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Gradient methods for iterative distributed control synthesis

Karl Mårtensson and Anders Rantzer

Abstract—In this paper we present a gradient
method to iteratively update local controllers of a
distributed linear system driven by stochastic distur-
bances. The control objective is to minimize the sum
of the variances of states and inputs in all nodes.

We show that the gradients of this objective can be
estimated distributively using data from a forward
simulation of the system model and a backward sim-
ulation of the adjoint equations. Iterative updates of
local controllers using the gradient estimates gives
convergence towards a locally optimal distributed
controller.

I. INTRODUCTION

Decision making when the decision makers have
access to different information concerning underlying
uncertainties has been studied since the late 1950s [7],
[8]. The subject is sometimes called team theory, some-
times decentralized or distributed control. The theory
was originally static, but work on dynamic aspects was
initiated by Witsenhausen [13], who also pointed out a
fundamental difficulty in such problems. Some special
types of team problems were solved in the 1970’s [12],
[5], but the problem area has recently gain renewed
interest. Spatial invariance was exploited in [1], [2],
conditions for closed loop convexity were derived in
[11], [10] and methods using linear matrix inequalities
were given in [6], [9], [3].

In this paper we develop a distributed gradient
method to update local linear feedback controllers in
a distributed system. The objective is to minimize a
global quadratic cost of the system. For a centralized
control problem, the method would be a special case of
iterative feedback tuning [4]. However, in our case local
feedback laws are updated for each agent using infor-
mation only about local dynamics and measurements
from neighboring agents. This makes the complexity
of the scheme linear in the number of agents.

Section II describes the distributed systems struc-
ture and notations are defined. The method to update
the feedback laws is given in Section III. Here we
give an expression of the gradient of the cost function
and we see how it can be estimated using only local
information. We give some examples in Section IV.
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II. PROBLEM FORMULATION

Consider the system

x(t+ 1) = Ax(t) + Bu(t) +w(t) (1)

where w is white noise with variance W , and w(t)
is independent of x(s) for s ≤ t. When we consider
distributed systems, there is usually an associated
graph structure. Let the graph consist of n agents i,
1 ≤ i ≤ n, and the edge set E, such that (i, j) ∈ E if
there is an edge between agent i and j (by convention
we let (i, i) ∈ E for all i). We call i and j neighboring
agents if there is an edge connecting them. Let Ei
contain the indices of the neighboring agents of i, i.e.

Ei = { j # if (i, j) ∈ E}

Now, the dynamics matrix has a sparsity structure
which resembles the graph structure of the distributed
system, i.e.

Aij = 0 if (i, j) /∈ E

where the notation Aij means the block associated
with how agent i affects agent j (throughout the
paper, subscripts i, j will refer to blocks associated
with agents i and j). In this paper we assume that
each agent has one set of distinct control signals, i.e.
each control signal affects only one agent directly. This
means that B is a block-diagonal matrix. The case that
an agent does not have an input signal could be mod-
eled as letting the corresponding block in B be zero.
This is not necessary, and the columns corresponding
to such zero entries in B will be removed. One example
of the complete setup is found in Figure 1.

The system is closed using state feedback

u(t) = −Lx(t) (2)

for some L. When we consider a distributed setup,
we limit the feedback matrix to have a structure that
matches the system. The calculation of the input ui(t)
in agent i should only require measurements of the
neighboring agents. Hence, if exactly p agents have
inputs, letting

L =











L11 L12 ⋅ ⋅ ⋅ L1n
L21 L22 ⋅ ⋅ ⋅ L2n
...

...
. . .

...
Lp1 Lp2 ⋅ ⋅ ⋅ Lpn










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Fig. 1. Graphical representation of a distributed system.
The arrows shows how each agent affects the others. The set
E = {(1, 1), (2,2), (3, 3), (4,4), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2),
(3,4), (4, 3)}

where uk is the control signal in agent ik. Then we
have that

Lkj = 0 if (ik, j) /∈ E

With this setup the dynamics matrix A − BL of the
closed loop system will have the same structure as A.

III. CONTROL SYNTHESIS

For every stabilizing feedback matrix L, define

J(L) = E
(

#x#2Q + #u#
2
R

)

(3)

At every iteration, we wish to change L in a descent
direction of J. Obviously, if the gradient ∇LJ of the
cost is non-zero, we can change the feedback matrix to
get a lower cost by introducing

Lnew = L − γ∇LJ

where γ is sufficiently small. With this new feedback
matrix we recompute the gradient and keep iterating.

Next, we will derive an expression for the gradient
of J(L).
Proposition 1: Given matrices A and B, consider L

such that A− BL has all eigenvalues inside the unit
circle. Consider stationary stochastic process satisfy-
ing (1) and (2) where w is white noise with covariance
W . Then J(L), defined by (3), has the gradient

∇LJ = 2
[

RL − BT P(A− BL)
]

X (4)

where X and P satisfy the Lyapunov equations

X = (A− BL)X (A− BL)T +W (5)

P = (A− BL)T P(A− BL) + Q + LTRL (6)

Proof. It is known that J = tr(X Q) + tr(LX LT R) =
tr(PW). To calculate the differential of P, let

AL = A− BL

M = [LTR − ATLPB]dL

Differentiating (6) shows that dP satisfies the Lya-
punov equation

dP = ATLdPAL + M + M
T

Hence

dP =
∞

∑

k=0

(ATL)
k(M + MT )AkL

tr(dPW) = tr

(

2MT
∞

∑

k=0

AkLW(A
T
L)
k

)

= tr
(

2dLT (RL − BTPAL)X
)

This concludes the proof. !

However, we do not only want an expression for
∇LJ, we want one suitable for distributed compu-
tations. It turns out that this can be achieved by
introducing the adjoint system:
Proposition 2: Under the conditions of Proposi-

tion 1, consider the stationary stochastic process λ
defined by the backwards iteration

λ(t− 1) = (A− BL)Tλ(t) − (Q + LT RL)x(t) (7)

where x(t) are the states of the original system. Then

∇LJ = 2
(

RLE xxT + BTEλxT
)

Proof. For simplicity, let QL = Q + LT RL. For any j,

λ( j) = −
∞

∑

k= j+1

(ATL)
k− j−1QLx(k)

= −
∞

∑

k=0

(ATL)
kQLA

k+1
L x( j)

+ Ψ{(w( j),w( j + 1), . . .)}

where Ψ is the appropriate linear operator on the
sequence (w( j),w( j + 1), . . .). Hence

Eλ( j)x( j)T = −E

[

∞
∑

k=0

(ATL)
kQLA

k+1
L x( j)x( j)

T

]

= −PALX

Fitting this into (4) gives the desired result. !

The proposition gives a way of estimating an up-
date direction for the feedback matrix L. But as it
is posed, it cannot be used in a distributed way. In
the calculation of ∇LJ according to the equation in
Proposition 2, the covariance between all states and
between all states and all adjoint states needs to be
determined. But with the appropriate projection of the
gradient, we will find a distributed scheme to update
the feedback matrix. To do this we restrict Q and R
to be block-diagonal, with blocks fitting the size of
the state space and number of inputs of each agent,
respectively.
First we have to make sure that the adjoint system

can be simulated locally, i.e. agent i should be able to
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simulate its corresponding λ i using only local informa-
tion. Lets examine the state equation

λ i(t− 1) =
[

ATLλ(t)
]

i
−

[

(Q + LTRL)x(t)
]

i
(8)

By previous assumptions, it is known that the struc-
ture of AL satisfies

(AL)i j = 0 if (i, j) /∈ E

Also, if (i, j) ∈ E then (AL)i j is considered to be known
to both agent i and j. The first term of (8) will be

[

ATLλ(t)
]

i
=

∑

j∈Ei

(AL)
T
ji λ j(t)

The second term of (8) is simplified to
[

(Q + LT RL)x(t)
]

i
= Qixi(t) −

∑

j∈Ei

LTjiRjuj(t)

This shows that the adjoint state equation (8) can be
simulated in each agent using only local information.
Since the structure of L satisfies that

Lij = 0 if (i, j) /∈ E

the actual direction we update the feedback matrix
must also satisfy this structure. Hence, we project
the gradient ∆LJ to the subspace equivalent to the
structure. Letting G be the update direction, we have
that

Gij = (∇LJ)i j if (i, j) ∈ E

Gij = 0 otherwise

Assuming that the projected gradient G is non-zero,
−G is a descent direction of J(L). Now, this means
that to update the feedback matrix, an agent i needs
only to determine the gradient in the blocks corre-
sponding to the neighboring agents. This requires that
both

(

RLE xxT
)

i j
and

(

BTEλxT
)

i j
can be estimated

locally. The first term can be simplified to
(

RLE xxT
)

i j
= −RiEuix

T
j

which obviously can be estimated locally. With the
assumed structure on B, the second term can be
written as

(

BTEλxT
)

i j
= BTi Eλ ix

T
j

which is also possible to estimate locally. With this
analysis we understand that the update of a feedback
matrix in a distributed system can be made locally.
The method is summarised in the following update
scheme.
Algorithm 1: At time tk, let the state feedback law

be u(t) = −L(k)x(t). To update the feedback matrix in
agent i:

1) Simulate the states xi(t) of the system (1) for
times t = tk, . . . , tk+ N by communicating states
from and to neighboring agents.

xi(t+ 1) =
∑

j∈Ei

(A− BL)i j xj(t) +wi(t)

2) Simulate the adjoint states λ i(t) of the sys-
tem (7) for times t = tk, . . . , tk + N in the back-
wards direction, by communicating states from
and to neighboring agents.

λ i(t− 1) =
∑

j∈Ei

(A− BL)Tji λ j(t)

−



Qixi(t) −
∑

j∈Ei

LTjiRjuj(t)





3) For every neighboring agent j, calculate the es-
timates of Euix

T
j and Eλ ixTj by

(

Euix
T
j

)

est
=

1

N + 1

tk+N
∑

t=tk

ui(t)xj(t)
T

(

E λ ix
T
j

)

est
=

1

N + 1

tk+N
∑

t=tk

λ i(t)xj(t)
T

4) The estimate of the i, j-block of the gradient
becomes

Gij = −2
[

Ri
(

Euix
T
j

)

est
+ BTi

(

Eλ ix
T
j

)

est

]

5) For each neighboring agent j, update L(k+1)i j =

L
(k)
i j − γ Gij for some step length γ .

6) Let tk+1 = tk+N, increase k by one and go to 1).

We denote N by the iteration time, i.e. the length of
the time interval where the system is controlled using
a constant feedback matrix.

An important property of the posed scheme is that the
complexity regarding the number of agents is linear.
Introducing more agents to the system does not in
principal change the calculations that are made in the
old agents. Hence it does not involve much effort to
add more agents to existing system.

Next we address the issue of finding a step length
in which the updated feedback matrix actually gives a
lower cost than the previous. In the equation for the
gradient

∇LJ = 2
(

RLE xxT + BTEλxT
)

we notice that if the closed system with the initial
feedback matrix has eigenvalues near the boundary
of instability, the magnitude of the gradient tends to
be large and the step length is required to be short to
assure that the updated feedback matrix is stabilizing.
With some assumptions we can find a step length
that assures that the updated feedback matrix actually
reduces the cost.

Proposition 3: Consider the system and the cost
function in Proposition 1 with a stabilizing feedback
matrix L0. For a descent direction ∆ (of J(L)), define
Lh = L0 + h∆ and Xh through the equation

Xh = (A− BLh)Xh(A− BLh)
T +W
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The cost is Ĵ(h) = J(Lh) = tr(XhQ) + tr(LhXhLTh R).
Let α be such that Xh ≤ αW for all h that satisfy
Ĵ(h) ≤ Ĵ(0). Furthermore, choose µ and ξ such that

α B∆W∆T BT ≤ (µ −α + 1)W

∆TR∆ ≤ ξQ

Let β = 2(µ2+µ−α +1) and ν ≥ 0 solve the equation

4µ2

ν
+ 2 =

ν

ξ

i.e. ν = ξ +
√

ξ 2 + 4ξ µ2. For all h ∈ [0,h0], where

h0 =
−tr(∆T∇LJ)

(β +ν)J(0)

then Ĵ′(h) ≤ 0. (Note that all matrix inequalities are
with respect to the positive semidefinite cone).

Proof. In the proof we use the following relation on a
number of occasions

MTN + NTM ≤ aMTM + a−1NTN (9)

where M and N are square matrices and a a positive
scalar.
Define Ah = A − BLh. Assume that h is such that
Ĵ(h) ≤ Ĵ(0). First we find a bound on d

dh
Xh

X ′h = AhX
′
hA
T
h − B∆XhA

T
h − AhXh∆

T BT (10)

Examining the last two terms of the right hand side,
we get

− B∆XhA
T
h − AhXh∆T BT ≤ AhXhA

T
h + B∆Xh∆T BT

≤ (α − 1)W +α B∆W∆T BT ≤ µW

and by the Lyapunov equation (10) we understand that
X ′h ≤ µXh. To bound the second derivative of Xh, we
proceed in a similar manner.

X ′′h =AhX
′′
h A
T
h − 2B∆X ′hA

T
h − 2AhX

′
h∆
T BT

+ 2B∆Xh∆T BT

Using the bound on X ′h, the last three terms are
bounded

− 2B∆X ′hA
T
h − 2AhX

′
h∆T BT + 2B∆Xh∆T BT ≤

≤ 2µAhXhA
T
h + 2(µ + 1)B∆Xh∆T BT ≤

≤ 2µ(α − 1)W + 2(µ + 1)(µ −α + 1)W =

= 2(µ2 + µ −α + 1)W = βW

the bound on the second derivative will be X ′′h ≤ β Xh.
We now use these bounds to find a bound on Ĵ′′(h)

Ĵ′(h) = tr(X ′hQ) + tr(LhX
′
hL
T
h R) + 2tr(LhXh∆TR)

Ĵ′′(h) = tr(X ′′hQ) + tr(LhX
′′
h L
T
h R) + 4tr(LhX

′
h∆
T R)

+ 2tr(∆Xh∆
T R) ≤

≤ β Ĵ(h) + 4µtr(LhXh∆
T R) + 2tr(∆Xh∆TR) ≤

≤ β Ĵ(h) +νtr(LhXhL
T
h R) +

ν

ξ
tr(∆Xh∆

T R) ≤

≤ (β +ν)Ĵ(h) ≤ (β +ν)Ĵ(0)

x1 x2 x9 x10A21

A12

A9,10

A10,9

⋅ ⋅ ⋅

Fig. 2. Graphical representation of the system in the example. The
arrows shows how each agent affects the others.

where in the third last inequality, the relation (9) has
been used with M = LX 1/2h , N = ∆X 1/2h and a and ν
solves the equations

a ≥ 0

2µa = ν

2µa−1 + 2 =
ν

ξ

Now, for h > 0, we know that there exists θ ∈ [0,h]
such that

Ĵ′(h) = Ĵ′(0) + θ Ĵ′′(θ)

Then for all h ≤ h0, with

h0 =
−Ĵ′(0)

(β +ν)Ĵ(0)

we must have that Ĵ′(h) ≤ 0. To understand this, let
the interval [0,h−] be the maximal interval such that
Ĵ′(h) ≤ 0 for all h in the interval. Then Ĵ′(h−) = 0
and Ĵ(h−) ≤ Ĵ(0). If h0 > h−, then

Ĵ′(h−) = Ĵ
′(0) + θ Ĵ′′(θ) <

< Ĵ′(0) +
−Ĵ′(0)

(β +ν)Ĵ(0)
(β +ν)Ĵ(0) = 0

Hence h0 ≤ h−. The fact that Ĵ′(0) = tr(∆T∇LJ)
concludes the proof. !

IV. EXAMPLE

The system

x(t+ 1) = Ax(t) + Bu(t) +w(t)

that is considered, consists of 10 agents, where the
agents are connected in a linear fashion, see Figure 2.
This leads to a tri-diagonal dynamics matrix, which,
in this example, is

A =













0.5 0.5
−0.5 0.1 −0.3

0.4 −0.2 −0.5
−0.4 −0.5 0.2

0.2 0.3 −0.1
−0.3 0.1 0.3

0.2 −0.4 −0.4
0.2 −0.2 0.3

0.5 −0.5 0.3
−0.1 −0.1













and with the remaining entries equal to zero. We allow
each agent to have an input and set B = I. The white
noise w has unit covariance. We wish to minimize the
cost

J(L) = E
(

#x#2Q + #u#
2
R

)

where u = −Lx and Q = R = I.
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Fig. 3. The performance of the scheme when the case of full
information is considered. The solid line shows the cost J(L) when
the value of gradient of J is approximately correct in each iteration.
The dashed line shows the cost when N is small, resulting in that
the estimation of the gradient is worse.

The magnitude of the maximal eigenvalue of A,
ρ(A) ) 0.81, hence we can initially let the system be
uncontrolled, i.e. let L = 0.
To start with, we assume that each agent has full

knowledge of the global system and gets measure-
ments from every other node. If we let the iteration
time N, i.e. the time interval when L is fixed, be
large, the estimates of EuxT and EλxT will be more
accurate, meaning that the approximation of∇LJ will
be more accurate. Hence, the expectation is that the
algorithm updates L in a way such that the cost J(L)
approaches the optimal cost J(Lopt). As the iteration
time N is reduced, the approximation of∇LJ becomes
worse. We now expect the approach towards the opti-
mal cost to be worse or even not seem to converge.
Simulations illustrating this can be found in the plot
in Figure 3.
Now consider the case when we impose the same

structure on L as the dynamics matrix A, i.e. re-
stricting L to be tri-diagonal. In accordance with the
notation in Algorithm 1, the direction G in which L is
updated is the projected version of ∇LJ.
Results of this scheme is presented in Figure 4. As

the iteration time N is decreased, the initial reduction
rate in cost is increased. A drawback of having short
iteration time is that noise affects both the cost and
the feedback matrix L in a larger extent. The value
where the cost settles is also increased. As the time N
increases, the convergence becomes slower, but instead
the influence of the noise is reduced and the final cost
approaches the optimal value.
In Figure 5 a comparison of the performance of the

algorithm, between the case of full information and
the distributed system, can be found. Here we see
that initially the distributed setup actually performs
better. At first this can seem counter-intuitive. The

0 100 200 300 400 500 600 700 800 900 1000
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16

Time

 

 
Cost of system, N = 10
Cost of system, N = 3
Cost of system, N = 30
Optimal cost

Fig. 4. The performance of the scheme when the case of tri-diagonal
state feedback is considered. The dashed line shows the case when
N = 10, the solid line shows the case when N = 3 and the dotted
line shows the case when N = 20.
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Fig. 5. A comparison between the case of full information and tri-
diagonal state feedback. The solid line represents the case of full
information and the dashed line shows the case tri-diagonal state
feedback. In both cases, the iteration time N = 10.

explanation of this effect is that the estimates of the
covariance of non-neighboring agents will be quite
poor when using a short iteration time N. Hence, in
the case of full information we are introducing errors
in elements that are not close to the diagonal.

V. CONCLUDING REMARKS

By determining the gradient of the cost in each
agent with only local information, we have obtained
a method to iteratively change the feedback laws to
improve the global performance of a distributed sys-
tem. One important property of the method is that
the complexity is linear. Also, including new agents
to an already existing system, does not change the
calculations in previously existing nodes except the
neighboring ones.
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