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Abstract— The present paper considers distributed consen- for global synchronization on these manifolds. Indeediken|
sus algorithms for agents evolving on a connected compact for Euclidean spaces, agents attracted towards each ather o
homogeneous (CCH) manifold. The agents track no extemal manifolds do not always reach synchronization. We theesfor
reference aqd communicate their r.elatlve state accordingd an first defi ticular “(anti- . fi i
interconnection graph. The paper first formalizes the consesus ">t G€lIN€ particular (anti )consengus _configurations o
problem for synchronization (i.e. maximizing the consenss) Manifolds (Section 11). A cost function is then built and
and balancing (i.e. minimizing the consensus); it therebyni- gradient algorithms are derived which drive an interacting
troduces the induced arithmetic mean, an easily computable swarm to (anti-)consensus configurations (Section lll)e Th
mean position on CCH manifolds. Then it proposes and \ypole framework can be obtained from an easily computable

analyzes various consensus algorithms on manifolds: natat ition” ifolds. Th ient idea behind
gradient algorithms which reach local consensus equilibg; an mean position™ on manifolds. The convenient idea benin

adaptation using auxiliary variables for almost-global syichro- it is to embed the manifold in an Euclidean spake
nization or balancing; and a stochastic gossip setting forighal and measure distances between agentRth We then

synchronization. It closes by investigating the dependercof propose two modifications to reach global synchronization
synchronization properties on the attraction function between with weak conditions on agent interconnections: adding
interacting agents on the circle. The theory is also illustated il “estimat iables” with val B Whi .hth
on SO(n) and on the Grassmann manifolds. auxiliary “esiimator variables ,W' va ues_ » Whic e .
agents update and communicate (Section IV); and letting
I. INTRODUCTION each agent at each time interact with at most one other

The distributed computation of means/averages of datas@@ent, which is stochastically chosen (Section V). In both
(in an algorithmic setting) and the synchronization or apre Cases, the resulting algorithms generically ensure global
ing of a set of agents (in a control setting) have atconvergence to synchronization if the swarm of agents is
tracted growing interest in the literature, with applioag uniformly connected; the estimator algorithm also has a
like swarms/formations (e.g. [16], [26]), distributed @on variant which distributes the agents on the compact mahifol
making (e.g. [20], [31]), networks (e.g. [30]), optimal dog N & co_nfiguration which we call “balanced”. Finally, we
or covering (e.g. [8], [9]), etc. The modeling and underdtan Show with two examples how the convergence properties of
ing of swarm behavior in nature has also led to many studi@sconsensus algorithm on the circle depend on the attraction
(e.g. [14], [29], [32]). profile between agents as a function of distance (Section VI)

Recent results have contributed to a good understandiA@e concepts are illustrated 6ft, SO(n) andGrass(p,n).
of synchronization of interacting agents in Euclidean spac n the literature so far, the study of global synchronizatio

based on the linear consensus algorithm (e.g. [18], [30])[2 ©F balancing properties in non-Euclidean manifolds is not
widely covered. The circle is often addressed: oscillator

%yk = Zj ajk (Y5 — Yr) 1) synchronization studies mostly derive from the Kuramoto
wherey, € R”, k = 1,2,..., N are the agents' states angmodel (see [28] for a review); recently, we addressed con-

1 -
the a;, > 0 characterize how strongly they are attracteeNSUS ONnS" from a control perspective [26], [23], [25],
towards each otheraf, = 0 implying no interconnection, [27]. Manifold SO(3) has attracted attention in recent years
i.e. no attraction of agenit towards;). Global exponential in the context of satellite attitudes: reference- or leader
synchronization is ensured even with varying, as long as dependent synchronization is studied e.g. in [15], [3]aloc
the agents areniformly connectedsee below). synchronization studies with a geometric approach aredoun

However, many interesting applications involve manifoldén, [6], [19]. The computa}tion qf means on manifo!ds has
that are not homeomorphic to an Euclidean space, like tfjggered some research, including classical but compuat

circle S! for (e.g. oscillator) phase variables or the group oflY heavy definitions like [13], [7], as well as developrment
rotationsSO(n) for rigid body orientations. for partl_cular spaces which are covered by our “induced
The goal of the present paper is to extend the framework gfithmetic mean” approach (see [17] &fD(3) and [1],
consensus algorithm (1) to connected compact homogenedtdl: [8] on Grass(p, n)). The topic of optimization-based
manifolds (which includes?, SO(n), Grassmann manifolds algorithm design on manifolds has considerably developed

Grass(p,n) and spheress™~!) and to propose algorithms over the last decades _(see e.g. [3], [10], [12], [2])'_
The present paper is based on [21] and associated pub-
This paper is part of the SIAM session; it covers resultslications. Sections Il, Ill, IV are based on [22]. Section

from [22], [24] among others. A. Sarlette and R. Sepulchre ary js hased on [24]. The reader is invited to consult these
with the Department of Electrical Engineering and Computer

Science, University of Liege, 4000 Liege SartTiman, meiy eferences for more mathematical background, discussion
{alain.sarlette, r.sepul chre}@l g. ac. be and proofs, as well as a deeper treatment of examples.



Preliminaries Grass(p,n) in R™ = R™*", we use the “projector repre-

Interconnections among agents are representedigmgph ~ Sentation™ll = YYT; whereY” € R"*? is any orthonormal
G, whoseN vertices are théV agents, and containing edgebPasis of subspac in R".
(j, k) iff agent j sends information to agerit, which is I
denoted;j ~ k or (j, k) € E, the set of edges. A weiglt
is associated to each ordered pair of agents, suclafhat 0
iff j ~ k, ajr = 0 else. By conventiongy, = 0 VEk is Consider a set ofV agents on a manifoldU satisfying
assumed. Matri¥l containing thes;, is called the adjacency Assumption 1. The position of agehtis denoted by, and
matrix of G. The in-Laplacian ofG is L() = D® — A its weight byw; > 0.

. MEAN AND CONSENSUS ON MANIFOLDS
A. The induced arithmetic mean

where diagonal matriX>() contains the in-degreeif,z = Definition 1: Theinduced arithmetic meafAM C M is
Z;\’Zl ;- By construction,L(® has zero column sumg  the set of points inM that globally minimize the weighted
- - - . e o(i N sum of squared Euclidean distancedRift to eachys:

is undirected ifA = A”. G is balanced |fd,(€,2 =D j=1 Qkj- q Yk

Gis strongl_y connected if it contains a directed path from  74nf = argmin SN wy d2 (yk, ©) )
any vertexj to any vertexk; G is weakly connected if cEM

SU(_:h paths exi_st in the gssociatgd l_mdirected g_raph, with = argmin fozl wy (Y — C)T(yk —c). (3)
adjacency matrixd + A”'. Time-varying interconnections are ceM

represented by time-varying edges. We always assume thaie anti-[induced arithmetic meanfifAM C M is the set
the elements ofi(¢) are bounded and satisfy some threshol@f points in M that globally maximize this weighted sum.
a;p(t) > 6 > 0V(j,k) € E(t) andVt, i.e. G(t) is ad-
digraph. In &-digraphG(t), vertexj is said to be connected
to vertexk across[ty, to] if there is a directed path from
to % in the digraph defined by adjacency matrxwhere

The point in Definition 1 is that distances are measumned
the embedding spad®™. It thereby differs from the canon-
ical Karcher mear{13], which uses the geodesic distance on
M. The IAM satisfies several properties of a mean, see [22].
S f:f a;r(t)dt if f:2 a;i(t)dt > ¢ It does not always reduce to a single point, but this seems

j 0 if ftf ajp(t)dt <o u_navmdable (|m_ag|ne e.g. points uniformly distributed an
circle). The main advantage of thelM over the Karcher

A é-digraph G(t) is uniformly connected if there exist a mean is computational: defining tloentroid C, € R™ by
vertex k and a time horizonI" > 0 such thatV¢, & is | N N
connected to all other vertices acrdsg + 7. Ce =17 D ke1 Wk Yk where W' =3, wi

A homogeneous manifoldM is a manifold with a tran- it holds
sitive group action by a Lie groug: it is isomorphic to IAM = argmax(c’ C,) . (4)
the quotient manifoldG/H of a groupG by one of its ceM
subgroupsH. Informally, it can be seen as a manifold onThus computing the/A)M just requires to maximize a lin-
which “all points are equivalent”. The present paper conear function of R™ in a very regular search spac#!.
siders connected compact homogeneous (CCH) manifoller SO(n), Grass(p,n) and the n-dimensional spheres
satisfying the following embedding property. Sn=1 c R", the linear function has no local minima, so

Assumption 1:M is a CCH manifold smoothly embeddedlocal optimization is sufficient.
in R™ with the Euclidean nornjly|| = r, constant over  Assumption 2:The local maxima of any linear function
y € M. The Lie grougg acts as a subgroup of the orthogonalf (¢) = ¢’ b overc € M, with b fixed in R™, are all global
group onR™, maxima.

It is sometimes preferred to represemte M by a

S - 2 < Example 1:Tthe circleS! embedded ifR? with its center
matrix instead of a vector. Componentwise |dent|f|cat|or(];‘t the origin satisfies Assumptions 1 and 2. TH8 is the
R™Mxm2 o~ R™ js then assumed,; the corresponding norm '

: . e central projection of”, onto S*. It reduces to a single point
is the Frobenius normjB|| = /trace(B" B). if C. # 0, else it contains the whole circle. TH&\M uses
The special orthogonal groupO(n) is the set of rotation the chordal distance between points, while the Karcher mean
matrices inR™. A point of SO(n) is characterized by a real would use arclength distance.
n xn orthogonal matrixQ, i.e. Q7 = Q !, with determinant SO(n), embedded as orthogonal matric@s € R™*",
+1. SO(n) is a homogeneous (as any Lie group), compaciet(Q) > 0, satisfies Assumptions 1 and 2. THaM is
and connected manifold. It has dimensiefn — 1)/2. the orthogonal component of the polar decompositio@’of
Each point on theéGrassmann manifoldzrass(p,n) de- if det(C.) > 0; if det(C.) < 0 it is given by a related
notes ap-dimensional subspacg of R”. The dimension of formula [22].
Grass(p,n) is p(n—p). SinceGrass(n—p,n) is isomorphic Grass(p,n) is represented as the set of orthonormal
to Grass(p,n) by identifying orthogonally complementary rank projectorsIl;, embedded in the symmetric positive
subspaces, we assume w.l.o.g. that< Z. Grass(p,n) semidefinite cone oR™*", to satisfy Assumptions 1 and
is connected, compact and homogeneous as the quoti@ntThe IAM is the dominantp-dimensional eigenspace of
manifold of O(n) by O(p) x O(n — p). In order to embed C..



B. Consensus on manifolds

where &1, & are constants. In [23], [27]P, is studied

Consider that theV agents are interconnected according@n ' for undirected equally-weighted. For the unit-

to a fixed digraphG of adjacency matrixd = [a;z]. For
simplicity we takew; = 1 Vk.
Definition 2: Synchronizatioris the configuration where
y; = yr VJ, k. A consensus configuratidor G satisfies
Yr € argmax

ceM (CT Zyzl @ik yj) ®)

i.e. each agent is located at a point of th8/ of its neigh-
bors j ~~ k. An anti-consensus configuratias similarly
defined withIAM replacedAIAM . The agents arbalanced
if their JAM contains allM.

Vk

weighted complete graph? := P, + 2x = 3||C.[% the

squared norm of centroid'; this is a classical measure of
oscillator synchrony in the literature, e.g. in the contekt
the Kuramoto model [14], [28].

Proposition 2: Synchronization of théV agents onM is
the unique global maximum of;, wheneverG is weakly
connected. Further, ifM satisfies Assumptions 1 and 2,
then given an undirected gragh, a local maximum (resp.
minimum) of the associate#;,(y) necessarily corresponds
to a consensus (resp. anti-consensus) configuratio& for

In [26], P is used onS! to derive gradient algorithms for

Note that (anti-)consensus is defined as a Nash equnchronizing (by maximizing) or balancing (by minimiz-

librium: each agent minimizes its cost functi@ssuming

ing P) headings of particles in planar motion. We extend this

the others fixedConsensus and anti-consensus are grapf; cCH manifolds and to general consensus configurations.
dependent notions. Synchronization and balancing arengrag:q, simplicity, we limit ourselves to continuous-time giext

independent and can be seen as situations of ucompletglngorithms, where the gradient is defined with the canonical

consensus and anti-consensus respectively.

Proposition 1: If G is the equally-weighted complete

metric induced by the embedding &ff in R™.
A gradient algorithm forP,, yields, fork = 1...N,

graph, then synchronization is the only consensus con-

figuration. All balanced configurations are anti-consensus i Uk(t)

configurations for the equally-weighted complete graph.

The second part of Proposition 1 does not establish a
necessary and sufficient condition; anti-consensus configu

2N% grady r,(Pr) (7)
o Projpaq s (Zj(ajk + akj)yj) (8)

a Projp g, (Zj(ajk + a;)(y; — yk))(9)

rations for the equally-weighted complete graph that ate nqshere o > 0 (resp.« < 0) for consensus (resp. anti-
balanced, though exceptional, do exist. Balancing imp“Q‘s‘onsensus)gradkM(f) denotes the gradient of with
some spreading of the agents on the manifold. A full chagespect toy,, aloﬁg M, and Proj;,, . is the orthogonal
acterization of balanced configurations seems complicatechrojection onto the tangent space Ad at y;. Algorithm

Example 2:We limit ourselves to the circl&?.
Consider the equally-weightaeghdirected ring graphin

(9) requires each age#tto know the relative position with
respect to itself of all agents for which j ~ k or k ~ j.

which each agent is connected to two neighbors such that tRéce information flow is restricted tp ~ £, (9) can only
graph forms a single closed undirected path. Regular consdlf implemented for undirected, for which it becomes

sus configurations correspond to situations with conseeuti

agents in the path always separated by the same éngle
x < m/2; regular anti-consensus configurations hay@ <

x < w. In addition, for N > 4, irregular consensus and
anti-consensus configurations exist where non-consecutiv

angles of the regular configurations are replacedby x).

() = 20 Projr (X, amly; —we)) - (10)
In the special case of a complete unit-weighted graph,
%yk(t) = 2aN Projraq (Ce(t) — yk) - (11)

Proposition 3: A swarm of N agents moving according to

The reader is encouraged to discuss implications of th(d0) on a manifoldM satisfying Assumptions 1 and 2, with
example (also see [22]); for instance, there is no commdixed undirected~, always converges to a set of equilibrium

anti-consensus state for all ring graphs.

points. Ifa < 0, all asymptotically stable equilibria are anti-

Anti-consensus configurations for the equally-weightedonsensus configurations fot. If « > 0, all asymptotically
complete graph are fully characterized in [26]: the onlyi-ant stable equilibria are consensus configurations or(in
consensus configurations that are not balanced correspongarticular, for the equally-weighted complete graph, thiy o

(N+1)/2 agents at somé&* and(NN —1)/2 agents at* +,
for N odd. Balanced configurations are unique fér= 2
and N = 3 and form a continuum fotv > 3.

Ill. GRADIENT CONSENSUS ALGORITHMS

For a graphG with adjacency matrixA = [a;] and
associated Laplaciad.() = [lj(.;)], associated toy

(y1,...,yn) € MY, define

=& - #Zj,k 152) ijyk
(6)

Prly) = gam2s;%ak Ui Yk
o — z;lwzg',k ajk |ly; — kaQ

asymptotically stable configuration is synchronization).

Note that in Proposition 2, optimizing’;, is a sufficient
condition to reach (anti-)consensus configurations. There
fore, all stable equilibria of the gradient algorithm are
(anti-) consensus configurations, but there may also bé)ant
consensus configurations that are unstable. For instaoice, f
a tree, maximization oP;, always leads to synchronization,
although other consensus configurations can exist.

Formally, algorithm (10) can be written for directed and
even time-varying graphs, although the gradient property



is lost. Nevertheless, using the argument of [18], it casame performance as the complete graph gradient algorithm,
be shown that synchronization is still a stable equilibriunbut under very weak conditions on the actu@{¢). The
(asymptotically stable if disconnected graph sequences aeduction of information channels is compensated by adding
excluded). Its basin of attraction includes the configorati a consensus estimator variablg, € R™ to the state space
where all the agents are located in a convex seMafOn  and communication of each agent.
the other hand, examples where algorithm (10) runs into
a limit cycle, quasi-periodic behavior,... can be built twit
undirected varying= or with fixed directed=; see [21], [22]
for simple examples op!. With directedand varying G,
there are even more possibilities. However, these examples
seem to be non-generic: performing simulations with randomi_gg,C = 8 Zj ajr (xj — o) (17)
graph sequences and initial conditions 8h, SO(n) and o .
Grass(p,n), the swarm seems to always eventually converget?% = 75 grady a((Wi, k) = s Projpp(zx) (18)
to synchronization when > 0. with 3,7s > 0 for k = 1...N. Equation (17) is a classi-
It can be noted that the discrete-time version of (10)  cal consensus algorithm iR™, exactly equivalent to (1).
(VA s According to e.g. [18], ther, exponentially converge to
yelt+1) € IAM ({y; (D17 =k in GO} U {m(0)}) (12) a common valuer., if G(¢) is piecewise continuous in
exactly corresponds to Vicsek’s phase update lawsbigsee time and uniformly connected. This leads to the following
[32]), and readily generalizes it to manifolds. convergence property, whefdM, generalizes (4) when the
points definingC, are not onM.
Proposition 4: Assume thatM satisfies Assumptions 1
and 2, andG(t) is piecewise continuous and uniformly
40, = o > ajk sin(0 — 6;) , k=1..N. (13) connected. Then the only stable limit configuration of the

r under (17),(18), with the:;, initialized arbitrarily but in-
For the equally-weighted complete graph, this is StrICtl%ependently and such that they can take any value in an open

equivalent to the Kuramoto model [14] with identical (zero) subset ofR™, is synchronization ag, = Proj (2o0):
oo — TM,k\* oo

natural frequencies. Algorithm (13) can e.g. run into
limit cycle when the graph switches between two differerj‘t,r G(t) is balanced, thepo, = LAM,{2)(0), k =1...N}.

For synchronization, the agents run a linear consensus
algorithm on their arbitrarily initialized estimator vahles

1 In R™; agentk’s positiony, on M independently tracks
ghe projection onM of) z. This yields

Example 3:Denoting angular positions ofi! by 6;, the
specific form of (10) is

undirected rings. . . For anti-consensus, by analogy, eaghuses a gradient
On SO(n) andGrass(p,n), P, with matrix formsy,. € aigorithm to maximize its distance to;(t). Algorithm
R™*™ becomes ., J
St = B2 ak(xj— k) + Sk (19)
PL(y) = 5= >k Gk trace(y;‘-ryk) ) (14) d; i 7T dt .
7Y = Begrady a (yezK) = VB Projp g, k(1) (20)

On SO(n), QTQk € SO(n) is the unigue rotation matrix
translatingQ ; to Q1. by matrix (group) multiplication on the with 3 > 0,75 < 0 for k = 1...N , ensures that alb(t)

right. Previous work [6], [19] already useace(Q7Q;) as asymptotically converge ta’ (¢ ) if G( ) is balanced/t and
a measure of disagreement 0(3). The explicit form of 21(0) = yx(0) Vk; then the motion (20) of. asymptotically
(10) is becomes equivalent to (11). Note that the variahlgsand
yi are fully coupled. This makes the convergence proof more
Qr #Qr=a Y a5, (QLQ; —QjQx) - (15) involved, but the general result remains.
On Grass(p,n), (14) can be rewritten as Proposition 5: Assume thatM satisfies Assumptions 1

. and 2, andG(t) is piecewise continuous, uniformly con-
PL(Y) = 537 20 agr (2o1-; cos®(45;,)) nected and balanced. Then algorithm (19),(20) with initial
conditionsz(0) = yx(0) Yk converges to an equilibrium

i th
with ¢%, the " principal angle between subspacgsand configuration of (11) withw < 0.

V. Th|s formulation has previously appeared in e.g. [8].
Algorithm (10) writes In simulations, a swarm applying (19),(20) with,(0) =
dor . . ‘ yx(0) Vk seems to generically converge to an anti-consensus
aille = 20 325 aje (I T g + TLIGIT) - (16) configuration of the equally-weighted complete graph, that
wherelIl| = I —II, with I the identity matrix. is a stableequilibrium configuration of (11) withx < 0.

IV. ALGORITHMS WITH ESTIMATOR VARIABLES Example 4:Applying this strategy to the circl” yields

. 2
The (anti-)consensus configurations reached with (10) a%e results Of. [25]; th@’“ are yectors OR - On §0(n) and
rass(p,n), introducing estimator variableX; € R"*",

directly linked to the interconnection gragh In many appli- ) o .
cationsG is just a restriction on communication possibilities,(17) may be transcribed verbatim; (18) becomes respegtivel

under which one actually wants to achieve a consensus for TaQ, = 2 (QFXy-XIQ) (21)
the equally-weighted complete graph, i.e. synchronimatio
or balancing. This section presents algorithms achievieg t %Hk = g (I Xkl gk + I XiI1g) . (22)



In [25], the algorithms including estimator variables are It must be noted that with both variants, the convergence
expressed “relative to agent positions” 8h The algorithms speed can be quite slow. The undirected variant speeds up
for SO(n) can similarly be expressed completely in theonce all agents are located within a convex sef\f
agents’ body frames: defining,, = Q% X, the agents only
need to know relative position§%'@Q; and communicate

arrays of scalar%, to implement e.g. (17),(18) by V1. SENSITIVITY TO ATTRACTION PROFILE
57 = (QLgQK)" 2y (23) The algorithms in the previous sections are based on an
+6 3, ajx (QEQ)Z; — Zk) attraction between agents proportional to their distamce i

R™ (e.g. chordal distance fa$'). This can also be viewed
as a particular dependence on the more classical geodesic
distance (e.g. sinusoidal function of arclength distanoe o
V. GOSSIP ALGORITHM S1). One could naturally imagine other possibilities for agen
] ) ) » interactions, a.o. mimicking physical attraction laws. On
The algorithms of the previous section use auxiliary varigecior spaces, all these “attraction profiles” always lead t
ablesz, which agents must memorize, update and COMychronization, as can be seen e.g. by rewriting them as

municate. This is not always possible in applications, nogjineay consensus algorithm with varying weights. The
realistic to describe natural phenomena. Another possibil 5)16\ying shows that synchronization properties on theleir

"09%1 are sensitive to the attraction profile.

Qriq, = 2 (z,-2z1). (24)

to achieve global synchronization is to use a so-called-
sip algorithm” [4] where at each time, each agent randomly

selects at most one of its neighbors @t) to update its First considerV agents oS! which instead of (13) apply,
own phase value. For simplicity we here use discrete-timier someb > 0 (see Fig.1),

dynamics; the convergence proof can be repeated with an

appropriate continuous-time version where agents-aese %@ = « Zj a;i g(0; — 6k) , k=1..N, (25)
to the d!screte-tlme values at the end of a period. We conside N;fl(” +0) forfe[-m —Z]

two variants.

Directed gossip:at each update, 9(0) = bo for6 € [-%, §] (26)
1. each agent randomly selects a neighbgr k with N (mr—0) for6e[%, 7.
probability a;./ (3 + >, @), Wheres > 0 is the
weight for choosing no neighbbr Proposition 7: For any equally-weighted fixed undirected

2. yr(t+1) = y;(t) if agentk chooses neighbgrat time G, synchronization is the only asymptotically stable edpili
t, andyy(t + 1) = yx(t) if it chooses no neighbor.  rium for N agents applying (25),(26) ofi'.
Undirected gossip:at each update, (proof see [21])
Remember that in contrast, when applying (13) e.g. with
an undirected ring graph, there are stable “consensus” con-
figurations different from synchronization.

1. same procedure as in the directed case;

2. ifattimet, k chooseg AND j chooses:, thenyy (t+
1) = y,;(t+1) € IAM (yx(t),y;(t)). If k& chooses no
neighbor or a neighboj which does not choosg,
thenyk(t + 1) = yk(t)

In the directed variant, agents move between a finite
set of points fixed by their initial positions; the manifold
structure and topology plays no role. The undirected varian
was already proposed and analyzed on vector spaces (e.qg. >~ , 0
convergence speed optimization in [4]), where it maintains 0 AN
+ 3 uk(t) = £ >, yk(0) V. This does not carry over
to manifolds, because the average on manifolds cannot be
computed by consecutive pairwise averaging; nevertheless
the more symmetric character of undirected gossip may
sometimes be preferred. ()

Proposition 6: Assume thatG is uniformly connected b
and 5 > 0 is fixed. ThenN agents applying thelirected B
gossip algorithm, on any set, asymptotically synchronize 2 | 0
with probability 1. Also, N agents applying thendirected ' .
gossip algorithm, onM the circle S or a sphereS™—1!,
asymptotically synchronize with probability 1.
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1The neighbor chosen at-1 is thus independent of the one chosem.at ~ Fig- 1. Schematic representation of attraction profié#) and f(6).



Next consider the interaction (see Fig.1) [4]

%Gk =« Zj Ajk f(HJ — Ok) 5 k=1.N N (27) 5]
Nb6 for 6 € [0, 2%
15Np 6 + (8.75 — L) for 6 € [T, Ix] [6]

HOEE S NN (28)
—ox (0 —7) for 6 € [3%-, ] 7]
—f(=6) for 6 € [-x,0) .

For an equally-weighted complete graph, synchronizason i[8]
the only stable equilibrium under (13). One shows that, in[9]
contrast, the configuration witlv > 3 agents uniformly
distributed on the circle (i.e. separated hyN) is a stable
equilibrium when applying (27),(28) with > 0.

[10]

Interactions that stabilize distributed configurations®n [11]
for equally-weighted complet& are proposed in [26]. The
goal here is to show that, locally, this can happen Wit|[|12]
a nowhere repulsiventeraction f(#) close to the nicely [13]
synchronizingg(6). In conclusion, modifying the attraction
: . 14]
profile w.r.t. (13) can both enhance or deteriorate conve@-
gence to synchronization. The proposed alternative itirac
profiles derive from alternative distance measures amorttp!
agents. They are not smooth, but our conclusions still holde;

with smoothed (e.g. finite Fourier series) approximations.

VII. CONCLUSION

This paper extends the consensus algorithm frameworig
from vector spaces to connected compact homogeneous
manifolds. It builds gradient algorithms which can be seefjg,
as the projection of linear consensus algorithms onto the em
bedded manifold. These algorithms can converge to several
configurations, formalized as “consensensus configursition (20]
depending on the communication graph and initial positiong;
It is shown that unlike for vector spaces, convergence prope
ties on the circle depend on the attraction profile among coff:
nected agents. Further, means to generically achieve Iglolzs
synchronization are proposed, using estimator variables o
stochastic “gossip” setting. The (anti-)consensus allyors 24]
can also be used to distribute points on compact manifolals,
which may be useful for some applications. [25]

[17]

VIIl. ACKNOWLEDGEMENTS

This paper presents research results of the Belgian Ne[g[E3
work DYSCO (Dynamical Systems, Control, and Opti-
mization), funded by the Interuniversity Attraction Poled?]
Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its authors[28]
The first author is currently a postdoc of the FNRS (Belgian

Fund for Scientific Research). [29]
REFERENCES [30]

[1] P. Absil, R. Mahony, and R. Sepulchre. Riemannian geomef
Grassmann manifolds with a view on algorithmic computatiéwta [31]

Appl. Math, 80(2):199-220, 2004.

[2] P. Absil, R. Mahony, and R. Sepulchr®©ptimization Algorithms on
Matrix Manifolds Princeton University Press, 2007. [32]

[3] A. Bondhus, K. Pettersen, and J. Gravdahl. Leaderfa@ltosynchro-
nization of satellite attitude without angular velocity aserements.
Proc. 44th IEEE Conf. Decision and Contr@ages 7270-7277, 2005.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized
gossip algorithms.|IEEE Trans. Information Theory (Special issue)
52(6):2508-2530, 2006.

R. Brockett. Dynamical systems that sort lists, diad@eamatrices,
and solve linear programming problemisin. Alg. Appl, 146:79-91,
1991.

F. Bullo and R. M. (advisor). Nonlinear control of meclaal systems:
a Riemannian geometry approadPhD Thesis, CalTechl998.

S. Buss and J. Fillmore. Spherical averages and apigiitatto
spherical splines and interpolatiodCM Trans. Graphics20(2):95—
126, 2001.

J. Conway, R. Hardin, and N. Sloane. Packing lines, parstc.:
packings in Grassmannian spacé&sper.Math, 5(2):139-159, 1996.
J. Cortés, S. Martinez, and F. Bullo. Coordinated dgpient of mobile
sensing networks with limited-range interactionBroc. 43rd IEEE
Conf. Decision and Contrplpages 1944-1949, 2004.

A. Edelman, T. Arias, and S. Smith. The geometry of athars with
orthogonality constraintsSIAM J. Matrix Anal. App|.20(2):303-353,
1999.

P. Gruber and F. Theis. Grassmann clusteridgpc. 14th Eur. Signal
Processing Conf.2006.

U. Helmke and J. Moore. Optimization and Dynamical Systems
Springer, 1994.

H. Karcher. Riemannian center of mass and mollifier stmiog.
Comm. Pure and Appl. Math30:509-541, 1977.

Y. Kuramoto. Self-entrainment of population of coupleonlinear
oscillators. InInternat. Symp. on Math. Problems in Theoretical
Physics volume 39 ofLect. N. Physicspage 420. Springer, 1975.
J. Lawton and R. Beard. Synchronized multiple spadecaations.
Automatica 38:1359-1364, 2002.

N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Framai, and
R. Davis. Collective motion, sensor networks and ocean Bagip
Proc. IEEE 95(1):48-74, 2007.

M. Moakher. Means and averaging in the group of rotatio8IAM
J. Matrix Anal. Appl, 24(1):1-16, 2002.

L. Moreau. Stability of multi-agent systems with tindependent
communication linkslEEE Trans. Automatic Contrpb0(2):169-182,
2005.

S. Nair and N. Leonard. Stabilization of a coordinatestwork of
rotating rigid bodies.Proc. 43rd IEEE Conf. Decision and Contyol
pages 4690-4695, 2004.

R. Olfati-Saber, J. Fax, and R. Murray. Consensus angp&tion in
networked multi-agent systemPBroc. IEEE 95(1):215-233, 2007.
A. Sarlette and R. S. (advisor). Geometry and symn®iriecoordi-
nation control.PhD Thesis, University of Lieg@009.

] A. Sarlette and R. Sepulchre. Consensus optimizatiormanifolds.

SIAM J. Control and Optimizatiord8(1):56—76, 2009.

A. Sarlette, R. Sepulchre, and N. Leonard. Discretestisynchro-
nization on theN-torus. Proc. 17th Intern. Symp. Math. Theory of
Networks and Systempages 2408-2414, 2006.

A. Sarlette, S. Tuna, V. Blondel, and R. Sepulchre. @Glafynchro-
nization on the circleProc. 17th IFAC World Congres2008.

L. Scardovi, A. Sarlette, and R. Sepulchre. Synchmtivn and
balancing on theV-torus. Systems and Control Letter§6(5):335—
341, 2007.

] R. Sepulchre, D. Paley, and N. Leonard. Stabilizatiérplanar col-

lective motion with all-to-all communicationEEE Trans. Automatic
Control, 52(5):811-824, 2007.

R. Sepulchre, D. Paley, and N. Leonard. Stabilizatidnpanar
collective motion with limited communicationEEE Trans. Automatic
Control, 53(3):706-719, 2008.

S. Strogatz. From Kuramoto to Crawford: exploring thaset
of synchronization in populations of coupled nonlinear iltsors.
Physica O 143:1-20, 2000.

S. Strogatz. Sync: The emerging science of spontaneous order
Hyperion, 2003.

J. Tsitsiklis and D. Bertsekas. Distributed asynclous optimal
routing in data networkslEEE Trans. Automatic ContrpB1(4):325—
332, 1986.

J. Tsitsiklis, D. Bertsekas, and M. Athans. Distrildlit@synchronous
deterministic and stochastic gradient optimization atpors. IEEE
Trans. Automatic Contrgl31(9):803-812, 1986.

T. Vicsek, A. Czirdk, E. Ben-Jacob, I. Cohen, and O. Stei. Novel
type of phase transition in a system of self-driven paricRhys. Rev.
Lett, 75(6):1226-1229, 1995.



