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On the design of non-overshooting linear

tracking controllers for right-invertible systems

Robert Schmid and Lorenzo Ntogramatzidis

Abstract— We consider the use of linear state feedback
control to achieve a non-overshooting step response, for right-
invertible non-square multivariable systems. A method is given
for designing a linear time-invariant state-feedback controller
to asymptotically track a constant step reference with zero
overshoot and arbitrarily small rise time, under some mild
assumptions.

I. INTRODUCTION

The problem of ensuring that a linear time invariant (LTI)

plant has a non-overshooting step response has been studied

for the past few decades. The problem is of importance

in several applications such as manufacturing processes,

where overshoot can compromise tolerances and damage the

product.

Some recent papers have considered the problem of de-

signing a suitable closed-loop feedback controller to achieve

a non-overshooting response. For continuous time single-

input single-output (SISO) systems, in [1] an eigenstructure

assignment method is given to obtain a non-overshooting LTI

state feedback controller for plants with one non-minimum

phase zero. Stable non-minimum phase SISO systems are

considered in [2], where the existence of an output feedback

controller is proved to give a non-overshooting step response,

provided the plant has no zeros on the imaginary axis. In [4]

it is shown how to give two parameter feedback controller for

an LTI plant that renders the step response non-overshooting.

In [3] conditions are given for the existence of a controller

to achieve a sign invariant impulse response, and hence also

a non-overshooting step response. Corresponding conditions

for discrete systems are given in [5]. A common feature of

these recent papers [1]-[5] was that they considered only

SISO systems, which were assumed to be initially at rest.

Recently [9] considered invertible stabilisable multiple-

input multiple-output (MIMO) systems, and used linear state-

feedback control to design a non-overshooting controller for

a step reference. The design methods proposed there make

use of the combined eigenvalue and eigenvector placement

methods given in [8], and are applicable to both continuous

time and discrete time systems. Moreover, the design method

is applicable to both minimum phase and non-minimum

phase systems. Conditions are given under which a linear

state-feedback controller can be obtained to asymptotically

track a step reference with guaranteed zero overshoot, from
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any initial condition. The controller can be readily chosen to

achieve any desired convergence rate.

In this paper we continue the investigation of the track-

ing problem considered in [9], and consider non-invertible

stabilisable MIMO systems, where the initial condition is

not necessarily at zero. Non-invertible generically means

the number of inputs and outputs of the plant are unequal.

For right-invertible systems with fewer outputs than control

inputs, we obtain a linear state-feedback controller that

yields a non-overshooting step response, in all components

of the output vector. The proposed control law achieves a

non-overshooting response from all initial conditions, and

the design scheme may be applied to minimum phase as

well as non-minimum phase systems. Moreover, there is

considerable freedom to choose the closed-loop poles. As

such, the convergence rate can be chosen to be arbitrarily

fast or slow, to satisfy any desired settling time or actuator

constraints.

II. PROBLEM FORMULATION

We consider the LTI system Σ governed by

Σ :

{

ẋ(t) = Ax(t) + B u(t), x(0) = x0,

y(t) = C x(t) + D u(t),
(1)

where, for all t ∈ T, x(t) ∈ R
n is the state, u(t) ∈ R

m is the

control input, y(t) ∈ R
p is the output, and A, B, C and D

are appropriate dimensional constant matrices. We assume

B and [C D] are of full rank. As a standing assumption

throughout the paper, we also assume that Σ is stabilisable,

i.e., it is either controllable, or else all uncontrollable modes

lie in C
−, the open left-half complex plane.

In this paper we are concerned with the problem of

designing a state-feedback control law

u(t) = F
(

x(t) − xss

)

+ uss, (2)

where xss ∈ R
n and uss ∈ R

m are solutions of

0 = Axss + B uss, (3)

r = C xss + D uss, (4)

such that the output y(t), from a given initial state x0, tracks

a given step reference r ∈ R
p with zero steady-state tracking

error and without overshoot. If suitable F , xss and uss exist

for a given r ∈ R
p then we say that the step reference r is

trackable.

Let PΣ(λ) :=
[

A−λ I B

C D

]

denote the system matrix pencil.

We recall that system Σ is right-invertible if and only if

rank PΣ(λ) = n + p for all but finitely many λ ∈ C,
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and that z0 ∈ C is an invariant zero of Σ if and only if

rank PΣ(z0) < normrank PΣ(λ). In the following lemma, the

standard conditions are provided to ensure that asymptotic

tracking can be achieved for all r ∈ R
p:

Lemma 2.1: Assume Σ is right-invertible, stabilisable,

and has no invariant zeros at the origin. Let F be such

that A + BF is stable. Then every step reference r ∈ R
p

is trackable with zero steady-state tracking error from any

initial condition x0 ∈ R
n with the control law (2).

The tracking problem addressed in this paper is the one of

choosing the gain matrix F such that not only does the output

y(t) track the step reference r with zero steady-state error,

but reference tracking is achieved without overshoot in the

output response. We formally define the non-overshooting

property as follows:

Definition 2.1: (Non-overshooting step response)

Let r ∈ R
p be a trackable step reference. Then Σ has a

non-overshooting response for r from the initial condition

x0 ∈ R
n if the output y(t) of (1) arising from x0 yields a

tracking error ǫ(t) = r − y(t) that satisfies

(i) ǫ(t) converges to zero as t tends to infinity, and

(ii) ǫ(t) has no changes of sign in any component, i.e.,

for each i ∈ {1, . . . , p}, sgn(ǫi(t)) is constant for all

t ∈ T.

We say that Σ has a globally non-overshooting response for

r if the output y is non-overshooting for all initial conditions

x0.

The following lemma on eigenstructure assignment is es-

sential to our design methods. It is easily derived from the

classic eigenstructure assignment algorithm by B.C. Moore

given in [8].

Lemma 2.2: [9] Let L = {λ1, . . . , λn} ∈ C be a self

conjugate set of n distinct complex numbers. Let S =
{s1, . . . , sn} ⊂ R

p be a set of n (not necessarily distinct)

vectors in R
p. Assume that, for each i ∈ {1, . . . , n}, the

matrix equation
[

A − λiI B

C D

] [

vi

wi

]

=

[

0
si

]

(5)

has solutions sets V = {v1, . . . , vn} ⊂ C
n and W =

{w1, . . . , wn} ⊂ C
p, and that the set V is linearly inde-

pendent. Then, a unique real feedback matrix F exists such

that, for all i ∈ {1, . . . , n},

(A + B F ) vi = λi vi, (6)

(C + D F ) vi = si. (7)

We note that Moore’s algorithm can readily be executed with

MATLAB R©.

III. DESIGN OF NON-OVERSHOOTING FEEDBACK

CONTROLLERS WHEN p < m.

In this section, we consider systems subject to the follow-

ing assumption:

Assumption 3.1: System Σ is such that p < m and

is right-invertible. Moreover, Σ has no invariant zeros at

the origin, and has at most n − p distinct uncontrollable

eigenvalues.

Since here it is assumed that the number of control inputs

is greater than the number of controlled outputs, by Lemma

2.1 every r ∈ R
p is trackable. We now see how to use this

additional control input to design a state feedback control

law for the system to achieve a globally non-overshooting

step response with any desired convergence rate (settling

time). We begin by augmenting the system Σ by adding one

additional row vector Cp+1 and Dp+1 to matrices C and D

as follows:

C̄ =

[

C

Cp+1

]

, D̄ =

[

D

Dp+1

]

. (8)

This yields the augmented system

Σaug :

{

ẋ(t) = Ax(t) + B u(t),
ȳ(t) = C̄ x(t) + D̄ u(t),

(9)

The row vectors Cp+1 and Dp+1 may be freely chosen

provided that

• [ C̄ D̄ ] has p + 1 linearly independent rows;

• Σaug is right-invertible, and has no invariant zeros at

the origin.

These properties may be ensured by choosing the additional

row [Cp+1 Dp+1 ] to be linearly independent of all the

rows of
[

A B

C D

]

, which is possible because p < m. Then
[

A B

C̄ D̄

]

has full row rank n + p + 1, and thus Σaug has no

invariant zeros at the origin. Since Σ is right-invertible, this

choice also guarantees that Σaug is right-invertible. The set

of invariant zeros of Σaug includes the invariant zeros of

Σ. Since Σ is right-invertible, all its uncontrollable modes

(which are stable) are also invariant zeros [9]. The same is

true for Σaug . However, since the set of uncontrollable modes

of Σ and Σaug are the same, and since both Σ and Σaug

are stabilisable, it follows that any additional invariant zeros

introduced in Σaug via the introduction of the additional row

[Cp+1 Dp+1 ] are not uncontrollable eigenvalues of the pair

(A,B). Furthermore, since (A,B) has no more than n − p

uncontrollable eigenvalues, Σaug has no more than n − p

uncontrollable eigenvalues that are also invariant zeros.

We may now use Σaug to design a control law for Σ
as follows. Let L = {λ1, . . . , λn} ⊂ C denote the set

of distinct stable closed-loop eigenvalues of A + B F to

be chosen. For i ∈ {1, . . . , p}, these may be any distinct

real stable modes; however these modes must not include

any zeros of Σaug . If Σ is controllable, the remaining

modes λp+1, . . . , λn may be freely chosen to be any set of

distinct stable complex numbers; these modes are permitted

to include zeros of Σaug , with the only requirement that L
be self-conjugate. If Σ has uncontrollable modes, the choice

of L must be modified as follows: all uncontrollable modes

of Σ (which are asymptotically stable) must be included in

L. As Σaug is right-invertible, these modes are also zeros of

Σaug , and hence these modes must be counted among the

modes λp+1, . . . , λn. Since the first p modes of L must not

include zeros of Σaug , L can have at most n − p modes

that are also zeros of Σaug . This is why Assumption 3.1
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requires Σ, and hence Σaug , to have at most n − p distinct

uncontrollable eigenvalues.

Let {ē1, . . . , ēp+1} be the canonical basis of R
p+1, and

S = {s1, . . . , sn} ⊂ R
p+1 be such that

si =























ēi for i ∈ {1, . . . , p};
ēp+1 for i ∈ {p + 1, . . . , n},

if λi is not a zero of Σaug;
0 for i ∈ {p + 1, . . . , n},

if λi is a zero of Σaug.

(10)

Solving the matrix equation
[

A − λi I B

C̄ D̄

]

[

vi
wi

]

=

[

0
si

]

(11)

for the elements si in S for all i ∈ {1, . . . , n}, we obtain

the sets of vectors V = {v1, . . . , vn} ⊂ C
n and W =

{w1, . . . , wn} ⊂ C
p+1. Note that (11) is solvable for all λi

and all si in view of the right-invertibility of Σaug , which

guarantees that when λi is not an invariant zero of Σaug ,

the Rosenbrock matrix PΣaug
(λi) on the left-hand side of

(11) is full row-rank. Provided the resulting V is linearly

independent, by Lemma 2.2, the Moore algorithm can be

applied to obtain a feedback gain matrix F such that A+B F

has distinct eigenvalues and eigenvectors given by L and V ,

respectively. Our next theorem shows that, for any r ∈ R
p,

this matrix F can be used to obtain a state-feedback control

law that yields a closed-loop system response converging to

the step reference r that is globally non-overshooting.

Theorem 3.1: Assume that Σ satisfies Assumption 3.1.

Let r ∈ R
p, and let F be obtained as above. Then, applying

the state-feedback control law u(t) given in (2) to Σ yields

a globally non-overshooting response for r.

Proof: Introduce the new state coordinates ξ := x − xss.

Let x0 ∈ R
n be any initial condition. Applying the feedback

law u to Σ we obtain the homogeneous system

Σhom :

{

ξ̇(t) = (A + B F ) ξ(t),
y(t) = (C + D F ) ξ(t) + r.

(12)

For any initial condition ξ0 ∈ R
n, the tracking error ǫ(t) =

r − y(t) is given by ǫ(t) = −(C + D F ) e(A+B F ) t ξ0. As

the eigenvectors in V are linearly independent, the matrix

V := [ v1 v2 . . . vn ] is invertible. Introduce α :=
[α1 α2 . . . αn]⊤ = V −1ξ0. By (7) of Lemma 2.2 the matrix

F defined above is such that (C̄ + D̄F )vi = si, where si is

given in (10). Hence

(C + DF )vi =

{

ei for i ∈ {1, . . . , p},
0 for i ∈ {p + 1, . . . , n},

(13)

where ei and 0 are vectors in R
p, and so the tracking error

is given by

ǫ(t) = −

n
∑

i=1

(C + D F ) vi αi eλi t

= −

p
∑

i=1

ei αi eλp t

= −[α1 eλ1 t . . . αp eλp t ]⊤ (14)

As the eigenvalues all lie in C
−, the system Σhom is

asymptotically stable, and ǫ(t) converges to zero as t tends to

infinity. As each of the p components of ǫ(t) contains exactly

one mode, ǫ(t) does not change sign in any component, and

y(t) converges to r without overshoot. As x0 is arbitrary, Σ
has a globally non-overshooting response for r.

Remark 3.1: For any given choice of L and S, it is not

assured that the vectors in V obtained from solving (11)

are linearly independent. To solve this problem we may use

any of the p ! possible ways to re-order the first p canonical

basis vectors in S and again solve (11) to obtain a new V .

If this failed to obtain a linearly independent V , we may

instead alter one of the eigenvalues in L and again solve

(11) until a linearly independent set V is obtained. Note also

that only modes λi for i ∈ {1, . . . , p} are visible at the

output. Hence, these may be chosen to obtain any desired

rate of convergence of the output trajectory. Moreover, the

convergence rate in the i-th output component is determined

by λi. As the remaining n−p modes do not affect the output,

these may be chosen with a view to minimising control

effort. If Σ has some stable open-loop eigenvalues, we may

include these among the non-visible closed-loop poles in L,

as control effort is minimised by reducing the shifting in the

open-loop poles. Note also that F is independent of both r

and x0. Hence the control law is globally non-overshooting

for all r ∈ R
p. The values of r and x0 enter the control law

u only through the values of xss and uss.

IV. EXAMPLES

Example 4.1: Consider the MIMO system Σ1 =
(A,B,C,D) with

A =









0 0 5 0
0 −1 0 0
−1 0 −6 3
−6 0 3 −3









B =









−3 0 0
0 0 0
0 0 −3
−4 10 0









C =

[

0 0 0 0
−2 −7 0 3

]

D =

[

0 7 −7
0 0 −2

]

.

Hence, Σ1 is a non-square right-invertible system with

n = 4, p = 2 and m = 3. The system has open-loop poles

at −0.116 ± 3.46 i, −8.77 and −1. The stable pole at −1
is uncontrollable. Also, the system is of non-minimum

phase with invariant zeros at 12.3, −6.3, and −1. Thus

Σ1 satisfies Assumption 3.1. Let assume the desired step

reference is r = [ 3 − 3 ]⊤. Following the design procedure

outlined above, we first augment C and D as follows:

C̄ =





0 0 0 0
−2 −7 0 3
1 0 0 0



, D̄ =





0 7 −7
0 0 −2
0 0 0



 ,

such that the augmented system (A,B, C̄, D̄) remains right-

invertible. We next choose closed-loop poles {λ1, . . . , λ4} as

follows: Since λ1 and λ2 are visible at the output, we may

choose these for rapid convergence; they may be any real

stable modes that are distinct from the zeros of Σ1. Modes
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λ3 and λ4 are invisible at the output, so we may choose one

of the stable open-loop poles, to minimise control effort.

Lastly, we are forced to choose the uncontrollable mode at

−1, which is also a zero of the augmented system. A suitable

selection is L = {−4, −3, −8.77, −1}. Solving (11) for

the vectors S = {[1 0 0]⊤, [0 1 0]⊤, [0 0 1]⊤, [0 0 0]⊤},

we obtain the linearly independent closed-loop eigenvectors

V = {v1, . . . , v4} given by

v1 = [−0.60 0 0 − 0.80 ]⊤, v2 = [ 0 0 − 0.447 0.894 ]⊤,

v3 = [ 0 0 0.729 0.685 ]⊤, v4 = [ 0 0.294 0.350 0.890 ]⊤.

Applying Lemma 2.2 to L and V yields the gain matrix

F =





2.9230 0 1.6667 0
1.043 0.779 0.303 −0.032
−0.485 −1.408 −0.773 1.113



 .

Applying the control law (2) with this F to Σ1 yields outputs

that satisfy

(C + D F ) v1 = [ 1 0 ]⊤, (C + D F ) v2 = [ 0 1 ]⊤,

(C + D F ) v3 = [ 0 0 ]⊤, (C + D F ) v4 = [ 0 0 ]⊤.

Thus, both output components are driven only by a single

exponential, and hence cannot overshoot. If we wish to

increase the convergence speed, we may instead choose the

first two eigenvalues to have larger modulus of the real part,

e.g., L = {−6, −5, −8.77, −1}. The system responses

for these two sets of closed-loop eigenvalues are shown in

Figures 1 and 2, for several different values of the initial

condition x0. In all cases, both components of the output

trajectory converge to their target value without overshoot.
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x0 = [0 0 1 0]

Fig. 1. MIMO system Σ1 step response using Moore algorithm and closed
loop poles L = {−4, −3, −8.77, −1}.

We compared our control scheme against the transient

performance achievable from the MIMO eigenvalue assign-

ment scheme offered in [6], and which may be readily

implemented with the MATLAB R© command place. The

system response for Σ1 with closed loop poles L =
{−6, −5, −8.77, −1} is shown in Figure 3. We note that

some components overshoot, and the convergence is much

slower as the slow uncontrollable mode at λ4 = −1 remains

visible at the output.

To compare the amplitude of the control effort employed

in our approach against that of [6], we considered the control

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−10
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0
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u
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u
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(t

)

 

 

x0 = [0 1 1 −1]

x0 = [1 0 1 0]

x0 = [0 1 0 −1]

x0 = [0 0 1 0]

Fig. 2. Σ1 step response using Moore algorithm and closed loop poles
L = {−6, −5, −8.77, −1}.
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Fig. 3. Σ1 step response using place algorithm and closed loop poles
L = {−6, −5, −8.77, −1}.

index

α(t) =
|uN (t)|

|uP (t)|
(15)

where uN is given in (2), and uP = FP (x(t) − xss) + uss

where FP is the feedback gain matrix obtained from the

place command. Figure 4 shows the value of this control

strength index; as the index is always less than unity, our

control law uses less control effort than the one given in [6],

for this simulation.
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Fig. 4. Control strength index for MIMO system Σ1.
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Example 4.2: The system Σ2 = (A,B,C,D) with

A =





−3 −1.5 −0.5
2 0 0
0 1 0



 B =





2
0
0





C =
[

0.5 0.75 0.5
]

D =
[

0
]

is a minimal state space realization of the transfer function

P (s) =
(s − 1)(s − 2)

(s + 1)3

that was considered in Example 1 of [10]. Σ2 is a strictly

proper SISO non-minimum phase system with invariant zeros

at s = 1, and s = 2. The transient response of Σ2 is of

particular interest because [7] showed that the step response

of a strictly proper transfer function with one real positive

zero must exhibit undershoot, and recently [10] showed that

the step response of a strictly proper transfer function with

two real positive zeroes must exhibit both undershoot and

overshoot, if the settling time is sufficiently small.

As our results are for non-square systems, we consider the

transient performance that may be achieved if it is possible

to apply an additional control input for the plant. Thus we

consider the enhanced system Σ2e = (A,Be, C,De) with

Be =





2 0
0 0
0 1



 , De =
[

0 0
]

Then Σ2e is a nonminimum phase right-invertible system

with n = 3, m = 2, p = 1 and an invariant zero at s = 3.

Using the above controller design, we are able to design

feedback gain matrices to achieve a step response with any

desired convergence rate. The step response of Σ2e from

zero initial conditions is shown for the three convergence

rates λ1 = −5, λ1 = −10, and λ1 = −50 in Figure 5. In

all cases, the output trajectory converges to the target value

r = 1 without undershoot or overshoot.
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Fig. 5. MIMO system Σ2e step response.

V. CONCLUSION

We have introduced new linear state feedback controller

design methods to obtain a non-overshooting step response,

for non-invertible MIMO systems. The methods complement

those given in our earlier paper [9] for invertible MIMO

systems.
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