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Effects of Small Time-Delays on Dynamic Output Feedback Control of

Offshore Steel Jacket Structures Subject to Wave-induced Forces

Xian-Ming Zhang, Qing-Long Han* and Dongsheng Han

Abstract— This paper is to investigate the effect of a small
time-delay on dynamic output feedback control of an offshore
steel jacket structure subject to a nonlinear wave-induced self-
excited hydrodynamic force. Firstly, a conventional dynamic
output feedback controller is designed to reduce the internal
oscillations of the offshore structure. It is found that the
obtained controller is of a large gain in the sense of Euclidean
norm, which demands a large control force. Secondly, a small
time-delay is introduced intentionally to design a new dynamic
output feedback controller such that (i) the controller is of
a small gain in the sense of Euclidean norm; and (ii) the
internal oscillations of the offshore structure can be dramat-
ically reduced. It is shown through simulation results that
purposefully introducing time-delays can be used to improve
control performance.

I. INTRODUCTION

Modern offshore structures are mainly used in oil and gas

extraction and are usually built in a water depth of more than

1000 feet. Equipped with a helicopter pad, drilling derrick,

cranes, offices and accommodations, generally speaking,

these structures are very large, sophisticated and flexible.

Since offshore structures are located in a hostile environment,

they are typically subject to severe loads due to water

currents, waves and wind. In addition, their flexibilities

further induce self-excited nonlinear hydrodynamic forces

and make themselves large deformations due to nonlinear

responses. Therefore, continuing research on the safety of

these structures has been conducted in the past decade. One

can refer to [4], [3] and references therein.

In order to ensure the safety of an offshore structure,

some efforts have been made in the recent years. An easy

approach is to increase the stiff of the structure so as to

shift the natural frequencies away from the resonant range

of frequencies. This requires a large number of construction

materials, which leads to a huge cost. Alternatively, passive

and active control methods have been proposed to reduce

the internal oscillations by regulating the motion of the

structure, see, for example, [9], [3]. By placing a tuned

mass damper (TMD) onto the top of the structure, both a
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Fig. 1. Steel jacket structure with TMD [14]

passive TMD and an active TMD mechanism to regulate the

motion of the structure were discussed in [3]. An active TMD

scheme, which aims to design a suitable controller to drive

the hydraulic servo, can more effectively reduce the internal

oscillations than a passive TMD method. However, for an

active TMD mechanism, the controller is usually difficult to

be designed mainly due to the self-excited nonlinear hydro-

dynamic force induced by the flexibility of the structure. For

this reason, more attention has been paid to the active TMD

control of an offshore structure, and some control methods

have been proposed in the recent literature. For instance, in

[14], multi-loop feedback control method was introduced: an

inner loop is used to stabilize the linear part of the platform

dynamical model while an outer loop aims to cope with the

nonlinearities to maintain the stability of the whole structure.

In [15], two different control schemes, namely nonlinear

control and robust linear state feedback control, have been

reported. In [11], [10], feedforward and feedback control was

studied. The above mentioned methods are implemented by

using the system’s states. To the best of our knowledge, in the

open published literature there is little research on dynamic

output feedback control of an offshore structure.

In this paper, we will consider dynamic output feedback

control of an offshore steel jacket structure subject to a non-

linear wave-induced force. A conventional dynamic output

feedback controller will be first designed by solving a set

of LMIs. Then we will investigate whether purposefully in-

troduced time-delays in dynamic output feedback controllers

can be used to improve the control performance.

Throughout this paper, for simplicity, the symmetric term

in a symmetric matrix is denoted by *, e.g., [ X Y

∗ Z
] =

[

X Y

Y
T

Z

]

II. DYNAMIC MODEL OF AN OFFSHORE STRUCTURE

Consider a simple offshore steel jacket platform in Figure

1 [14]. This structure consists of cylindrical steel tube
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members, and an active TMD mechanism is mounted on

the top. One end of the TMD is connected to joint 8 and

the other to a hydraulic servo mechanism. The motion of

the damper is influenced by the motion of the structure and

the hydraulic servo. Since this structure is often exposed to

nonlinear hydrodynamic forces, the induced self-excited load

by the nonlinear forces usually make the structure internally

vibrate. An active TMD control is to design a controller to

drive the hydraulic servo so as to reduce the vibration by the

motion of the damper. Since the first two modes of vibration

are the most dominant, for simplicity, we just take these two

modes into account.

The motion equations of the first two modes of vibration

with the coupled TMD can be expressed as [15]














































z̈1 = − 2ξ1ω1ż1−ω2
1z1−φ1KT (φ1z1+φ2z2)+φ1KT ȳ

− φ1CT (φ1ż1+φ2ż2)+φ1CT ẏ−φ1u+ft1+ft2,

z̈2 = − 2ξ2ω2ż2−ω2
2z2−φ2KT (φ1z1+φ2z2)+φ2KT ȳ

− φ2CT (φ1ż1+φ2ż2)+φ2CT
˙̄y−φ2u+ft3+ft4,

¨̄y = − 2ξT ωT
˙̄y+2ξT ωT (φ1ż1+φ2ż2)−ω2

T
ȳ

+ ω2
T
(φ1z1+φ2z2)+

1

mT

u.

(1)

where z1 and z2 denote the generalized coordinates of

vibrational modes 1 and 2, respectively; ȳ is the horizontal

displacement of the TMD; ξ1 and ξ2 are the damping ratio in

the first two modes of vibration, respectively; ω1 and ω2 are

the natural frequencies of the first two modes of vibration,

respectively; φ1 and φ2 are the contributions of first two

mode shapes (for the steel jacket platform, φ1 = −0.003463
and φ2 = 0.003463); ξT is the damping ratio of the TMD.

We denote the damping, the mass and the stiffness of the

TMD by CT , mT and KT , respectively; ωT =
√

KT /mT

is called the natural frequency of the TMD. u is the control

action of the system; and ft1, ft2, ft3, ft4 are the nonlinear

self-excited hydrodynamic force terms.

Let x1 = z1, x2 = ż1, x3 = z2, x4 = ż2, x5 = ȳ, x6 =
˙̄y and x := [x1 x2 x3 x4 x5 x6]

T . Rewrite (1) as

ẋ(t) = Ax(t) + Bu(t) + Fg(x, t) (2)

where A, B and F are listed on the top of this page; and

g(x, t) =

[

ft1 + ft2

ft3 + ft4

]

As pointed out in [14], the nonlinear function g(x, t)
is uniformly bounded and can be assumed to satisfy the

following cone-bounding constraint

‖g(x, t)‖2 ≤ µ‖x‖2 (3)

where µ is a positive number. In fact, the nonlinear function

g(x, t) is usually regarded as a sinusoidal disturbance, one

can refer to [12], [13].

In Figure 1, suppose H = 40ft, h = 250ft, λ =
600ft, Uow = 0.4ft/sec and the other data of the structure

can be referred to [3] or [15]. The natural frequencies of

the first two modes of vibration are assumed to be ω1 =
1.818 and ω2 = 10.8717, respectively. By employing the

known data, the coefficient matrices, A and B of (2) can

be calculated, which are given in (4), on the top of the next

page.

Suppose the wave frequency to be 1.8 rps, the nonlinear

wave forces can be computed as Appendix A in [15]. When

no control is applied to the offshore structure, the responses

of the first, second and third floors of the structure subject

to nonlinear wave-induced forces are plotted in Figure 2

[15], respectively, from which it is clearly seen that, the

uncontrolled responses oscillate with amplitudes of peak

to peak about 2.2627ft, 2.4518ft and 2.5379ft, respec-

tively. In what follows, we propose dynamic output feedback

schemes to reduce the internal oscillations to guarantee the

safety of the structure.

III. DYNAMIC OUTPUT FEEDBACK CONTROL

Let y denote the output vector of the system

y(t) = Cx(t) (5)

where C is a constant real matrix of appropriate dimensions.

The corresponding state space model of the offshore structure

can be expressed as










ẋ(t) = Ax(t) + Bu(t) + Fg(x, t)

y(t) = Cx(t)

x(t) = 0, t = 0.

(6)

We seek a dynamic output feedback controller of the form
{

ẋc(t) = AKxc(t) + BKy(t)

u(t) = CKxc(t) + DKy(t)
(7)

where xc ∈ R
6 and AK , BK , CK and DK are real matrices

of appropriate dimensions to be determined, such that the

resulting closed loop system is asymptotically stable.

Introduce an augmented vector

ζ(t) := [xT (t) xT

c
(t)]T

then the resulting closed-loop system by (6) and (7) is given

by

ζ̇(t) = (A0 + HKL)ζ(t) + ET Fg(x, t) (8)
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Fig. 2. Responses of the first, second and third floors with no control

where E = [I 0], A0 = diag{A, 0}, H = diag{B, I}, L =
diag{C, I} and

K :=

[

DK CK

BK AK

]

(9)

For system (8), we have the following result.

Proposition 1: Let W1 and W2 be the orthogonal comple-

ments of B and CT , respectively. A dynamic output feedback

controller of form (7) is solvable for system (6) if there exist

6 × 6 real matrices X > 0, Y > 0 such that
[

WT
1 (AX+XAT +FFT )W1 µWT

1 X
∗ −I

]

< 0 (10)

[

WT
2 (Y A+AT Y +µ2I)W2 WT

2 Y F
∗ −I

]

< 0 (11)

[

X I
∗ Y

]

> 0 (12)

Moreover, if (10)-(12) are feasible on matrix variables X,Y ,

then the controller parameters K defined in (9) can be

obtained by the following LMI

P (A0 + HKL) + (A0 + HKL)T P

+ µ2ET E + PET FFT EP < 0 (13)

where

P :=

[

Y I
NT 0

] [

I X
0 MT

]

−1

, MNT = I − XY (14)

Proof: See the full version of this paper [16]. �

Now, based on Proposition 1, we design a dynamic output

feedback controller for system (2) with (4). Let

C =





1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



 (15)

Applying Proposition 1, for µ = 1, the obtained dynamic

output feedback controller, which is denoted by K1, is given

in (7) with K1 :=

[

AK BK

CK DK

]

being shown on the top of

next page. Clearly, the controller K1 is of a large gain in the

sense of Euclidean norm, namely, ‖K1‖2 = 4.1308 × 108,

which demands a large control force. It is worth pointing

out that this feature remains even for small value of µ.

For example, taking µ = 0.01 and applying proposition 1

yields a dynamic output feedback controller K2, which is

also of a large gain with ‖K2‖2 = 5.6472 × 108. Figures

3 depicts the responses of the first, second, third floors of

the offshore structure under the control of K2. From these

figures, we can find that the oscillation magnitudes of peak to

peak have been reduced from 2.2627ft, 2.4518ft, 2.5379ft
to 0.5433ft, 0.5967ft and 0.6388ft, respectively.

IV. DYNAMIC OUTPUT FEEDBACK CONTROL BY

INTRODUCING DELAYED MEASUREMENTS

In practical feedback control systems, small time-delays in

the control action are inevitable because of involved dynam-

ics of actuators and sensors. As is seen from the previous

section, the obtained dynamic output feedback controller is

of a large gain in the sense of Euclidean norm. In this section,

we are interested in investigating the effect of a small time-

delay on dynamic output feedback control of the offshore

structure. More specifically, we introduce a small time-delay

h > 0 when we measure the output of the system, i.e.

y(t) = Cx(t − h) (16)

The corresponding state space model of the offshore structure

is stated as










ẋ(t) = Ax(t) + Bu(t) + Fg(x, t)

y(t) = Cx(t − h)

x(t) = 0, t ∈ [−h, 0].

(17)

We now design a dynamic output feedback controller of

form (7) based on the system (17). The resulting closed-loop
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K1 = 108 ×
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Fig. 3. Responses of the first, second and third floor under the control of K2

system by (17) and (7) is

ζ̇(t) =(A0+HKL1)ζ(t)+HKL2Eζ(t−h)+ET Fg(x, t)
(18)

where A0,H,K are the same as those in (8) and

L1 :=

[

0 0
0 I

]

, L2 :=

[

C
0

]

We now state and establish the following stability criterion.

Proposition 2: For given positive scalars µ and h, the sys-

tem (18) is asymptotically stable if there exist real matrices

P > 0, Q > 0 and R > 0 of appropriate dimensions such

that matrix inequality (20), on the top of next page, holds.

Proof: See the full version of this paper [16]. �

Proposition 2 provides a delay-dependent stability crite-

rion for the nonlinear system (18). However, this condition

cannot be used to design the controller parameters directly

due to some nonlinear terms, such as PHKL1 and PHKL2

etc. in matrix inequality (20). In what follows, we propose

a controller design method based on Proposition 2. Similar

to the proof of Proposition 1, a sufficient condition of the

existence of a desired controller can be obtained, which is

stated in the following proposition.

Proposition 3: Let W1 and [WT
2 WT

3 ]T be the orthogonal

complements of CT and [BT BT ]T , respectively. Matrix

inequality (20) is feasible on matrix variable K if and only

if there exist real 6× 6 matrices X > 0, Y > 0, Q > 0 and

R > 0 such that (12) and








Ξ11 RW1 Y F hAT R
∗ WT

1 (−Q − R)W1 0 0
∗ ∗ −I hFT R
∗ ∗ ∗ −R









< 0 (21)

Ω :=

[

Ω11 WT
2 XR

∗ −Q − R

]

< 0 (22)

where

Ω11 := WT

2 [AX + XAT + X(Q − R + µ2I)X]W2

+ (W2 + W3)
T FFT (W2 + W3) + WT

2 XAT W3

+ WT

3 AXW2 − h−2WT

3 R−1W3

Ξ11 := Y A + AT Y + Q − R + µ2I.
�

One can see that matrix inequality (22) is still nonlinear

on matrix variables, which is a non-convex feasible problem.

Now, we will convert this non-convex feasible problem into

a nonlinear minimization problem subject to a set of LMIs.

Define J := diag{I, X}, then pre- and post-multiplying

both sides of Ω in (22) by JT and its transpose, respectively,

yield

JT ΩJ =

[

Ω11 WT
2 XRX

∗ −XQX − XRX

]

< 0 (23)

Introducing two new matrix variables S > 0 and Z > 0 such

that

XRX ≥ S, XQX ≥ Z

which are equivalent to, respectively
[

R X−1

X−1 S−1

]

≥ 0,

[

Q X−1

X−1 Z−1

]

≥ 0.

Notice that
[

−WT
2 XRXW2 WT

2 XRX
∗ −XRX

]

≤

[

−WT
2 SW2 WT

2 S
∗ −S

]

One can see that matrix inequality (23) is implied by the

following
[

Ω̃11 WT
2 S

∗ −Z − S

]

< 0 (24)

where

Ω̃11 := WT

2 [AX + XAT + X(Q + µ2I)X − S]W2
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Θ :=









Θ11 PHKL2 + ET R PET F h(A0 + HKL1)
T ET R

∗ −Q − R 0 hHKLT
2 ET R

∗ ∗ −I hFT R
∗ ∗ ∗ −R









< 0 (20)

Θ11 := P (A0 + HKL1) + (A0 + HKL1)
T P + ET (Q − R + µ2I)E. (21)

+ (W2 + W3)
T FFT (W2 + W3) + WT

2 XAT W3

+ WT

3 AXW2 − h−2WT

3 R−1W3

By using Schur complement, (24) is equivalent to








Ω̆11 WT
2 S WT

2 X µWT
2 X

∗ −Z − S 0 0
∗ ∗ −Q−1 0
∗ ∗ ∗ −I









< 0 (25)

where

Ω̆11 :=WT

2 [AX+XAT −S]W2 − h−2WT

3 R−1W3

+ (W2+W3)
T FFT (W2+W3)

+ WT

2 XAT W3 + WT

3 AXW2

Therefore, setting R̄ = R−1, X̄ = X−1, S̄ = S−1, Z̄ =
Z−1, Q̄ = Q−1, and similar to the proof of Proposition 2,

we can derive a new sufficient condition for the existence of

the dynamic output feedback controller, which is formulated

in the following result.

Proposition 4: Let W1 and [WT
2 WT

3 ]T be the orthogonal

complements of CT and [BT BT ]T , respectively. For given

scalars µ > 0 and h > 0, the dynamic output feedback

control problem for system (17) is solvable if there exist

6 × 6 real matrices X > 0, Y > 0, Q > 0, R > 0, R̄ >
0, X̄ > 0, S > 0, S̄ > 0, Z > 0, Z̄ > 0 and Q̄ > 0 such that

(12), (21) and












Υ WT
2 S (WT

2 +WT
3 )F WT

2 X µWT
2 X

∗ −Z−S 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −Q̄ 0
∗ ∗ ∗ ∗ −I













< 0 (26)

[

R X̄
X̄ S̄

]

≥ 0,

[

Q X̄
X̄ Z̄

]

≥ 0 (27)

RR̄ = I, XX̄ = I, SS̄ = I, ZZ̄ = I, QQ̄= I (28)

where

Υ :=WT

2 [AX+XAT −S]W2+WT

2 XAT W3

+ WT

3 AXW2 − h−2WT

3 R̄W3.
Proposition 4 is based on a set of LMIs subject to

equality constraints. By employing the cone complementary

method proposed in [5], it can be converted into a nonlinear

minimization problem (NMP) subject to LMIs, which is

stated in the following.

Nonlinear Minimization Problem (NMP)

Minimize Tr(X̄X + R̄R + Q̄Q + Z̄Z + S̄S) (29)

Subject to (12), (21), (26), (27) and
[

R I
I R̄

]

≥ 0,

[

X I
I X̄

]

≥ 0,

[

Q I
I Q̄

]

≥ 0,

(30)
[

Z I
I Z̄

]

≥ 0,

[

S I
I S̄

]

≥ 0. (31)

The following iterative algorithm can be used to solve the

above NMP.

Algorithm 1 Solve the NMP (29).

Step 1 Find a feasible set

(X0, Y 0, Q0, R0, S0, Z0, X̄0, Q̄0, R̄0, S̄0, Z̄0) sat-

isfying 12), (21), (26), (27) and (30), (31). Set

l = 0.

Step 2 Solve the following LMI problem for the matrix

variables (X,Y,Q,R, S, Z, X̄, Q̄, R̄, S̄, Z̄):

Minimize Tr

(

X̄ lX+X lX̄+R̄lR+RlR̄+Q̄lQ
+QlQ̄+Z̄lZ+ZlZ̄+S̄lS+SlS̄

)

Subject to (12), (21), (26), (27) and (30), (31)

Set X l+1 =X,Ql+1 =Q,Rl+1 =R,Zl+1 =Z,
Sl+1 =S, X̄ l+1 =X̄, Q̄l+1 =Q̄, R̄l+1 =R̄,
Z̄l+1 = Z̄, S̄l+1 = S̄.

Step 3 If matrix inequality (22) and
∣

∣

∣

∣

Tr

(

X̄ lX+X lX̄+R̄lR+RlR̄+Q̄lQ
+QlQ̄+Z̄lZ+ZlZ̄+S̄lS+SlS̄

)

−10n

∣

∣

∣

∣

< ε

(32)

where ε is a prescribed sufficiently small positive

number, are satisfied, then set l = l + 1 and go

to Step 2. If one of the conditions (22) and (32) is

not satisfied within a specified number of iterations,

then exit.

Finally, if the nonlinear minimization problem (29) is

feasible on the matrix variables R,Q etc., then the desired

dynamic output feedback controller of form (7) can be

obtained by solving the LMI (20) on the matrix variable

K in (9) with the known R,Q and P of form (14).

Now, we are in position to design a dynamic output feed-

back controller for system (2) with (4) based on Proposition

3 incorporating with Algorithm 1. Setting h = 0.02, for

µ = 1, the dynamic output feedback controller, which is

denoted by K3, can be derived, and the controller parameters

K3 :=

[

AK BK

CK DK

]

are given on the top of this page.

It is worth noting that the controller gain of K3 with

‖K3‖2 = 6.6224 × 104 is much smaller than those of

K1 with ‖K1‖2 = 4.1308 × 108 and K2 with ‖K1‖2 =
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K3 =





















−19.821 1.3551 4.6275 −5.0287 −0.0824 −0.3689 0.0042 −0.0028 0.0008
−1.9217 −1.3374 −1.2510 1.3649 0.0221 0.0997 0.0103 0.0013 0.0024

44.687 −2.4412 −5.3613 2.3260 −0.5188 −2.5452 0.6109 −118.7021 −3.5789
53.866 −1.1599 −2.9063 −3.0366 −0.5630 −2.9301 1.2531 −119.9537 −3.4823
52.437 9.1799 4.4460 1.8615 −0.7438 −2.9704 19.6555 −80.3220 2.1280
574.38 129.27 116.50 −97.968 −0.4820 −38.056 234.6118 −1331.8 10.8054

−62745 2519 14215 −15450 −253 −1133 −0.0016 0.3327 0.0059
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Fig. 4. Responses of the first, second and third floors under the control of K3

5.6472 × 108. So it is more easily implemented than K1

and K2 for the offshore structure. In addition, we plot

the response curves of the first, second and third floors

of the offshore structure via the controller of K3, which

are shown in Figure 4. Clearly, the oscillation ampli-

tudes of peak to peak are apparently reduced from the

uncontrolled values of 2.2627ft, 2.4518ft, 2.5739ft to

0.4088ft, 0.4451ft, 0.4716ft, respectively. Therefore, by

appropriately introducing a small time-delay into the output

channel, the designed controller is of a small gain in the

sense of Euclidean norm, which demands a small control

force, and the internal oscillation of the offshore structure

can be dramatically reduced.

Remark 1: For an offshore steel jacket structure, the sys-

tem parameters are usually subject to uncertainty. In this

case, the proposed method can easily be extended to design

a robust dynamic output feedback controller by intentionally

introducing a small time-delay to make the uncertain offshore

steel jacket structure work in a safe environment. Due to page

limitation, it is omitted.

V. CONCLUSIONS

We have investigated the effect of a small time-delay on

dynamic output feedback control of an offshore structure

subject to a nonlinear wave-induced force. We have found

that appropriately introducing a small time-delay into the

output channel, the controller is of a small gain in the sense

of Euclidean norm, which demands a small control force,

and the internal oscillations of the offshore structure can be

dramatically reduced. Simulation results have confirmed our

finding.
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