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Synchronization Criteria for Lur’e Complex Dynamical Networks with

Coupling Delays

Ke Ding and Qing-Long Han*

Abstract— This paper is concerned with synchronization in
Lur’e complex dynamical networks with coupling delays. Every
identical node in the network can be represented as a Lur’e
system. The influence of coupling delays on synchronization in
networks is taken into account. Based on a Lur’e-Postnikov
Lyapunov functional, some delay-dependant synchronization
criteria are derived by employing a delay decomposition
approach. A numerical example is given to illustrate the
effectiveness of the synchronization criteria.

I. INTRODUCTION

Complex networks have received increasing attention from

many fields of science and engineering due to their the-

oretical importance and practical applications. A complex

network is a large set of interconnected nodes, in which a

node is a fundamental unit with specific contents. Examples

of complex networks include World Wide Web (WWW),

electrical power grids, food webs, coauthorship and citation

networks of scientists, business networks, and so on (See e.g.,

[2], [25]). Recent studies indicate that networks are charac-

terized by three quantities: clustering coefficient, averaged

path length, and degree distribution. One uses the cluster-

ing coefficient to measure the cliquishness of the typical

neighborhood, and the clustering coefficient is proportional

to the number of triangles contained in the network; one uses

the averaged path length to measure the typical separation

between two nodes in the network and the degree distribution

to express the probability of finding a node having a definite

number of edges. The small-world network and scale-free

network are two classes of typical complex networks. A

small-world network [25] is the network which has large

clustering coefficient and short averaged path lengths. A

scale-free network [2] is the network which has power law

degree distribution.

There are two classes of distinct behaviors-static behav-

iors and dynamical behaviors within the complex networks.

Undoubtedly, the dynamical behaviors are more complex

and important than static ones. In order to well understand

dynamical behaviors and to illustrate those behaviors math-

ematically, dynamical elements are introduced into all nodes
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of complex networks which are described by the linearly cou-

pled ordinary differential equations, and the existing complex

network models are extended to dynamical network models.

For the resulting complex dynamical networks, one of the

most important dynamical behaviors is the synchronous

motion of its nodes. In fact, synchronization is regarded as

the collective behavior of self-organization which is a funda-

mental concept and universal phenomenon not only in daily

life, such as fireflies flashing in unison, crickets chirping in

synchrony, and heart cells beating in rhythm, but also in

scientific areas, such as the synchronous transfer of digital or

analog signals in chaotic systems for security communication

and the synchronization of coupled oscillators (see e.g. [3],

[5], [7] and [20]). Among the various analysis for syn-

chronization in complex dynamical networks, the complete

synchronization is the one focus of research, in which the

state variables of individual systems converge to each other.

Wu and Chua (1995) [27] discussed the synchronization in

an array of linear couple dynamical systems. Li and Chen

(2006) [16] studied the global synchronization in complex

dynamical networks. Zhang et al. (2008) [30] considered

the adaptive feedback synchronization in complex dynamical

networks with delayed nodes. The existing synchronization

results such as [9], [23], and [26] in complex dynamical

networks are by means of linearizing the network at certain

homogeneous state to analyze the master stability equations

and thereby obtaining local synchronization results. This

approach often requires to transfer the original network

into the linear-varying network, and then to calculate the

eigenvalues of outer-coupling matrix as well as the Jacobian

matrix of a nonlinear function.

There are some nonlinear dynamical systems such as

Chua’s circuit, n-scroll attractors and hyperchaotic attractors

[29] which can be expressed as Lur’e systems. This class

of systems consists of a feedback connection of a linear

dynamical system and a nonlinearity that satisfies sector

condition [13]. During the last decade, the synchronization

and stability criteria for Lur’e systems have been studied by

using different methods such as employing Popov criteria and

Kalman-Yacubovich-Popov (KYP) criteria (see e.g., [18],

[19] and [21]), and constructing various Lur’e-Postnikov-

type Lyapunov functionals to study the master-slave synchro-

nization (see e.g., [1], [10], [13], [15], and [22]). Combining

the theories of complex dynamical networks and Lur’e

systems gives rise to a special complex dynamical networks,

so-called Lur’e complex dynamical networks in which every

identical node consists of a Lur’e system and all nodes

interconnect and interact as the complex dynamical networks.
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It is easy to see that Lur’e complex dynamical networks not

only inherit the feature from Lur’e systems, but also have

the feature from complex dynamical networks. Therefore,

it is of significant to study the dynamical behaviors of

Lur’e complex dynamical networks, and to investigate how

this class of complex dynamical networks can achieve the

synchronization. Using Popov criteria, Liu et al. (2007)

[17] studied the global synchronization in Lur’e complex

dynamical networks.

Time delays are inevitable in the process of information

transfer and have significant influences on the dynamical

behavior of complex dynamical networks. Coupling delays

which emerge from the process of all nodes’ interaction are

the feature of coupling parts of the whole networks. However,

the synchronization results for Lur’e complex dynamical

networks in [17] do not take into account time delays. To the

best of authors’ knowledge, there is no result available in

the existing published literature to study Lur’e complex

dynamical networks with coupling delays.

In this paper, we will introduce a class of Lur’e complex

dynamical networks with coupling delays. Every node of

this class of complex dynamical networks can be repre-

sented as a Lur’e system. We will investigate the effects

of coupling delays on synchronization in Lur’e complex

dynamical networks by employing a delay decomposition

approach recently proposed by Han [12]. We will derive

some delay-dependant synchronization criteria based on a

Lur’e-Postnikov Lyapunov functional. In order to reduce

the complexity of the criteria, we will avoid transferring

the original network into the linear-varying network and

calculating the eigenvalues of outer-coupling matrix as well

as the Jacobian matrix of a nonlinear function. We will use

a numerical example to illustrate the effectiveness of the

synchronization criteria.

Notation: R
n denotes the n-dimensional Euclidean space.

R
m×n is the set of all m × n real matrices. For symmetric

matrices P and Q, the notation P > Q (respectively,

P ≥ Q) means that matrix P − Q is positive definite

(respectively, positive semi-definite). IN is an identity matrix

of N × N dimensions. tr(W ) denotes the trace of matrix

W . diag(a1, a2, · · · , an) denotes the diagonal matrix. For

an arbitrary matrix W and two symmetric matrices P and

Q, the symmetric term in a symmetric matrix is denoted by

*, i.e.

(

P W
∗ Q

)

=

(

P W
WT Q

)

.

II. PROBLEM STATEMENT

Consider the Lur’e complex dynamical network with a

coupling delay described by
{

ẋi(t) = Axi(t)+Bϕ(Cxi(t))+l
∑N

j=1 gijΓxj(t − τ)

xi(θ) = ψi(θ), ∀θ ∈ [−τ, 0], i = 1, 2, · · · , N
(1)

where xi = (xi1, xi2, · · · , xin)T ∈ R
n is the state vari-

ables of unit i; the constant l is the coupling strength;

matrices A = (aij)n×n ∈ R
n×n, B = (bij)n×m ∈

R
n×m, C = (CT

1 , CT
2 , · · · , CT

m)T ∈ R
m×n; N is the

amount of coupled nodes; τ > 0 is the constant time delay;

ψi(θ) is a continuous vector-valued function; ϕ(Cxi(t)) =
(ϕ1(C1xi(t)), ϕ2(C2xi(t)), · · · , ϕm(Cmxi(t)))

T : R
m →

R
m is a memoryless nonlinear vector-valued function which

is globally Lipschitz, ϕ(0) = 0, and suppose that the

nonlinearity ϕ(·) is time invariant, decoupled, and satisfies

a sector condition with ϕj(Cjxi(t)) belonging to a sector

[k
(j)
i , k

(j)

i ], i.e., ∀t ≥ 0,∀xi(t) ∈ R
n,

(ϕj(Cjxi(t))−k
(j)
i Cjxi(t))(ϕj(Cjxi(t))−k

(j)

i Cjxi(t))≤0 (2)

(i = 1, 2, · · · , N ; j = 1, 2, · · · ,m). In the network (1), Γ =
(γij)n×n ∈ R

n×n is the constant inner coupling matrix of

the nodes; G = (gij)N×N ∈ R
N×N is the outer coupling

matrix of the network and is defined as follows: if there is a

connecting between node i and node j, j 6= i, then gij > 0;

and the diagonal elements of G are defined as

gii = −

N
∑

j=1,j 6=i

gij , i = 1, 2, · · · , N. (3)

Compared with the requirements in [9], [23] which assumed

that G was symmetric and irreducible, and gij = 0 or

gij = 1, i 6= j, i, j = 1, 2, · · · , N , this paper has not those

requirements for coupling matrix G.

We first introduce the following definition of synchroniza-

tion in Lur’e complex dynamical networks with a single

coupling delay.

Definition 1: The network (1) is said to achieve global

asymptotical synchronization if

lim
t→∞

‖xi(t) − s(t)‖ = 0, i = 1, 2, · · · , N

where ‖·‖ represents the Euclidean norm, s(t) is the solution

of an isolate node and satisfies
ṡ(t) = As(t) + Bϕ(Cs(t)), s(0) = s0. (4)

Remark 1: From Definition 1, it can be seen that as t →
∞, xi(t) → s(t), i = 1, 2, · · · , N. In this situation, we use

x1(t) = x2(t) = · · · = xN (t) = s(t) to illustrate xi(t) →
s(t). This kind of notion was used in [8], [14] and [24].

Let ei(t) = xi(t) − s(t). From (1) and (4), we have
ėi(t) = Aei(t) + Bκ(Cei(t); s(t))

+ l
N

∑

j=1

gijΓej(t − τ), i = 1, 2, · · · , N (5)

where
κ(Cei(t); s(t))

=
(

κ1(C1ei(t); s(t))· · · κm(Cmei(t); s(t))
)T

= ϕ(Cxi(t)) − ϕ(Cs(t)).

Suppose κj(Cjei(t); s(t)) belongs to the sector [k
(j)
i , k

(j)

i ],
i.e., for ∀t ≥ 0, ∀ei(t), s(t),

(κj(Cjei(t); s(t)) − k
(j)
i Cjei(t))

× (κj(Cjei(t); s(t)) − k
(j)

i Cjei(t)) ≤ 0 (6)

(i = 1, 2, · · · , N ; j = 1, 2, · · · ,m). Using the Kronecker

product, the network (1) can be rewritten
{

ẋ(t) = Ãx(t) + B̃ς(C̃x(t)) + Hx(t − τ),

x(θ) = ψ̃(θ), ∀θ ∈ [−τ, 0]
(7)

where
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x(t) =
(

x1(t) x2(t) · · · xN (t)
)T

,

ς(C̃x(t)) =
(

ς1(Cx1(t)) ς2(Cx2(t)) · · · ςN (CxN (t))
)T

with ςi(Cxi(t)) = ϕ(Cxi(t)) (i = 1, 2, · · · , N), ψ̃(θ) =
(ψ1(θ), ψ2(θ), · · · , ψN (θ))T is a continuous vector-valued

function, and the system (5) can be rewritten as

ė(t) = Ãe(t) + B̃η(C̃e(t);S(t)) + He(t − τ) (8)

where

e(t)=
(

e1(t) e2(t) · · · eN (t)
)T

, S(t)=
(

s(t) s(t) · · · s(t)
)T

,

η(C̃e(t);S(t))=
(

η1(Ce1(t); s(t))· · ·ηN (CeN (t); s(t))
)T

(i = 1, 2, · · · , N), Ã = IN ⊗ A, B̃ = IN ⊗ B, H = lG ⊗
Γ, C̃ = IN ⊗ C. In order to define the initial condition

of system (8), we supplement the initial value to s(t) with

s(θ) = s0,∀θ ∈ [−τ, 0). Consequently, the initial condition

for system (8) is
e(θ) = ψ̄(θ),∀θ ∈ [−τ, 0]

where

ψ̄(θ) = ((ψ1(θ) − s0), (ψ2(θ) − s0), · · · , (ψN (θ) − s0))
T

is a continuous vector-valued function. Let

K = diag(K1,K2 · · · ,KN ),

Ki = diag(k
(i)
1 , k

(i)
2 , · · · , k(i)

m ) ∈ R
m×m,

K = diag(K1,K2,· · · ,KN ),

Ki =diag(k
(i)

1 , k
(i)

2 ,· · · ,k
(i)

m )∈R
m×m, i = 1, 2,· · · ,N.

Suppose that η(C̃e(t);S(t)) and ς(C̃x(t)) belong to the

sector [K,K], i.e., for ∀t ≥ 0, ∀x(t), e(t), S(t),

(η(C̃e(t);S(t))−KC̃e(t))T (η(e(t);S(t))−KC̃e(t))≤0, (9)

and

(ς(C̃x(t)) − KC̃x(t))T (ς(C̃x(t)) − KC̃x(t)) ≤ 0. (10)

It follows from Definition 1 that the global asymptotical

stability of system (8), i.e., limt→∞ ‖ei(t)‖ = 0 (i =
1, 2, · · · , N), will ensure the global asymptotical synchro-

nization in the network (1).

The purpose of this paper is to find sufficient conditions

to ensure the global asymptotical synchronization in the

Lur’e complex dynamical network with a coupling delay

described by (1).

To end this section, we introduce some lemmas that will

be used in the proofs of synchronization criteria.

Lemma 1: [4] (Schur Complement) For matrices Q =
QT , S and R = RT of appropriate dimensions, the inequality
(

Q S
ST R

)

> 0 holds, if and only if the following two

inequalities hold R > 0, Q − SR−1ST > 0.
An S-procedure [28] plays an important role in absolute

stability and robust stability theory. There are a number

of variations, one of which is used in this paper can be

expressed as follows.

Lemma 2: [4] Let Fi = FT
i ∈ Rn×n, i = 0, 1, 2, · · · p.

Then the following statement is true ǫT F0ǫ > 0, for all ǫ 6=
0 satisfying ǫT Fiǫ ≥ 0 if there exist real scalars εi ≥ 0, i =

1, 2, · · · , p such that F0 −
∑p

i=1 ǫiFi > 0. For p = 1, these

two statements are equivalent.

Lemma 3: [11] For any constant matrix R > 0, R =
RT ∈ R

n×n, scalar τ > 0, and vector function e, ė :
[−τ, 0] → R

n such that the following integrations are well

defined, then

−

∫ t

t−τ

ėT (s)(τR)ė(s)ds≤

(

e(t)
e(t−τ)

)T(

−R R
R −R

)(

e(t)
e(t − τ)

)

.

III. SYNCHRONIZATION CRITERIA

Since the nonlinearity ϕ(·) is time invariant and decou-

pled, in this section, we make use of this information to

choose a Lur’e-Postnikov Lyapunov functional to obtain

some synchronization criteria for the network (1).

We first study the case when ϕj(Cjxi(t)) and ςj(Cjxi(t))

belong to the sector [0, k
(j)

i ], i.e., for ∀t ≥ 0, ∀xi(t) ∈ R
n,

ϕj(Cjxi(t))(ϕj(Cjxi(t)) − k
(j)

i Cjxi(t)) ≤ 0 (11)

and

ςj(Cjxi(t))(ςj(Cjxi(t)) − k
(j)

i Cjxi(t)) ≤ 0 (12)

(i = 1, 2, · · · , N ; j = 1, 2, · · ·m). In this case,

η(C̃e(t);S(t)) and ς(C̃x(t)) belong to the sector [0,K], i.e.,

for ∀t ≥ 0, ∀e(t), S(t),

ηT (C̃e(t);S(t))(η(e(t);S(t)) − KC̃e(t)) ≤ 0. (13)

and

ςT (C̃x(t))(ς(C̃x(t)) − KC̃x(t)) ≤ 0. (14)

Choose the following Lur’e-Postnikov Lyapunov func-

tional

V (t, et) = eT (t)Pe(t)+

M
∑

i=1

∫ t−(i−1)h

t−ih

eT (ξ)Qie(ξ)dξ

+
M
∑

i=1

∫ −(i−1)h

−ih

∫ t

t+θ

ėT (ξ)(hRi)ė(ξ)dξdθ

+2
N

∑

i=1

∫ Cei(t)

0

ςi(s)ds (15)

where et is defined as et = e(t + θ),∀θ ∈ [−τ, 0], and

P ∈ R
Nn×Nn, P = PT > 0, Qi ∈ R

Nn×Nn, Qi =
QT

i > 0, R ∈ R
Nn×Nn, Ri = RT

i > 0 (i = 1, · · · ,M);
h = τ

M
, M is the positive integer of division on the interval

[−τ, 0] and h is the length of each division. The integral

term
∑N

i=1

∫ Cei(t)

0
ςi(s)ds is well defined and nonnegative

because ϕi(s) is decoupled.

We now state and establish the following proposition.

Proposition 1: The error system described by (8), (13),

and (14) is globally asymptotically stable, i.e., the Lur’e

complex dynamical network with a coupling delay described

by (1), (13) and (14) achieves global asymptotical syn-

chronization, if there exist real matrices P = PT > 0,

Qi = QT
i > 0, Ri = RT

i > 0 (i = 1, 2, · · · ,M), and

Λ = diag(λ1, λ2, · · · , λN ) > 0, Ξ = diag(ξ1, · · · , ξN ) > 0
such that (

∆(1) ∆(2)

∆(2)T ∆(3)

)

< 0 (16)
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where

∆(1) =

(

∆(1⋆) ∆(2⋆)

∆(2⋆)T ∆(3⋆)

)

,

∆(1⋆)=























∆11 R1 0 · · · 0 PH ∆1 M+2

∗ ∆22 R2 · · · 0 0 0
∗ ∗ ∆33 · · · 0 0 0
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · · ∆MM RM 0

∗ ∗ ∗ · · · ∗ ∆M+1 M+1 HT C̃T Ξ
∗ ∗ ∗ · · · ∗ ∗ −2Ξ























with

∆11 = PÃ + ÃT P + Q1 − R1,

∆ii = −Ri−1−Ri+Qi−Qi−1 (i = 2, 3, · · · ,M),

∆1 M+2 = ÃT C̃T Ξ + C̃T KΞ,

∆M+1 M+1 = −QM − RM ,

∆(2⋆)=(∆1M+3 0 · · · B̃T C̃T ΞT ),∆(3⋆)=−2Λ,

∆1 M+3 = PB̃ + C̃T KΛ,

∆(2) = (∆1M+4 0 · · · 0 ∆M+1M+4 0 ∆M+3M+4)
T,

∆(3) =−
M
∑

i=1

Ri,∆1M+4 = hÃT

M
∑

i=1

Ri,

∆M+1M+4 = hHT

M
∑

i=1

Ri,∆M+3M+4 = hB̃T

M
∑

i=1

Ri.

Proof: See the full version of the paper [6].

Remark 2: Notice that the system (8) is a Lur’e type re-

tarded system. Proposition 1 provides a stability criterion. It

is natural to compare Proposition 1 with some existing results

in the literature. For example, when M = 1, Proposition 1

reduces to Proposition 3 in [11]. Since the focus in this paper

is the synchronization issue of Lur’e type complex dynamical

network with a coupling delay, we will not further compare

Proposition 1 with other absolute stability results.

Remark 3: It should be mentioned that for the first time,

the Lur’e-Postnikov functional (15) is chosen to study the

synchronization in the Lur’e complex dynamical networks

with coupling delays.

For the nonlinearities η(C̃e(t);S(t)) and ς(C̃x(t)) sat-

isfying the more general sector condition (9), by using

the loop transformation [13], we can conclude that global

asymptotical stability of (8) in the sector [K,K] is equivalent

to that of the following system

ė(t)=(Ã+B̃KC̃)e(t)+B̃η̃(C̃e(t);S(t))+He(t − τ) (17)

in the sector [0,K−K], where η̃(C̃e(t);S(t)) and ς(C̃x(t)))
satisfy for ∀t > 0, ∀e(t), S(t),

η̃T (C̃e(t);S(t))(η̃(e(t);S(t)) − (K − K)C̃e(t)) ≤ 0, (18)

and
ςT (C̃x(t)))(ς(C̃x(t)) − (K − K)C̃x(t)) ≤ 0. (19)

Then using Proposition 1, we have the following result.
Proposition 2: The error system described by (8), (9)

and (10) is globally asymptotically stable, i.e., the Lur’e

complex dynamical network with a coupling delay described

by (1), (2) and (10) achieves global asymptotical synchro-

nization, if there exist real matrices P = PT > 0, Qi =
QT

i > 0, Ri = RT
i > 0 (i = 1, 2, · · · ,M), and Λ̃ =

diag(λ̃1, λ̃2, · · · , λ̃N ) > 0, Ξ̃ = diag(ξ̃1, ξ̃2, · · · , ξ̃N ) > 0
such that (

∆̃(1) ∆̃(2)

∆̃(2)T ∆̃(3)

)

< 0 (20)

where
∆̃(1) =

(

∆̃(1⋆) ∆̃(2⋆)

∆̃(2⋆)T ∆̃(3⋆)

)

,

∆̃(1⋆)=

























∆̃11 R1 0 · · · 0 PH ∆̃1 M+2

∗ ∆̃22 R2 · · · 0 0 0

∗ ∗ ∆̃33 · · · 0 0 0
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · · ∆̃MM RM 0

∗ ∗ ∗ · · · ∗ ∆̃M+1 M+1 HT C̃T Ξ̃

∗ ∗ ∗ · · · ∗ ∗ −2Ξ̃

























with
∆̃11 = P (Ã+B̃KC̃)+(Ã+B̃KC̃)T P +Q1−R1,

∆̃ii = −Ri−1−Ri+Qi−Qi−1 (i = 2, 3, · · · ,M),

∆̃1 M+2 = (Ã + B̃KC̃)T C̃T Ξ̃ + C̃T (K − K)Ξ̃,

∆̃M+1 M+1 = −QM − RM ,

∆̃(2⋆) = (∆̃1 M+3 0 · · · B̃T C̃T Ξ̃T ),

∆̃(3⋆) = −2Λ̃, ∆̃1 M+3 = PB̃ + C̃T (K − K)Λ̃,

∆̃(2)=(∆̃1M+4 0 · · · 0 ∆̃M+1M+4 0 ∆̃M+3 M+4)
T,

∆̃(3)=−
M
∑

i=1

Ri, ∆̃1 M+4=h(Ã + B̃KC̃)T

M
∑

i=1

Ri,

∆̃M+1 M+4=hHT

M
∑

i=1

Ri, ∆̃M+3 M+4=hB̃T

M
∑

i=1

Ri.

IV. A NUMERICAL EXAMPLE

In this section, in order to illustrate the effectiveness of the

synchronization criteria, we consider the complex dynamical

network described by

ẋi(t) = Axi(t)+Bϕ(Cxi(t))

+l
5

∑

j=1

gijΓxj(t−τ), i = 1, 2, · · · , 5 (21)

where

A=

(

−2 0
0 −0.9

)

, B=

(

−0.2
−0.3

)

, C =
(

0.6 0.8
)

,

Γ =

(

1 0
0 1

)

, G =













−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1













,

and l = 1, ϕ(ξ) = 1/2(|ξ + 1| − |ξ − 1|), ϕ(ξ) belongs

to a sector [K,K] with K = 0 and K = 1. By Kronecker

product and Definition 1, one can obtain the following error

system

ė(t) = Ãe(t) + B̃η(C̃e(t);S(t)) + He(t − τ) (22)

where Ã = I5 ⊗ A, B̃ = I5 ⊗ B, C̃ = I5 ⊗ C, H =
G⊗Γ. Applying Proposition 1 to this example, the maximum
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Fig. 1. The synchronization errors e11 and e12 of (22) corresponding to
node 1 of (21) with the coupling delay τ = 0.3793

allowed coupling delay bound τmax is calculated for different

M , and the results are listed in Table I. From this table, one

can also see that the larger M , the larger τmax.

TABLE I

THE MAXIMUM ALLOWED COUPLING DELAY BOUND FOR DIFFERENT M

M 1 2 3 4 5

τmax 0.3310 0.3676 0.3749 0.3778 0.3793

Taking the coupling delay as τ = 0.3793, we depict

the simulation results for error variables eij of (22) in

Fig. 1 to Fig. 5, respectively, where the initial conditions

as (e11, e12) = (0.1;−0.2), (e21, e22) = (0.1;−0.2),
(e31, e32) = (0.1;−0.2), (e41, e42) = (0.1;−0.2) and

(e51, e52) = (0.1;−0.2), from which one can clearly see

that the system (22) is globally asymptotically stable, i.e.,

the complex dynamical network (21) indeed achieves syn-

chronization.

Now, we consider Lur’e complex dynamical networks (21)

with K = 0.2 and K = 0.8. Using Proposition 2 to this

case, the maximum allowed coupling delay bound τmax is

calculated for different M , and the results are listed in Table

II. From this table, one can also see that the larger M , the

larger τmax. Simulation results are omitted due to page limit.

TABLE II

THE MAXIMUM ALLOWED COUPLING DELAY BOUND FOR DIFFERENT M

M 1 2 3 4 5

τmax 0.3368 0.3734 0.3807 0.3836 0.3840

V. CONCLUSIONS AND FUTURE WORKS

Synchronization in Lur’e complex dynamical networks

with single coupling delay have been addressed. Some syn-

chronization criteria of the networks have been derived based

on a Lur’e-Postnikov Lyapunov functional. In order to reduce
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Fig. 2. The synchronization errors e21 and e22 of (22) corresponding to
node 2 of (21) with the coupling delay τ = 0.3793
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Fig. 3. The synchronization errors e31 and e32 of (22) corresponding to
node 3 of (21) with the coupling delay τ = 0.3793

the complexity of the criteria, we have avoided transferring

the original network into the linear-varying network and

calculating the eigenvalues of the outer-coupling matrix as

well as the Jacobian matrix of a nonlinear function. And we

have employed the delay decomposition approach which can

provide the larger maximum allowed coupling-delay bound

of complex dynamical networks as the integer of division

for the delay interval increases. The effectiveness of the

synchronization criteria has been proved through a numerical

example.

It should be noted that in this paper we just consider

a single delay in the coupling part of the Lur’e complex

dynamical network (1). The synchronization in the Lur’e

complex dynamical network (1) with multiple coupling

delays and time-vary coupling delays both in every node

and in the whole coupling part are still worthwhile to be

investigated. We will conduct such study in the future work.
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Fig. 4. The synchronization errors e41 and e42 of (22) corresponding to
node 4 of (21) with the coupling delay τ = 0.3793

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

e
51

e
52

Fig. 5. The synchronization errors e51 and e52 of (22) corresponding to
node 5 of (21) with the coupling delay τ = 0.3793
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