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Abstract— For an Estimation Based Multiple Model Switched
Adaptive Control (EMMSAC) algorithm controlling a MIMO
minimal LTI plant, lp, 1 ≤ p ≤ ∞ bounds on the gain from
the input and output disturbances to the internal signals are
obtained which are invariant to the number of models in the
plant model set. For a compact uncertainty set it is shown that
a realisable EMMSAC algorithm achieves robust stability for
any plant within the uncertainty set.

1. INTRODUCTION

The feature that distinguishes the EMMSAC algorithm [6],

[13], [7], [3], [4] from alternative approaches to multiple

model adaptive control in the style of [11], [10] is that

the performance of candidate plant models is evaluated by

estimating the size of the minimal disturbance signal which

is compatible with the observed closed loop signals and the

plant model instead of evaluating the output error of an

observer.

Basing controller selection on such an disturbance esti-

mation process allowed the construction of l2 gain bounds

on the gain from the input and output disturbances to the

internal signals for two plant models in [6]; lp, 1 ≤ p ≤ ∞
gain bounds for the class of dead beat stabilisable plants in

[7]; gain function bounds for dead beat stabilisable plants

which are invariant to the uncertainty of the system (non-

conservative) in [3] and gain (function) bounds for the

class of general MIMO minimal LTI systems in [4]. Note

that in combination with [8], such bounds lead to a robust

stability certificate, guaranteeing robustness for unstructured

uncertainties described by the gap metric.

Whilst the gain bounds in [7], [3], [4] are applicable to

multiple model schemes with arbitrarily large numbers of

candidate plants, these upper bounds scale with the size of

the candidate plant set. In some cases where the uncertainty

set is large (for example containing a large number of non

simultaneously stabilisable plants), this scaling is inevitable,

and reflects the difficulty of the control problem. However in

the case whereby a large number of plants modeled at high

fidelity form the plant model set (as arises, for example, when

modeling a parametric uncertainty by a discrete number of

models partitioning the uncertainty set), the plant model set

includes many plants which are close in the gap metric sense

and hence it seems reasonable to expect that the true gain

should scale rather better than the bounds in [7], [3], [4].
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The purpose of this paper is to show that this is indeed the

case. We will also briefly discuss how such an analysis leads

naturally into the design of candidate plant sets, an issue

which is widely acknowledged to be a key outstanding issue

[5], [1], see [2] for a fuller discussion.

2. DEFINITIONS

A. Norms and signals

Let S denote the signal space S = map(N, Rh), h ∈ N.
Define the norms

‖a‖r :=
(

∑

0≤i<∞

|a(i)|r
)1/r

, ‖a‖∞ := sup
0≤i<∞

|a(i)|

for a ∈ S, 1 ≤ r < ∞. The truncation operator Tk : S → S,

(Tka)(i) =

{

a(i), 0 ≤ i ≤ k
0, otherwise

, k ∈ N

and the restriction operator Ri,k : S → R
h(i+1), i, k ∈ N

Ri,ka := (a(k − i), a(k − i + 1), . . . , a(k − 1), a(k))

are the tools by which we will argue about finite intervals

of signals. An operator O : S → S is said to be causal if it

satisfies

TkOTkv = TkOv, ∀k ∈ N, v ∈ S.

Let V = lr, 1 ≤ r ≤ ∞ and let Ve ⊇ V denote the

extended space of possibly unbounded signals:

V = lr, 1 ≤ r ≤ ∞, Ve := {v ∈ S | ∀k ∈ N : Tkv ∈ V} .

B. Plant and controller

Given the input and output dimension m, o ∈ N define the

input and output signal spaces U = Vm, Y = Vo where we

let W = U × Y , We = Ue × Ye. A plant P : Ue → Ye is

said to be in closed loop with a controller C : Ye → Ue if

they satisfy

y1 = Pu1, u0 = u1 + u2, y0 = y1 + y2, (2.1)

u2 = Cy2 (2.2)

as depicted in Figure 1. For notational convenience we often

write w0 = (u0, y0)
⊤ ∈ W for input and output disturbances,

w1 = (u1, y1)
⊤ ∈ We for plant in- and outputs and w2 =

(u2, y2)
⊤ ∈ We for observed signals or observation. By

abuse of notation we let w0(−k) = w1(−k) = w2(−k) =
0, ∀k ∈ N \ {0}.
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Fig. 1. The closed loop system [P, C]

Let P , C be (plant, controller) parameter sets parametrising

the class of all causal, MIMO minimal LTI systems. For all

p ∈ P , c ∈ C define the plant and controller operators

Pp : Ue → Ye, Pp(−k) = 0, k ∈ N (2.3)

Cc : Ye → Ue, Cc(−k) = 0, k ∈ N (2.4)

and let

uc
2 = Ccy

c
2 (2.5)

yp
1 = Ppu

p
1 (2.6)

up
0 = up

1 + u2 (2.7)

yp
0 = yp

1 + y2. (2.8)

Define σ(p), p ∈ P to be the number of time steps the

signal w1 needs to be observed to uniquely determine the

plant’s initial condition. Define σ(c), c ∈ C with respect to

the signal wc
2 = (uc

2, y
c
2)

⊤ accordingly.

C. The closed loop operator

Since we are interested in the gain of a system from the

disturbance inputs w0 to the internal signals w2 we introduce

the closed-loop operator

ΠC//P : W → We : w0 7→ w2

where the gain is defined by

‖ΠC//P ‖ := sup
w0∈W\{0}

‖ΠC//P w0‖

‖w0‖
.

We say that the closed loop [P,C] is gain stable if

‖ΠC//P ‖ < ∞. Note that well posedness and boundedness

of w2 implies boundedness of w1.

Theorem 2.1: Let U = Y = lr, 1 ≤ r ≤ ∞. Let

Pp1
, Pp2

∈ map(Ue,Ye), C ∈ map(Ye,Ue) and assume

the closed loop [Ppi
, C], i = {1, 2} to be well-posed. Let

the closed loop [Pp1
, C] be gain stable. If

~δ(p1, p2) <
1

‖ΠPp1
//C‖

= bPp1
,C

then the closed loop system [Pp2
, C] is gain stable and

‖ΠPp2
//C‖ ≤ ‖ΠPp1

//C‖
1 + ~δ(p1, p2)

1 − ‖ΠPp1
//C‖~δ(p1, p2)

where ~δ denotes the directed gap.

Proof The proof can be found in [8]. 2

D. The disturbance estimator

The following axiomatic treatment of the disturbance esti-

mator in the form of five abstract assumptions has the virtue

of detaching the stability and robustness analysis from the

problem of constructing (effective) disturbance estimation

algorithms in practice.

Define the estimation operator

E : We → map(N,map(P,map(N, Rh))) (2.9)

for k ∈ N, p ∈ P by

w2 7→
[

k 7→ (p 7→ dp[k])
]

(2.10)

where dp[k] represents a time series of disturbance estimates

up to time k corresponding to a plant p ∈ P . Explicitly let

dp[k] : N → map(N, Rh)

be defined by

dp[k] = (dp[k](0), dp[k](1), . . . , dp[k](k), 0, · · · )

where h ∈ N depends on p ∈ P . Since we are interested in

the ‘size’ of disturbance estimates, define the norm operator

N : map(N,map(P,map(N, Rh)))

→ map(N,map(P, R+)) (2.11)

by

[

k 7→ (p 7→ dp[k])
]

7→
[

k 7→ (p 7→ ‖dp[k]‖)]. (2.12)

We denote the object NE : We → map(N,map(P, R+))
the disturbance estimator. Let

Wp(i, k) :=















v ∈ R
m(i+1) × R

n(i+1)
∣

∣

∃(up
0, y

p
0)⊤ ∈ We s.t.

Ri,kPp (up
0 − u2) = Ri,k(yp

0 − y2)
v = (Ri,kup

0,Ri,kyp
0)















denote the set of ‘weakly’ consistent disturbance signals

at time k of length i to a plant p ∈ P and the ob-

servation (u2, y2)
⊤, that are the disturbance signals that

satisfy (2.7),(2.8) over an interval of length i. A vector

v ∈ R
m(i+1) × R

o(i+1) is said to be weakly consistent if

and only if v ∈ Wp(i, k) for some i, k ∈ N, p ∈ P .

Let p∗ be the parameter corresponding to the “true”

unknown plant P := Pp∗ ∈ P . We now state the following

five estimator assumptions:

Assumption 2.2: Let λ ∈ R be given.

1) (Causality): E is causal.

2) (Minimality): There exists a µ > 0 such that for all k ≥
0, for p ∈ P and for all (w0, w1, w2) ∈ W×We×We

satisfying (2.1) for P = Pp

NE(w2)(k)(p) = ‖E(w2)(k)(p)‖ ≤ µ‖w0‖.

3) (Weak consistency): Let 0 ≤ j ≤ λ. For all p ∈ P
there exist maps

Φj : map(N, Rh) → R
m(j+1) × R

o(j+1),



such that for all (w0, w1, w2) ∈ W × We × We

satisfying (2.1) for P = Pp and for all k ∈ N,

ΦjE(w2)(k)(p) ∈ Wp(j, k)

and

‖ΦjE(w2)(k)(p)‖ ≤ ‖Rj,kE(w2)(k)(p)‖.

4) (Monotonicity): For all p ∈ P , for all k, l ∈ N with

0 ≤ k ≤ l and for all (w0, w1, w2) ∈ W ×We ×We

satisfying (2.1) for P = Pp there holds

‖E(w2)(k)(p)‖ ≤ ‖TkE(w2)(l)(p)‖.

5) (Continuity): There exists a c : Z → R, ‖c‖ < ∞ and

a function χ : P ×P → R
+ ∪{∞}, χ(p, p) = 0 such

that for all p1, p2 ∈ P and w2 ∈ We there holds:

‖ΦjE(w2)(k)(p1) − ΦjE(w2)(k)(p2)‖

≤ χ(p1, p2)‖Υkw2‖, 0 ≤ j ≤ λ, k ∈ N

where Φj is as in Assumption 3 and

(Υkw2)(i) =

{

c(k − i)w2(i) if i ≤ k
0 else

.

Note that Assumptions 1-4 are as in [4]. The intuitive

meaning of the additional Assumption 5 is that if two

plants are close to each other, their disturbance estimates are

required to be ‘close’ and the effect of w2 on the disturbance

estimate needs to diminish over time.

An important class of estimator (called estimator B in [7],

[3], [4]) is then given as follows. Let k, λ, i ∈ N, 0 ≤ i ≤ k.

To a plant model Pp, p ∈ P let estimator B with h =
(m + o)(λ + 1) in equation (2.9) be given by:

EB(w2)(k)(p) = dB
p [k] ∈ map(N, Rh)

dB
p [k](i) = argmin

w0∈Wp(λ,i)

‖w0‖,

if there exists a unique minimum, or any dB
p [k](i) satisfying

dB
p [k](i) ∈

{

w0 ∈ W|[i−λ,i] |

‖w0‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ Wp(λ, i)
}

if the minimum is not unique, where Wp(λ, i) is the set of all

disturbance signals consistent with the observation w2 and

the plant Pp over the interval [i − λ, i].
Lemma 2.3: Estimator B meets Assumptions 2.2.

Proof: 1-4 can be found in [4]. 5. Let p1, p2 ∈ P, k ∈
N, w2 ∈ W2. Then

∣

∣‖Φjd
B
p1

[k]‖ − ‖Φjd
B
p2

[k]‖
∣

∣ ≤
∣

∣‖Φjd
B
p1

[k] − Φjd
B
p2

[k]‖
∣

∣

≤ χ(p1, p2)‖Υkw2‖

where

χ(p1, p2) =

{

0 if p1 = p2

∞ if not

for some Υ with ‖c‖ < ∞ as required.

We will later require χ to be continuous.

Conjecture 2.4: Let 1 < r < ∞. Suppose Ω ⊂ P is

compact. There exists χ that satisfies Assumption 2.2(5) and

such that χ|Ω continuous.

Continuity is expected to follow from the well-posedness

of the underlying optimisation problem.

Note that the computational complexity of this estimator

is independent of k and reduces to standard optimisations

with many possible implementations, e.g. via the calculation

of a suitable pseudo inverse in l2 or via linear programming

in l1 or l∞.

E. Finite horizon behaviour of the closed loop [Pp, Cc]

In order to assign a stabilising controller to each plant

model we employ a so called controller design procedure

K : P → C.

Analogously to the estimator assumptions we now state two

abstract (controller) assumption on the atomic closed loop

systems [Pp, Cc] and [Pp, CK(p)]:
Assumption 2.5: There exist functions

α, β : P × C × R × R → R

such that the following holds:

1) (Linear growth of [Pp, Cc]): Let p ∈ P, c ∈
C and the closed loop [Pp, Cc] be well-posed. Let

l1, l1, l2, l3, l4 ∈ N, l1 < l2 ≤ l3 < l4 and

I1 = [l1, l2), I2 = [l2, l3), I3 = [l3, l4). Suppose

w2, w
c
2, w

p
1 ∈ We, wp

0 ∈ W satisfy equations (2.5)-

(2.8) on I1 ∪ I2 ∪ I3.

Suppose wc
2|I1

∈ {0, w2|I1
}, wc

2|I2∪I3
= w2|I2∪I3

where

|I1| = l2 − l1 ≥ max{σ(p), σ(c)}.

Then:

‖w2|I3
‖ ≤ α(p, c, |I2|, |I3|)‖w2|I1

‖

+ β(p, c, |I2|, |I3|)‖w
p
0 |I1∪I2∪I3

‖.

2) (Stability of [Pp, CK(p)]): Let p ∈ P and x ∈ N. Then

α(p,K(p), a, x) → 0 as a → ∞

and α is monotonic in a.

We note that the above assumptions are in fact standard

properties for minimal LTI systems. Plants and controllers

satisfy Assumption 2.5(1), and stabilising LTI control design

procedures K satisfy Assumption 2.5(2).

F. The switching algorithm

The set of candidate plants model set that are available

for consideration at time step k ∈ N is specified by G(k).
The time varying nature of the operator G has been shown

in [3], [4] to be the key to establish a non-conservative gain

function bound for uncertainty sets which are unbounded. In

the main result in Section 4, we specialise to the case of

a constant G, however, we have retained the general time

varying case in what follows next for consistency with the

previous results, and for future development of these results.



Let P∗ be the powerset of P . Let ∅ 6= Pi ∈ P∗, i ∈ N.

Definition 2.6: A map G : We 7→ map(N,P∗) is said to

be a plant generating operator if it is causal and satisfies

G(0) = P1, G(k) = Pi(k), k ∈ N

for some i : N → N with i(0) = 1. G is said to be feasible

if Pi is a finite set for all i ∈ N and constant if Pi =
Pj , ∀i, j ∈ N.

To improve readability we write G(k) := G(w2)(k), k ∈
N, and if G is constant then we also (by abuse of notation) let

G denote the set in question, i.e. we let G = Pi = Pj for all

i, j ∈ N. Note that in any direct realisation of an EMMSAC

algorithm, we will require that Pi is a finite set, but allowing

more general plant sets to be considered is important in what

follows.

We now would like the ‘free’ switching signal qf (k)
to point to the plant model in G(k) which corresponding

disturbance estimate is minimal at time k ∈ N. Hence let

the minimisation operator

M : (map(N,map(P, R+)),map(N,P∗)) → map(N,P∗)
(2.13)

be given by
[

k 7→ (p 7→ rp[k]), (k 7→ G(k))
]

7→
[

k 7→ qf (k)
]

(2.14)

where

qf (k) = argmin
p∈G(k)

rp[k]. (2.15)

If there are multiple minimising residuals, an arbitrary

ordering on G(k) is imposed a priori, i.e. G(k) =
{p1, p2, · · · , pn}, and argminp∈G(k) rp[k] is defined to re-

turn the parameter pi ∈ G(k) with the smallest index i
such that rpi

[k] is minimal. Since we will later utilise such

a signal for controller selection and overly fast switching

even between stabilising controllers can lead to instability,

see [10], we introduce a suitable delay ∆:

Given a ‘transition delay’ function ∆ : P → N define the

delay operator

D : map(N,P) → map(N,P) (2.16)

by

[k 7→ qf (k)] 7→ [k 7→ q(k)] (2.17)

where

q(k) =

{

qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(2.18)

and where ks : N → N is given by:

ks(k) = argmax
0≤i≤k

q(i) 6= q(i − 1). (2.19)

The purpose of the transition delay D is to delay the

free switching signal qf (k) for long enough to overcome the

destabilising effect overly rapid switching. Let x, y, c ∈ R,

define

⌊c⌋ := max{n ∈ Z | n ≤ c} and

(

x
y

)

:=
x!

y!(x − y)!

and let J : N → N be defined by

J(ξ) = ξ

(

ξ
⌊ξ/2⌋

)

.

Let

σ = max{σ(p), σ(K(p))}, p ∈ P

and let K : P → C and the attenuation function l : P →
[0, 1) be given. Now choose the delay ∆ such that

J(r)αr(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ P (2.20)

if 1 ≤ r < ∞ and

α(p,K(p),∆(p) − σ, σ) ≤ l(p) < 1, ∀p ∈ P (2.21)

if r = ∞.

In practice one would choose a stabilising design proce-

dure K and some l : P → [0, 1) and then compute for all

p ∈ P a corresponding ∆(p) such that inequality (2.20) for

lr, 1 ≤ r < ∞ or inequality (2.21) for l∞ hold, hence we

note that there always exists such a ∆.

Finally define the switching operator

S : We → map(N,P) : w2 7→ q

S = DM(NE,G).

and the switching controller

C : Ye → Ue : y2 7→ u2 (2.22)

for all k ∈ N by

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k). (2.23)

Equation (2.23) therefore ensures a zero initial condition for

the atomic controller CK(q(k)) when it is switched into closed

loop at time ks(k), k ∈ N.

3. STABILITY OF THE CLOSED LOOP SYSTEM

Our objective is to establish lr, 1 ≤ r ≤ ∞ bounds on the

gain from the external disturbances w0 ∈ W to the internal

signals w2 ∈ We for an arbitrary number of plants.

Let U ⊂ P specify an uncertainty set we seek to control.

For example if we seek to control a plant

P : y1(k + 1) = ay1(k) + bu1(k) (3.24)

where b = 1, a ∈ [−amax, amax] is an uncertain parameter

and amax < ∞, then the results will apply with the

continuum U = [−amax, amax]. On the other hand, if a
is known and b ∈ {−1,+1} then the result can also be

applied with U taken to be the discrete set U = {−1,+1}.

A naive application of Theorem 3.3 below with G = U
(or equivalently using the previous results [7], [3], [4])

yields a finite gain bounds for the latter case, but not the

former. Furthermore, if U is a continuum and G = U , then

the resulting controller is based on an infinite number of

plant estimators/controllers and is unrealisable. Hence we

introduce a mechanism which allows us to establish gain



bounds where G is a finite sampled subset of U , for example

in the above example by taking G = Rl where

Rl = [−amax, amax] ∩ [· · · ,−
2

l
,−

1

l
, 0,

1

l
,
2

l
, · · · ]

for some suitable value of l > 0. Our final result Theorem 4.3

gives a common gain bound for all values of l > 0 above a

critical threshold. This contrasts to the previous results [7],

[3], [4] applied with the choice G = Rl which give gain

bounds which grow unboundedly with l > 0 (note that this

is equivalent to taking G = U = Rl in Theorem 3.3 below).

Let H ⊂ U ⊂ P . Let ν : N → R
+ be given. Now define

the ball

Bχ(p, ν(p)) = {p} ∪
{

p1 ∈ P |

χ(p, p1) < ν(p)
}

∩ U, p ∈ P

to be the set of plants that reside within a neighbourhood

of radius ν(p), as measured by χ, around p ∈ H in U .

For an appropriate choice of H and ν, the union of the

corresponding neighbourhoods in U then leads to a cover

for U :

Definition 3.1: (H, ν) is said to be a cover for U if:

U ⊂ R := ∪p∈HBχ(p, ν(p))).

(H, ν) is said to be a finite cover if H is a finite set.

The introduction of (H, ν) is the device by which we are

able to express gain bounds in terms of the cover of the

candidate plant set rather then the absolute size of the set

|G|.
Definition 3.2: An EMMSAC algorithm is said to be

standard if the following holds: K : P → C is a given

controller design procedure satisfying Assumption 2.5(1),(2),

∆ is a given transition delay function and the delay operator

D is given by equation (2.16)-(2.19), l : P → [0, 1) is a given

attenuation function and K,∆, l satisfy inequality (2.20) for

1 ≤ r < ∞ and (2.20) for r = ∞, E satisfies Assumptions

2.2(1)-(5) where the interval length of consistency we require

from each estimator be given by λ = maxp∈U (2∆(p) + σ).
The switching operator S = DM(NE,G) is given by equa-

tions (2.9)-(2.12),(2.13)-(2.15),(2.16)-(2.19). C is defined by

equations (2.22),(2.23).

We now come to an intermediate result establishing

bounds on the closed loop gain.

Theorem 3.3: Let 1 ≤ r ≤ ∞. Suppose U ⊂ P
and suppose (H, ν) defines a cover for U . Suppose the

EMMSAC algorithm is standard. Let G be a plant generating

operator that satisfies p∗ ∈ G(j) ⊂ U, j ≤ k. Suppose

(w0, w1, w2) ∈ W × We × We satisfy the closed loop

equations (2.1). If

‖c‖
(

γ4 + γ5

)

χν(H, ν) < 1 (3.25)

and αOP < 1 then:

‖w2‖ ≤ γ(p∗)‖w0‖

where

σ = sup
p1,p2∈U

max{σ(p1), σ(K(p2))}

ξ =

{

r if 1 ≤ r < ∞
1 if r = ∞

χν(H, ν) = 2 sup
p∈H

ν(p)

γ1(p, p∗) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x)

γ2(p, p∗) = sup
∆(p)≤x≤2∆(p)

β(p∗,K(p), 0, x)

αOP = sup
p∈U

l(p)

βOP = J(ξ) sup
p∈U

sup
∆(p)≤x≤2∆(p)

βξ(p,K(p), x − σ, σ)

αOS = J(ξ) sup
p∈U

sup
∆(p)≤x≤2∆(p)

αξ(p,K(p), 0, x − σ)

βOS = J(ξ) sup
p∈U

sup
∆(p)≤x≤2∆(p)

βξ(p,K(p), 0, x − σ)

γ3 =























(

(1+α
1/r
OS )rαOP

1−αOP

)1/r

+ α
1/r
OS

if 1 ≤ r < ∞
max{1, αOS}αOP + αOS

if r = ∞

γ4 =











(

(1+α
1/r
OS )rβOP

1−αOP

)1/r

if 1 ≤ r < ∞

max{1, αOS}
βOP

1−αOP
if r = ∞

γ5 =

{

β
1/r
OS if 1 ≤ r < ∞

βOS if r = ∞

γ6 =
1 + γ3

1 − ‖c‖(γ4 + γ5)χν(H, ν)

γ7 =
21/rµ|H|1/r

(

γ4 + γ5

)

1 − ‖c‖(γ4 + γ5)χν(H, ν)

γ(p∗) = γ
|H|
6

∏

p∈H

γ1(p, p∗)
(

|H|γ7 +
∑

p∈H

γ2(p, p∗)
)

Proof: The (lengthy) proof is omitted, see [2].

The key feature here is that the number of elements in H can

be finite (we establish sufficient conditions for this in Section

4), whereas the number of elements in U may be large or

infinite (in the case of a continuum), so if U = H = G as

in [4], then the bound scales with the number of elements in

G which many cases is conservative (for example because

of the formal term |H| in the expression for γ above).

4. EXISTENCE OF A FINITE COVER (H, ν) AND MAIN

RESULT

In order for Theorem 3.3 to establish a finite gain γ, it is

necessary a) for (H, ν) to be a finite cover, b) the constraint

on the size of the neighbourhoods ν in the cover (H, ν)
specified by the inequality (3.25) to be satisfied and c) the

gains αOP , βOP , αOS , βOS to be finite. In this section we

provide sufficient conditions for a), b), c), and constructions

for global gain stability and gain function stability.

Definition 4.1: Let σ ∈ N . A control design K : P → C
is said to be U regular if for all ∆(p) ≤ x ≤ 2∆(p), the



functions l(p), β(p1,K(p), x− σ, σ), α(p1,K(p), 0, x− σ),
β(p1,K(p), 0, x−σ), x ∈ N are continuous with respect to

all p1, p ∈ U ⊂ P .

Proposition 4.2: Let U ⊂ P be compact and suppose K
is U regular. Suppose χ|U is continuous. Then there exists

a finite cover (H, ν) of U which satisfies inequality (3.25).

Proof Since U is compact and K is U regular, the suprema

αOP = sup
p1∈U

l(p1)

exists and αOP < 1. Also αOS , βOP < ∞. Therefore there

exist ǫ > 0 such that

ǫ <
(

2‖c‖
(

γ4 + γ5

))−1

.

Since χ|U is continuous, Bχ(p, ǫ) is open and hence

{Bχ(p, ǫ)}p∈U is an open cover of U with respect to the

subspace topology of U . Since U is compact, there exists a

finite set H ⊂ U such that {Bχ(p, ǫ)}p∈H covers U .

Let ν(p) = ǫ, ∀p ∈ P hence (H, ν) ∈ (P∗,map(P, R+))
is a finite cover of U . It follows that ǫ = 1

2χν(H, ν). Hence

inequality (3.25) is satisfied as required. 2

We now come to our main result:

Theorem 4.3: Let U ⊂ P be compact. Suppose the

controller design procedure K : P → C is U -regular.

Assume the EMMSAC algorithm is standard where (H, ν)
is a cover for U which satisfies inequality (3.25). Let γ be as

in Theorem 3.3. Then there exists a constant plant generating

operator G satisfying G ⊂ U and γ̄d < 1, where

γ̄ = sup
p∈U

γ(p),

d = sup
p2∈U

inf
p1∈G

~δ(p1, p2)

where the standard EMMSAC design based on K and G
stabilises all P = Pp∗ , p∗ ∈ U and

‖w2‖ ≤ γ
1 + d

1 − γ̄d
‖w0‖.

Proof: Since U is compact there exists a constant, finite

plant generating operator G such that G ⊂ U, k ∈ N and

such that γ̄d < 1. Let p1 ∈ G be such that ~δ(p∗, p1) < d.

Since G ⊂ U, k ∈ N it follows by Theorem 3.3 that

‖ΠPp1
//C‖ ≤ γ(p1) ≤ γ̄ < ∞.

Since ~δ(p∗, p1) < d < γ̄−1 = bP,C the result follows from

Theorem 2.1 as required.

We again return to the example plant given by equation

(3.24) with b = 1 and a ∈ [−amax, amax] = U . by

Proposition 4.2 there exists a finite, constant cover (H, ν).
We could let G = U and achieve a finite gain bound, however

since U is a continuum the EMMSAC controller is infinite

dimensional hence not implementable. However by Theorem

4.3 there exists a finite plant model set G ⊂ U such that a

finite gain bound can be achieved.

Although we have stated this theorem as an existence

result, the proof is constructive, and can be used to show that

a common gain bound exists for G = Rl, where l > l∗ for

some suitable threshold l∗ > 0. This implies that G can be

refined off-line where the achieved gain bound is invariant

to the refinement level (e.g. l > l∗) since it depends on

the complexity of U as measured by the cover (H, ν). The

construction utilised in the proof also leads to the beginnings

of a principled designed methodology, see [2].

5. CONCLUSION

Key challenges (see e.g. [1], [5], [2]) in multiple model

adaptive control are 1. the construction of comprehensive

stability, robustness and performance results, and 2. the

performance orientated design of candidate plant model sets.

Both issues are closely related since the lack of a suitable

bounds of global performance precludes fully principled per-

formance orientated design. The ideas behind using covers of

uncertainty sets as the basis for the design can also be found

in e.g. [1], [5]: note that in contrast to these contributions, we

establish global performance results based on these covers,

hence leading to the promise of a fully principled design

methodology [2].
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