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Abstract—In this paper, we propose a secure communication 
system composed of four chaotic oscillators. Two of those 
oscillators are unidirectionally coupled and employed as 
transmitter and receiver. The other two oscillators are 
indirectly coupled and are employed as keystream generators. 
The novelty lies in the generation of the same chaotic key both 
in the transmitter and receiver side for encryption and 
decryption purposes. We show, in particular, that it is possible 
to synchronize the two keystream generators even though they 
are not directly coupled. So doing, an estimation of the 
keystream is obtained allowing decrypting the message. The 
performance of the proposed communication scheme is shown 
via simulation using Chua and the Lorenz oscillators. 

I. INTRODUCTION 
HE importance of chaotic synchronization for the 
development  of  secure  communication  systems  is 

well-understood by now [1-6]. In recent years, various 
chaotic synchronization methods have been proposed [3-5, 
7, 8] together with a number of modulation methods for 
chaotic communication systems such as chaotic masking [1, 
5], parameter modulation techniques [5], chaotic shift keying 
[2, 5], just to mention a few. Each of these methods requires 
chaotic synchronization for message extraction at the 
receiver side. On the other hand, different attacks methods 
have been derived in order to test the security of the 
modulation methods; namely the non-linear dynamics 
forecasting [9, 10], return maps analysis [11], artificial 
neural network analysis [12] and so on. As a result, methods 
like chaotic masking, parameter modulation techniques and 
chaotic shift keying were found not to be secure.  

In [6], a method based on encryption technique was 
proposed, where a different output from chaotic transmitter 
which was transmitted in the channel was used as a 
keystream to encrypt the message signal. The encrypted 
message signal masked with another output of the chaotic 
oscillator was employed as the transmitted signal. It was 
claimed that since the intruder could not get hold of the 
keystream, it was impossible for the attackers to extract the 
message.  But a later work done by Parker & Short [13] 
showed that it was still possible to extract the keystream 
from the transmitted chaotic signal since the keystream 
carried the information of the dynamics of the transmitter. In 
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fact, since, both the carrier and keystream were the outputs 
of same oscillator; the carrier held the dynamics of the 
keystream as well. Therefore, it was impossible to hide the 
dynamics of the keystream from intruders, as a signal has to 
be transmitted from the transmitter to the receiver for 
synchronization and message transmission purpose. 
However, since the method proposed in [6] is nevertheless 
interesting, there is a real incentive for finding ways for 
improving the method by eliminating its shortcomings. 

In effect, in this paper, based on the spirit of the work in 
[6], we propose a new chaotic communication scheme 
composed of four chaotic oscillators. Two of those 
oscillators are unidirectionally coupled and employed as 
transmitter and receiver. The other two oscillators are 
indirectly coupled and are employed as keystream 
generators. The key idea therefore is to generate a chaotic 
carrier signal from one oscillator while chaotic keystream is 
generated from another chaotic oscillator. A suitable 
encryption rule is employed in order to encrypt the message 
using the generated keystream. The encrypted message is 
then modulated with the chaotic carrier in order to generate 
the transmitted signal.  As a result, the transmitted signal 
does not contain the dynamics of the keystream oscillator, 
hence making it difficult for intruders to generate the 
keystream with the sole knowledge of transmitted chaotic 
carrier. At receiver, the same keystream is generated and 
decryption rule is applied to the recovered encrypted 
message signal which is obtained from chaotic 
synchronization.  However, an obvious question arises: is it 
possible to synchronize two independent chaotic oscillators 
such that they generate same required keystream? It will be 
shown in the next section that, under some assumptions, it is 
still possible to synchronize two chaotic oscillators even 
though they are not uni-directionally coupled.  

An outline of the paper is follows:  In Section II, the main 
methodology of the proposed technique will be explained 
and indirect coupled synchronization is proven for a class of 
chaotic system. In Section III, implementation of the 
proposed synchronization technique and proposed secure 
chaotic communication technique will be implemented using 
the Lorenz system and Chua's system. In Section IV, 
simulation will be carried out and results will be shown. 
Finally in Section V, concluding remarks will be made. 

II. THE PROPOSED COMMUNICATION SYSTEM 
The proposed chaotic communication, based on 

cryptography, is shown in Fig. 1. The novelty here lies in the 
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Fig. 1. Block diagram of the proposed chaotic communication based on cryptography. 

generation of the keystream. The chaotic transmitter (T) is 
first used to generate two output signals, y1(t) and y2(t). The 
signal y1(t) is used for modulation purpose while output y2(t) 
is used to drive chaotic oscillator (A) with a different 
structure than the transmitter (T). The output k(t) of key 
generator (A) is used as a keystream to encrypt the  message 
m(t) using an  encryption rule . . The resulting encrypted 
signal  is masked using y1(t) yielding the 
transmitted signal yt(t). The output yt(t) is fed back into the 
transmitter in the form of an output injection with the aim of 
reducing the effect of non-linearity while performing 
synchronization at the receiver side. The modulated 
transmitted signal yt(t) is sent through the channel to the 
receiver.  

At the receiver end, upon receiving the signal , the 
chaotic receiver (R) - which is similar in structure to the 
transmitter (T) - permits to obtain an estimate  and 

of the signals y1(t) and y2(t) respectively by 
synchronization. This can be done by using any techniques 
existing in the literature [3, 4, 7, 8]. The signals  and 

 are used to generate an estimate  of the 
encrypted signal . The estimate  is used to 
drive the chaotic key generator (B) - which is similar in 
structure to generator (A) - which yields the keystream 
estimate (t).  Consequently, the message m(t) can be 
recovered by using the decryption rule . . 

Note that since, the chaotic key generators (A) and (B) are 
driven by y2(t) and  respectively, an indirect coupled 
synchronization is required between these two chaotic 
oscillators. Also, y2(t) and  are outputs of chaotic 
transmitter (T) and receiver (R) respectively and will be 
equal once synchronization is obtained. Intuitively, one 
would expect this synchronization to take place. However, 
we will prove this mathematically for a class of chaotic 
systems.  

The important part of this method is the generation of the 
keystream. No information regarding the keystream is 
transmitted in the channel. In [6], it was possible to estimate 
the state which was used as keystream (as shown in [13]) 
since the state that was transmitted in the channel had some 

information of the dynamics of the keystream as they were 
state variables of same chaotic oscillator.  

In contrast, in this method, the keystream is generated 
from a chaotic oscillator with a totally different structure. It 
will not be possible to estimate the dynamics of the chaotic 
key generator from the signal being transmitted in the 
channel by using the method mentioned in [13]. Even if the 
intruder manages to get the encrypted signal from the 
transmitted signal, without the knowledge of keystream, the 
message signal could not be decrypted back. Therefore, a 
secure communication link can be realized by implementing 
the proposed method. 

Based on the communication scheme illustrated by Fig. 1, 
we assume that the transmitter oscillator (T) described by a 
dynamical system of the following form:  

T :  

,
                    
                    

, ,    

    (1) 

where the state  with initial condition 0 . 
The outputs of the oscillator   and . The matrix 
A is of appropriate dimension while h1 and h2 are analytical 
function vectors of appropriate dimensions. The signal 

 is the transmitted signal where .  is the encryption 
function using key k(t) and the function b is a smooth 
bounded function of time. 

The keystream k(t) is generated using another chaotic 
oscillator of similar form as above but is driven by the 
output  that is: 

A : ,    
(2) 

where  (q is not necessarily equal to n),  is 
the keystream and h is an analytical function vector of 
appropriate dimension. It is assumed that the channel is 
perfect and that no distortion of the transmitted signal has 
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taken place; that is . 
The receiving chaotic oscillator (R) is given by:  

R :  
,

                    
,                    

 (3) 

Finally, the key generator (B) is given by: 

B :     ̂ ̂
̂ ,   

 
(4) 

We shall make the following assumptions: 
A1) The output  of transmitter (T) is flat,  
A2) There exist symmetric positive definite (SPD) 

matrices P1, P2, Q1 and Q2 such that for all , 

 
. (5) 

A3) There exist a positive constant  0 such that 
, and 

A4) The output function  is globally Lipschitzian 
with respect to x. 

The objective is to show that the transmitter (T) and the 
receiver (R) synchronize as well as generators (A) and (B) 
are synchronized with each other even though there is no 
direct link between them. In effect, based on the above 
assumptions, we state the following: 

Theorem 1. Under the assumptions A1) and A2), there 
exist two constants 0, >ηλ  such that 

)0(ˆ)0()(ˆ)( xxetxtx t −≤− −λη  for all 0≥t . In other words, 
the receiver (R) synchronizes exponentially with the 
transmitter (T). 

Proof: Let ),(ˆ)()( txtxt −=ε  then the error dynamics 
between transmitter (T) and receiver (R) is given by: 

.)( εε tyA=&  (6) 

Owing to assumption A2), a candidate Lyapunov function 
of the above error dynamics can be chosen as:  

.)( 1εεε PTV =  (7) 

Differentiating )(εV  with respect to time, yields: 
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(8) 

Since Q1 is SPD, there exist, 1c , 02 >c such that 

.12111 εεεεεε PQP TTT cc ≤≤  Consequently, 

).()( 1 εε VcV −=&   

Integrating the last equation results in:  

)).0(())(( 1 εε VetV tc−=  
 

Again, since P1 is SPD, there exist 1λ , 02 >λ  such that 

.211 εελεεεελ TTT ≤≤ P Consequently:  

.)0()( 2
2

2
1

1 ελελ tcet −≤   

In other words:  

.)0()0()( 2
1

1

2 εηε
λ
λ

ε λtt eet
c

−− =≤  
(9) 

That is: 
.)0(ˆ)0()(ˆ)( xxetxtx t −≤− −λη  (10) 

This means that )(ˆ tx  converges to )(tx  exponentially. In 
other words, the receiver (R) synchronizes exponentially 
with the transmitter (T). This completes the proof of 
Theorem 1. 

Theorem 2. Assume that system (A) and (B) satisfies 
assumptions A1) and A2), then 0)(ˆ)(lim =−∞→ tztzt . That 
is, the keystream generator (A) synchronizes asymptotically 
with the keystream generator (B). 

Proof: Set ),(ˆ)()( tztzt −=ε  then the error dynamics 
between the keystream generator (A) and generator (B) is 
given by: 

[ ] .)ˆ()()ˆ(
ˆ)ˆ()(

222

22

zyyy
zyzy

FFF
FF

−+=
−=

ε
ε&

 (11) 

Now consider the keystream generator (A).  

.)( 2 zyz F=&  
 

It is clear that owing to assumption A2) that (A) is 
exponentially stable. More precisely, consider the following 
candidate Lyapunov function: 

.)( 2 zzzW T P=  (12) 

Differentiating )(zW  with respect to time results in: 

.)( 222 zzzzzzzW TTT QPP −=+= &&&   

By proceeding as above, one can show that there exist two 
positive constants σ  and θ  such that:  

ThAIn5.7

4101



 

.)0()( zetz tθσ −≤   

Let us study the stability of the error dynamics:  

[ ] .)ˆ()()ˆ( 222 zyyy FFF −+= εε&   

For this consider the following candidate Lyapunov 
function: 

.)( 2εεε PTY =   

By differentiating )(εY  with respect to time, we obtain: 
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(13) 

Since 2Q  is SPD, there exist, 1a , 02 >a  such that 

.22221 εεεεεε PQP TTT aa ≤≤  On the other hand it can 

easily be shown that )(02 εε Yc≤P  where 0c  is the 

conditioning number of .2P   
Also due to Assumption A3), we have: 

.)ˆ()(ˆ)ˆ()( 222222 xhxhyyyy −=−≤− ννFF  

Consequently, due to Theorem 1 and Assumption A4), we 
deduce that there exist some constant 0>ρ  such that: 

.)0(ˆ)0(ˆ)ˆ()( 22 xxexxyy t −=−≤− −λρηρFF  

Finally: 

( ) .)0()0()(2)()( 01 zeYcYaY t ερηεσεε θλ+−+−≤&  

Since ,)()(2)(
.

εεε YYY =&  we obtain 

( ) .)0()0()(
2

)( 0
1

.

zecYaY t ερησεε θλ+−+−≤  

The last equation is linear in .))(( tY ε Consequently, it 
can easily be integrated to show that:  

.0)(ˆ)(lim)(lim =−=
∞→∞→

tztzY
tt

ε  (14) 

Since the right hand side term of the last inequality tend to 
zero as .∞→t This completes the proof of Theorem 2. Once 
the synchronization is obtained between (A) and (B), the 

message can be decrypted by applying the keystream. 

III. APPLICATION OF THE PROPOSED TECHNIQUE USING THE 
CHUA AND THE LORENZ OSCILLATORS 

In this section, the performance of the proposed 
communication system is demonstrated using the normalized 
Chua system as the transmitter (T) and the receiver (R). 
More specifically, (T) and (R) are chosen as: 
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(16) 

The non-linear function )(⋅f  is a piecewise linear 
function given as: 

).11)((5.0)( −−+−+= ψψψψ bab GGGf  

Note that (15) and (16) are in the form (1) and (3) 
respectively with )( tyA  and ),( tytb  given as: 
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It can also be shown that Assumption A2) is satisfied for 
the following matrices 1P  and 1Q : 
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where 0,,, 321 >αlll , ,0,0 ≥< γβ 32 ll β−=  and 

.0 2
4

1 ll α<<  
By performing successive time derivative of p it can also 

be shown that A1) is satisfied. Finally, it is obvious that A4) 
is satisfied. For the key generating oscillators A and B, the 
Lorenz system defined as is adopted: 
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Again it can easily be seen that (18) and (19) are in the 
form (2) and (4) with )( tyF  given as: 
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For these systems Assumption A2 hold true for the 
following choice of matrices 2P  and 2Q : 
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where  0,,,,, 321 >rblll σ , 34
1

2 ll −=  and 2
4

10 ll σ<< . 

Remark 1. Note that, at first sight one would expect the 
matrices 2P  and 2Q  to be time dependent since )( tyF  is 
time dependent. However, interestingly, due to the particular 
form of )( tyF  the matrices turn out to be constants. 

The encryption function (.)φ  used is a n-shift cipher 
algorithm given as: (as used in [6]): 
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where (.,.)1f  is a non-linear function given by:  
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with h being an encryption parameter which is chosen 
such that m and k lie within the interval ],[ hh− . 

Once the keystream generator (A) synchronizes 
asymptotically with generator (B), the message )(tm  can be 
recovered using a decryption rule corresponding to the 
encryption rule and which is given by: 
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(23) 

where )(ˆ tk  is the estimated key stream and 

.ˆ))((ˆ 1yytm t −=φ  
In the next section, simulations are carried out using 

Matlab/Simulink and it will be shown that the proposed 
method is able to synchronize satisfactorily and extract the 
message successfully. 

IV. SIMULATION RESULTS 
The parameters employed in equation (15,16,18 and 19) 

are as follows: 

.05.0,68.0,27.1,0
87.14,10,2.4,6.45,16
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dGG
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βασ

 

The encryption parameter h  is chosen to be 3.0  and the 
message ).2sin(1.0)( ttm π= Also in encryption rule (21), a 
30-shift cipher is used. The initial conditions for each 
oscillator are chosen to arbitrarily different. 

Fig. 2 shows the autocorrelation function of the keystream 
signal )(tk . It is clear that the keystream is not similar to 
itself with any amount of time shift so its autocorrelation 
function has only a single spike at point of zero time shift. 
This means the keystream generated is chaotic in nature and 
therefore has limited predictability. Fig. 3 shows the 
encrypted message signal using (21) and signal )(tk  as 
keystream. Fig. 4 depicts the transmitted chaotic carrier and 
it can be seen that message signal is totally buried inside it. 

Fig. 5 illustrates the error in estimating the keystream and 
it can be seen that although two oscillators are starting from 
different initial conditions, the error converges rapidly to 
zero after some initial period taken for synchronization.  

Fig. 6 shows the performance of the proposed method in 
decrypting the message signal back and it is readily seen that 
the transmitted message signal has been estimated 
convincingly. 

 
Fig. 2. Autocorrelation of key stream signal k(t). 
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Fig. 3. Encrypted message signal . 
 

 
Fig. 4. Transmitted signal yt(t) generated from oscillator T. 
 

 
Fig. 5. Synchronization error in estimation of keystream. 

V. CONCLUSION 
In this paper, a method of synchronizing two chaotic 

oscillators that are not directly coupled together in a master-
slave configuration is proposed and applied to generate the 
keystream at transmitter and receiver. Synchronization is 
proven mathematically and simulation results are presented. 
The main advantage of the proposed method is that, unlike 
previous work on the topic, the keystream is generated from 
a different oscillator to that of the transmitter and hence 
improving the security of the system; since the transmitted 

signal does not include the information of the dynamics of 
the key generator. Consequently, even if the encrypted signal 
is known to the intruders, without the knowledge of the 
keystream extraction of the message signal will not be 
possible providing secure communication link. 

 

 
Fig. 6. Plot of the extracted message mr(t) and m(t). 
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