Noting thatTr
(

MgρkM
†
g

)

≥ 0, Tr
(

MeρkM
†
e

)

≥ 0,
Tr

(

MgρkM
†
g

)

+ Tr
(

MeρkM
†
e

)

= 1 and by Cauchy-
Schwartz inequality, we have
˛

˛

˛ cos
“

φR+φ

2
+ n̄φ

” ˛

˛

˛

4

Tr
“

MgρkM
†
g

” +

˛

˛

˛ sin
“

φR+φ

2
+ n̄φ

” ˛

˛

˛

4

Tr
“

MeρkM
†
e

” =

0

B

@

˛

˛

˛ cos
“

φR+φ

2
+ n̄φ

” ˛

˛

˛

4

Tr
“

MgρkM
†
g

” +

˛

˛

˛ sin
“

φR+φ

2
+ n̄φ

” ˛

˛

˛

4

Tr
“

MeρkM
†
e

”

1

C

A

(Tr
“

MgρkM
†
g

”

+ Tr
“

MeρkM
†
e

”

) ≥
„

cos2
„

φR + φ

2
+ n̄φ

«

+ sin2

„

φR + φ

2
+ n̄φ

««2

= 1,

with equality if and only if Tr
(

MgρkM
†
g

)

=

cos2
(

φR+φ
2 + n̄φ

)

. We apply, now, the Kushner’s invari-
ance Theorem (cf. Appendix, Theorem 5) to the Markov
processρk with the Lyapunov functionW(ρk). The process
ρk converges in probability to the largest invariant set in-
cluded in
{

ρ | Tr
(

MgρM
†
g

)

= cos2
(

φR + φ

2
+ n̄φ

)

}

⋂

{

ρ | Tr
(

[ρ̄, a† − a]MsρM
†
s

)

= 0, s = g, e
}

.

In particular, by invariance,ρ belonging to this limit set

implies Tr
(

MgρM
†
g

)

=
Tr(MgMsρM

†
sM

†
g )

Tr(MsρM
†
s )

for s = g, e.

Taking s = g, and noting thatMg = M †
g , this leads to

Tr
(

M4
g ρ

)

= Tr
(

M2
gρ

)2
. However, by Cauchy-Schwartz

inequality, and applying the fact thatρ is a positive matrix,
we have Tr

(

M4
g ρ

)

= Tr
(

M4
g ρ

)

Tr (ρ) ≥ Tr
(

M2
g ρ

)2
, with

equality if and only ifM4
g ρ andρ are co-linear. SinceM4

g has
a non degenerate spectrum,ρ is necessarily a projector over
one of the eigen-state ofM4

g , i.e., a Fock state|n〉, for some
n ∈ {0, . . . , nmax}. Finally, as we have restricted ourselves to
the paths never leaving the set{ρ | Tr (ρρ̄) > ǫ}, the only
possibility for the invariant set is the isolated point{ρ̄}. �

Lemma 4: ρk converges tōρ for almost all paths remain-
ing in the set{Tr (ρρ̄) > ǫ}.
Proof of Lemma 4: Define the event P>ǫ =
{ω ∈ Ω | ρk never leaves the set{Tr (ρρ̄) >
ǫ}}. Through Lemma 3, we have shown that
limk→∞ P (‖ρk − ρ̄‖ > δ | P>ǫ) = 0, ∀δ > 0. By
continuity of V (ρ) = 1 − Tr (ρρ̄), this also implies that
limk→∞ P (V (ρk) > δ | P>ǫ) = 0, ∀δ > 0. As V (ρ) ≤ 1,
we have

E (V (ρk) | P>ǫ) ≤ P (V (ρk) > δ | P>ǫ)

+ δ(1− P (V (ρk) > δ | P>ǫ)).

Thus lim supk→∞E (V (ρk) | P>ǫ) ≤ δ, ∀δ > 0, and
so limk→∞E (V (ρk) | P>ǫ) = 0. By Theorem 4, we
know that V (ρk) converges almost surely and therefore,
as V is bounded, by dominated convergence, we obtain
E (limk→∞ V (ρk) | P>ǫ) = 0.�

Now, we have all the elements to finish the proof of the
Theorem 1. From Steps 1 and 2 and the Markov property, one
deduces that for almost all pathsρk, there exists aK̄ such
that ρk for k ≥ K̄ never leaves the set{Tr (ρρ̄) > ǫ}. This
together with the step 3 finishes the proof of the Theorem.�

IV. QUANTUM FILTERING FOR STATE ESTIMATION

The feedback law (7) requires the knowledge ofρk+ 1

2

.
When the measurement process is fully efficient and the jump
model (2) admits no error, it actually represents a natural
choice for quantum filter to estimate the value ofρ by ρest

satisfying

ρest
k+1 = D(αk)ρ

est

k+ 1

2

D(−αk)

ρest

k+ 1

2

=
Mskρ

est
kM

†
sk

Tr
(

Mskρ
est
kM

†
sk

) . (15)

wheresk = g or e, depending on measure outcomek and
on the controlαk.

Before passing to the parametric robustness of the feed-
back scheme, let us discuss the robustness with respect
to the choice of the initial state for the filter equation
when we replaceρk+ 1

2

by ρest

k+ 1

2

in the feedback (7). Note
that, Theorem 1 shows that whenever the filter equation is
initialized at the same state as the one which the physical
system is prepared initially, the feedback law ensures the
stabilization of the target state. The next theorem shows that
as soon as the quantum filter is initialized at any arbitrary
fully mixed initial state (not necessarily the same as the initial



state of the physical system (2)) and whenever the feedback
scheme (7) is applied on the system, the state of the physical
system will converge almost surely to the desired Fock state.

Theorem 2: Assume that the quantum filter (15) is initial-
ized at a full-rank matrixρest

0 and that the feedback scheme (7)
is applied to the physical system. The trajectories of the
system (2), will then converge almost surely to the target
Fock stateρ̄.
Proof of Theorem 2: The initial stateρest

0 being full-rank,
there exists aγ > 0 such thatρest

0 = γρ0 + (1− γ)ρc0, where
ρ0 is the initial state of (2) at which the physical system
is initially prepared andρc0 is a well-defined density matrix.
Indeed,ρest being positive and full-rank, for a small enough
γ, (ρest

0 − γρ0)/(1− γ) remains non-negative, Hermitian and
of unit trace.

Assume that, we prepare the initial state of another identi-
cal physical system as follows: we generate a random number
r in the interval(0, 1); if r < γ we prepare the system in
the stateρ0 and otherwise we prepare it atρc0. Applying
our quantum filter (15) (initialized atρest

0 ) and the associated
feedback scheme, almost all trajectories of this physical
system converge to the Fock stateρ̄. In particular, almost
all trajectories that were initialized at the stateρ0 converge
to ρ̄. This finishes the proof of the theorem.�

The quantum filter (15) admits also some contraction
properties confirming its robustness to experimental errors
as shown by simulations of figures 3 and 4 where detection
errors are introduced. We just provide here a first interesting
inequality that will be used in future developments.

Theorem 3: Consider the process (2) and the associated
filter (15) for any arbitrary control input(αk)

∞
k=1. We have

E (Tr (ρkρest
k )) ≤ E

(

Tr
(

ρk+1ρ
est
k+1

))

, ∀k.
Proof Before anything, note that the coherent part of the
evolution leaves the value of Tr(ρkρest

k ) unchanged:

Tr (ρk+1ρ
est
k+1) = Tr

“

D(αk)ρk+ 1

2

ρ
est

k+ 1

2

D(−αk)
”

= Tr
“

ρ
k+ 1

2

ρ
est

k+ 1

2

”

.

Concerning the projective part of the dynamics, we have

E
“

Tr
“

ρ
k+ 1

2

ρ
est

k+ 1

2

”

| ρk, ρest
k

”

=

X

s=g,e

Tr
`

MsρkM
†
sMsρ
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†
s

´

Tr
“

Msρest
kM

†
s

” . (16)

Applying a Cauchy-Schwarz inequality as well as the
identityM †

gMg +M †
eMe = 11, we have
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r
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M
†
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†
sMsρest
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”

!2

(17)

Applying (16) and (17), we only need to show that
 

X

s=g,e

r

Tr
“

M
†
sMsρkM

†
sMsρest

k

”

!2

≥ Tr (ρkρ
est
k ) . (18)

Noting, once again, thatM †
gMg+M

†
eMe = 11, we can write:

Tr (ρkρ
est
k ) =

∑

s=g,e

∑

r=g,e

Tr
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sMsρkM

†
rMrρ
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)

, (19)

and therefore (18) is equivalent to
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rMrρ
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. (20)

Note that asρk andρest
k are positive Hermitian matrices, their

square roots,
√
ρk and

√

ρest
k , are well-defined. Once again

by Cauchy-Schwarz inequality, we have

Tr
“
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†
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rMrρ
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.

Summing overs, r ∈ {g, e}, we obtain the inequality (20)
and therefore we finish the proof of the Theorem 3.�

V. M ONTE-CARLO SIMULATIONS

Figure (2) corresponds to a closed-loop simulation with
a goal Fock statēn = 3 and a Hilbert space limited to
nmax = 15 photons.ρ0 and ρest

0 are initialized at the same
state, the coherent stateexp(

√
n̄(a†−a)) |0〉 of mean photon

numbern̄. The number of iteration steps is fixed to100. The
dephasing per photon isφ = 3

10 . The Ramsey phaseφR is
fixed to the mid-fringe setting, i.e.φR+φ

2 + n̄φ = π
4 . The

feedback parameter ((7) withρest

k+ 1

2

instead ofρk+ 1

2

) are as

follows: c1 = 1
4n̄+1 , ǫ = 1

10 and ᾱ = 1
10 .

Any real experimental setup includes imperfection and
error. To test the robustness of the feedback scheme, a false
detection probabilityηf = 1

10 is introduced. In case of false
detection at stepk, the atom is detected ing (resp.e) whereas
it collapses effectively ine (resp.g). This means that in (15),
sk = g (resp.sk = e), whereas in (2), it is the converse
Mk = Me (resp.Mk = Mg). Simulations of figure 3 differ
from those of figure 2 by onlyηf = 1

10 : we observe for
this sample trajectory a longer convergence time. A much
more significative impact ofηf is given by ensemble average.
Figure 4 presents ensemble averages corresponding to the
third sub-plot of figures 2 and 3. Forηf = 0 (left plot), we
observe an average fidelity Tr(ρkρ̄) converging to100%:
it exceeds90% after k = 40 steps. Forηf = 1/10, the
asymptotic fidelity remains under80% and reaches70% after
30 iteration. The performance are reduced but not changed
dramatically. The proposed feedback scheme appears to be
robust to such experimental errors.



10 20 30 40 50 60 70 80 90 100
−1

0

1
Detection (−1=g, +1=e). Total number of wrong clicks (red): 0

10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1
Control α

10 20 30 40 50 60 70 80 90 100
0

0.5

1
Blue: P(n<3).   Black: P(n=3).   Red: P(n>3)

Step number

Fig. 2. A single closed-loop quantum trajectory in the idealcase (̄n = 3).
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Fig. 3. A single closed-loop quantum trajectory with a falsedetection
probability of 1/10.
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Fig. 4. Averages of104 closed-loop quantum trajectories similar to the
one of figure 2 (left,ηf = 0) and 3 (right,ηf = 1

10
).

VI. CONCLUSION

In [2] more realistic simulations are reported. They include
nonlinear shift per photon (Nφ replaced by a non linear
function Φ(N) in (1)) and additional experimental errors
such as detector efficiency and delays. These simulations
confirm the robustness of the feedback scheme, robustness
that needs to be understood in a more theoretical way. In
particular, it seems that the quantum filter (15) forgets its
initial condition ρest

0 almost surely and thus admits some
strong contraction properties as indicated by Theorem 3.

With the truncation tonmax photons, convergence is proved
only in the finite dimensional case. But feedback (7) and
quantum filter (15) are still valid fornmax = +∞. We
conjecture that Theorems 1 and 2 remain valid in this case.

In the experimental results reported in [10], [5], [4] the
time-interval corresponding to a sampling step is around
100µs. Thus it is possible to implement, on a digital com-
puter and in real-time, the Lyapunov feedback-law (7) where
ρ is given by the quantum filter (15).

VII. A PPENDIX: STABILITY THEORY FOR STOCHASTIC

PROCESSES

We recall here Doob’s inequality and Kushner’s invariance
theorem. For detailed discussions and proofs we refer to [8]
(Sections 8.4 and 8.5).

Theorem 4 (Doob’s Inequality): Let {Xn} be a Markov
chain on state spaceS. Suppose that there is a non-negative
function V (x) satisfyingE (V (X1) | X0 = x) − V (x) =
−k(x), wherek(x) ≥ 0 on the set{s : V (x) < λ} ≡ Qλ.

Then P

(

sup
∞>n≥0

V (Xn) ≥ λ | X0 = x

)

≤ V (x)
λ
. Further-

more, there is some randomv ≥ 0, so that for paths never
leavingQλ, V (Xn) → v ≥ 0 almost surely.
For the statement of the second Theorem, we need to use
the language of probability measures rather than the random
process. Therefore, we deal with the spaceM of probability
measures on the state spaceS. Let µ0 = ϕ be the initial
probability distribution (everywhere through this paper we
have dealt with the case whereµ0 is a dirac on a stateρ0 of
the state space of density matrices). Then, the probability
distribution of Xn, given initial distributionϕ, is to be
denoted byµn(ϕ). Note that form ≥ 0, the Markov property
implies: µn+m(ϕ) = µn(µm(ϕ)).

Theorem 5 (Kushner’s invariance Theorem): Consider
the same assumptions as that of the Theorem 4. Letµ0 = ϕ
be concentrated on a statex0 ∈ Qλ (Qλ being defined as in
Theorem 4), i.e.ϕ(x0) = 1. Assume that0 ≤ k(Xn) → 0
in Qλ implies thatXn → {x | k(x) = 0} ∩ Qλ ≡ Kλ.
Under the conditions of Theorem 4, for trajectories never
leavingQλ, Xn converges toKλ almost surely. Also, the
associated conditioned probability measuresµ̃n tend to the
largest invariant set of measuresM whose support set is
in Kλ. Finally, for the trajectories never leavingQλ, Xn

converges, in probability, to the support set ofM .
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