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Abstract— We consider linear prediction problems in a
stochastic environment. The least mean square (LMS) algorithm
is a well-known, easy to implement and computationally cheap
solution to this problem. However, as it is well known, the
LMS algorithm, being a stochastic gradient descent rule, may
converge slowly. The recursive least squares (RLS) algorithm
overcomes this problem, but its computational cost is quadratic
in the problem dimension. In this paper we propose a two
timescale stochastic approximation algorithm which, as far
as its slower timescale is considered, behaves the same way
as the RLS algorithm, while it is as cheap as the LMS
algorithm. In addition, the algorithm is easy to implement. The
algorithm is shown to give estimates that converge to the best
possible estimate with probability one. The performance of the
algorithm is tested in two examples and it is found that it may
indeed offer some performance gain over the LMS algorithm.

I. INTRODUCTION
Consider the problem of estimating θ∗ ∈ Rd based on the

i.i.d. sequence (φt, yt) ∈ Rd × R, assuming that

yt = θ′∗φt + εt, t = 1, 2, . . . , (1)

where εt is a zero mean noise sequence with finite variance.
This problem has been studied in various contexts, such as
statistics, control, signal processing, system identification or
machine learning [5].

Here, we are interested in algorithms that incrementally
update an estimate θt of the parameter based on the most
recent observations, such that θt → θ with probability one
(w.p.1). More precisely, we are interested in algorithms that
make θt converge to θ relatively fast, while they are simple
to implement and computationally efficient. In particular, we
are interested in algorithms whose per-update computational
complexity is linear (O(d)) in the number of dimensions
of the feature vectors. Such algorithms are important for
application where computational resources are scarce, or
when the number of features is so large that algorithms with
higher computational complexity are infeasible.

One algorithm whose computational cost is linear is the
Least-Mean-Square (LMS) algorithm. The LMS update rule
is

θt+1 = θt + αt(yt − θ′tφt)φt,

where (αt, t ≥ 0), the so-called step-size sequence, is a
sequence of non-negative numbers. In order to make sure
that θt converges to θ w.p.1, the step-size sequence has to
converge to zero, while satisfying

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞.

The LMS algorithm is attractive due to its simplicity and low
complexity. However, as is well known, the LMS algorithm
is sensitive to the eigenvalue spread of the dispersion matrix
Φ = E [φtφ′t] in that a large eigenvalue spread of Φ results in
a slow rate of convergence of the error, et = E

[
‖θt − θ‖2

]
,

to zero in the transient phase (see [5]). The asymptotic rate
of convergence of a two time-scale version of LMS can be
shown to be optimal. In particular, if the LMS algorithm is
used with large step-sizes such as αt ≈ const/tp where p is
close to 1/2 and the final estimate is provided by a second
update equation

θt+1 = θt + βt(θt − θt),

where βt = 1/t, then the iterates θt can be shown to
converge to θ at an asymptotically optimal rate (see, [10]
and Chapter 11 of [8]). This idea works more generally and
is called iterate-averaging and was developed independently
by Polyak [9] and Ruppert [11].

One way to improve the transient performance is to let
θt = argminθ

∑t
s=1(ys − θ′φs)2, i.e., the least-squares

estimate of θ given all previous data. In this case the effect
of the eigenvalue spread of Φ will be smaller on the rate



of convergence.1 Using the Sherman-Morrison formula, one
can derive an incremental update rule for θt as follows:

Pt+1 =
1
λt

[
Pt −

Ptφtφ
′
tP
′
t

λt + φ′tPtφt

]
θt+1 = θt + ηt (yt − θ′tφt)Ptφt.

Here ηt = 1/(λt+φ′tPtφt) is a step-size sequence and λt is a
forgetting factor, which in stationary environments can be set
to 1.2 The price paid for the improved statistical performance
is the increased computational complexity that is now O(d2).

The question studied in this paper is whether it is possible
to design an algorithm that is as efficient in the transient
phase as RLS and whose computational complexity is the
same as that of LMS. In FIR filtering applications this
question has been answered positively: In this case there
exist algorithms which are as efficient as RLS, yet achieve
O(d) complexity [6], [3]. However, these algorithms exploit
heavily the special structure of the task and are not easy
to generalize. The normalized LMS (NLMS) algorithm is
another candidate that aims to achieve this goal. However,
for fixed schedules, the NLMS algorithm is known to trade
off transient performance for asymptotic performance. Slock
suggested an “optimal” step-size to be used with NLMS
[12]. Following a heuristic analysis he concludes that NLMS
performs the same as RLS as far as sensitivity to the
eigenvalue spread is concerned. Our interpretation is that nor-
malization decreases the eigenvalue spread and thus indeed
helps. However, when the inputs have unit norm, NLMS is
identical to LMS. Hence, if the eigenvalue spread is large
when the features are normalized, then NLMS should be as
sensitive to the eigenvalue spread as LMS is.

II. THE NEW ALGORITHM
RLS is a stochastic version of Newton’s method, as can

be seen if it is written in the form

θt+1 = θt + αtΦ−1
t (yt − θ′tφt)φt, (2)

where Φt is the empirical dispersion matrix:

Φt+1 = Φt + γt(φtφ′t − Φt),

where αt, γt, t ≥ 0 are two step-size schedules. To
understand why RLS is faster than LMS let us consider
the ordinary differential equations (ODEs) underlying them.
The ODE underlying the LMS algorithm takes the form
θ̇ = b−Φθ, where b = E [ytφt]. On the other hand, the ODE
underlying the RLS algorithm takes the form, θ̇ = Φ−1b−θ.
The solutions of these ODEs are exponentially converging,
where the time constants depend on the eigenvalues of Φ.
Now, we can think of the stochastic approximation methods
as simulating the behavior of the respective ODEs with

1This is usually analyzed in the case of constant step-sizes, see, e.g.,
Chapter 5 of [14], but we also provide a heuristic explanation of this in
the next section. We expect a similar conclusion to be true in the transient
when diminishing step-sizes are used, but we were not able to find such an
analysis. A similar difference between the performance of LMS and RLS
exists when the inputs φt are correlated in time [4], again proven for the
constant step-size case.

2This is the setting we used for our experiments.

Euler’s method, with decreasing step-sizes and in a “noisy
manner”. It is well known, that using too large step-sizes
causes Euler’s method to oscillate, or even diverge. In
particular, if the ith component’s dynamics is θ̇i = ai−λiθi,
λi > 0, then the “safe zone” for the step-sizes is (0, 1/λi).
After a change of coordinate systems, one can obtain that
the ODE takes the above form.

In particular, for the LMS method, the coefficients λi will
correspond to the eigenvalues of matrix Φ. Thus, we can see
that the LMS method can behave erratically until the step-
size becomes smaller than the reciprocal value of the largest
eigenvalue of Φ. This suggests to choose small step-sizes,
but then the rate of convergence of the component corre-
sponding to the smallest eigenvalue will be slowed down.
The decreasing step-sizes make sure that the erratic behavior
can only happen for a finite amount of time. However, the
behavior in this transient phase will largely influence the
rate of convergence. Hence, the ratio of the largest to the
smallest eigenvalue of Φ will strongly (negatively) influence
the behavior of LMS.

From the above reasoning, it is also clear why the RLS
algorithm is less sensitive to the eigenvalue spread: In the
ODE underlying RLS, the −Φθ term of the ODE of LMS is
replaced by −θ. Hence, the eigenvalues become all identical
and in particular the eigenvalues of Φ do not influence the
behavior of this ODE.

Now, the key difference of RLS and LMS is that the ex-
pected update direction of RLS, assuming that Φt converges
to Φ, is

u∗(θ) = Φ−1b− θ.

The idea of the new algorithm is to use another stochastic
approximation algorithm to approximate u∗(θt) for a fixed
θt and then update θt with the resulting estimate. Clearly,
Φu∗(θ)− (b− Φθ) = 0, or

E [φt(φ′tu
∗(θ)− δt)] = 0,

where
δt = yt − θ′φt.

Hence, an appropriate update equation for estimating u∗(θt)
is

ut+1 = ut + βt(δt − u′tφt)φt,

where βt, t ≥ 0 is a step-size sequence.
Thus, the proposed algorithm, which we call LMS-2, or

the second order LMS algorithm, takes the form:

ut+1 = ut + βt(δt − φ′tut)φt, (3)

θt+1 = θt + αtut+1. (4)

Here, ut is updated on a faster time-scale than θt (i.e., αt =
o(βt) viz., αt/βt → 0 as t → ∞). Thus, from the point of
view of θt, ut can be thought of as having equilibrated to
u∗(θt). (This will be formalized more precisely in the next
section.) Hence, the update of θt approximately takes the
form θt+1 = θt+αtu

∗(θt), i.e., the algorithm is expected to
simulate the behavior of RLS. Note that the ODE underlying
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Fig. 1: The process of LMS-2.

the update equation of ut takes the form u̇ = (b − Φθ) −
Φu (assuming a fixed θ). Thus, the eigenvalue spread of Φ
is expected to influence the transient behavior of u in the
same way as it influenced the transient behavior of the LMS
algorithm. However, the main recursion here is the one of θt
and as indicated above, with respect to the timescale of this
recursion, the recursion of ut rapidly equilibrates. Thus the
transient behavior of ut in the analysis of the θ update does
not matter as much as LMS. Figure 1 describes the general
update rule for the LMS-2 algorithm involving two step-size
schedules. As can be seen from (3)-(4), the computational
complexity of LMS-2 is O(d).

III. THEORY

We make the following assumptions.

Assumption 1 (φt, yt), t ≥ 1 are i.i.d. random variables and
(φt) is uniformly bounded.3

Assumption 2 The matrix Φ = E
[
φtφ

T
t

]
is nonsingular.

Assumption 3(i): Diminishing Step-Sizes The step-sizes αt,
βt, t ≥ 0 satisfy∑

t

αt =
∑
t

βt =∞,
∑
t

(α2
t + β2

t ) <∞, αt = o(βt).

(5)
Assumption 3(ii): Constant Step-Sizes The step-sizes αt,
βt, t ≥ 0 are in fact constants αt = ᾱ, βt = β̄, t ≥ 0.
Further, ᾱ << β̄.
Remarks:

1) We shall assume either of Assumption 3(i) or 3(ii)
alongwith Assumptions 1 and 2 in the convergence
analysis.

3Hence, the setting considered here is slightly more general than the one
mentioned in the introduction, where a particular relationship was assumed
between yt and φt.

2) From Assumption 1, it follows that the matrix Φ is
uniformly bounded as well, i.e., ‖ Φ ‖< ∞. Here we
define the matrix norm ‖ Φ ‖ as one obtained from
the corresponding vector norm (which we assume is
the Euclidean norm), also denoted ‖ · ‖ by abuse of
notation and defined according to

‖ Φ ‖= max
{x∈Rn|‖x‖=1}

‖ Φx ‖ .

3) The i.i.d. requirement in Assumption 1 can be relaxed
and instead the sequence can be assumed to be a
Markov process. The arguments in the following anal-
ysis can be modified to include this case. We leave it
as one of the possible future directions.

4) Note that from its definition, the matrix Φ is a positive
semi-definite matrix since

xTΦx = xTE
[
φtφ

T
t

]
x = E

[
(φTt x)T (φTt x)

]
≥ 0,

for all x 6= 0. Hence, from Assumption 2, it follows
that the matrix Φ does not contain the eigenvalue zero.
Thus, Φ is in fact positive definite under Assumption
2.

5) From the above, under Assumptions 1 and 2, we also
have that ‖ Φ−1 ‖<∞.

6) Both Assumptions 3(i) and 3(ii) imply that we are
in the two-timescale setting with either diminishing
or constant step-size schedules where αt, t ≥ 0
corresponds to the slower step-size schedule and βt,
t ≥ 0 to the faster one.

In what follows we shall use (φ, y) (without an index) to
denote a pair of random variables whose joint distribution is
the same as the one underlying (φt, yt).

A. Convergence Analysis
Let θ∗ = Φ−1E [yφ]. We have the following convergence

theorem.

Theorem 1 Let Assumptions 1, 2 and 3(i) hold. Then
θt → θ∗ as t→∞ with probability one.

Proof Before the proof, let us remind the reader that the
ODE θ̇ = Aθ+b is globally asymptotically stable if and only
if the real parts of the eigenvalues of A are all negative. In
fact, in all the cases when we apply this result, A will be
negative definite. The proof of convergence here follows in
a straightforward manner from the results in [1], [2].

We will use Theorem 2 of [1]. Accordingly, we need to
look at the faster recursion (3) and determine its behavior
and limit point when θt is kept fixed. Then we investigate
the behavior of the slower recursion, when this limit point
is used in place of ut.

Consider thus first the faster recursion (3). We verify
Assumptions (A1) and (A2) of [2]. Let Gt = σ(us, θs, s ≤
t;φs, s < t), t ≥ 0 be an associated sequence of sigma fields.
Note that (3) can now be written as

ut+1 = ut + βt(E [δtφt|θt]− Φut) + βtMt+1

where

Mt+1 = (δt − φTt ut)φt − E
[
(δt − φTt ut)φt | Gt

]



= (δt − φTt ut)φt − (E [δtφt|θt]− Φut).

It is easy to see that E [Mt+1 | Gt] = 0 for all t ≥ 0. Further,
in the light of Assumption 1,

E
[
‖Mt+1 ‖2| Gt

]
≤ K(1+ ‖ ut ‖2 + ‖ θt ‖2)

for some constant K > 0. Consider now the following
system of ODEs:

θ̇ = 0, (6)

u̇ = E [δtφt|θt]− Φu. (7)

Note that in the definition of δt in (7), θt ≡ θ i.e., θ is
constant as a result of (6), see arguments on pp.65 of [1].

Let h(u) denote the driving vector field of (7). Thus
h(u) = E [δφ]−Φu. For a given c ≥ 1, let hc(·) be defined

according to hc(u) =
h(cu)
c

. Then hc → h∞ as c → ∞
uniformly over compact sets where h∞(u) = −Φu. Now,
by our remark, for the ODE

u̇ = h∞(u) = −Φu, (8)

the origin is the unique globally asymptotically stable equi-
librium since Φ is positive definite (as explained before).
Similarly, for the ODE (7), u∗(θ) = Φ−1E [δφ] is a globally
asymptotically stable equilibrium. Assumptions (A1)-(A2) of
[2] are now satisfied and one obtains (i) supt ‖ ut ‖< ∞
(from Theorem 2.1(i) of [2]) and (ii) ut → u as t→∞ with
probability one (from Theorem 2.2 of [2]).

Now consider the slower recursion (4) when viewed from
its own (i.e., the slower timescale) schedule. In the light of
the above and Theorem 2, pp.66 of [1], it suffices to study
the ODE underlying it.

θt+1 = θt + αtu
∗(θt)

= θt + αt(Φ−1E [ytφt]− θt).

Thus, consider the ODE associated with (9):

θ̇ = Φ−1E [yφ]− θ. (9)

Again let G(θ) denote the driving vector field for the
ODE (9). Thus G(θ) = Φ−1E [yφ] − θ. Now define

Gc(θ) =
G(cθ)
c

, c ≥ 1. Let G∞(θ) = limc→∞Gc(θ) = −θ.
Now consider the ODE

θ̇ = −θ. (10)

Again, the origin is a unique globally asymptotically stable
equilibrium for (10). Now for the ODE (9), θ = Φ−1E [yφ] is
the unique globally asymptotically stable equilibrium. Now
from Theorem 2.1(i) of [2], one gets supn ‖ θn ‖< ∞
with probability one. Further, from Theorem 2.2 of [2], one
obtains θt → θ∗ as t → ∞ with probability one. This
completes the proof.

Theorem 2 Let Assumptions 1, 2 and 3(ii) hold. Then
there exist α, β > 0 such that for 0 < ᾱ < α and 0 < β̄ < β
and for any given ε > 0, there exist b1(ε), b2(ε) > 0 such
that

P (‖ θt − θ ‖> ε) ≤ b1(ε)β̄ + b2(ε)
(
ᾱ

β̄

)
.

Proof A detailed proof of this result will be provided in a
longer version of this paper. We refer the reader to Chapter
9.3, pp.112 of [1] for ideas along these lines. Note however
that the result in [1] assumes that the iterates ut, θt satisfy
supt E

[
‖ ut ‖2

]
, supt E

[
‖ θt ‖2

]
< ∞, respectively, i.e.,

that the iterates remain bounded in a mean-square sense. We
provide verifiable sufficient conditions in a general setting
(which the current setting is a special case of) along the
lines of [2] for these requirements.

B. A Discussion on the Convergence Rate

We now briefly discuss the (asymptotic) rate of conver-
gence aspect. Consider first a one-timescale algorithm as
below:

xt+1 = xt + βt(b−Axt +Wt).

Here Wt, t ≥ 0 are certain zero-mean noise random
variables. The linear stochastic iteration above will converge
under suitable conditions to the solution of the linear system
of equations

Ax = b.

Suppose x is a solution to the above system of equations. In
[10], the average

θ̄t =
1
t

t∑
l=1

xl

is suggested to be used as an estimate of the solution of the
above system of equations instead of xt. It is also shown
that t1/2(θ̄t− x) is asymptotically normally distributed with
mean 0 and a certain covariance matrix that depends on both
A and the covariance matrix of W . Their analysis shows
that the performance of one-timescale algorithms can be
enhanced (via the asymptotic rate of convergence) using the
above iterate averaging. Iterate averaging such as suggested
by [10] can in fact be easily obtained using two timescales.
Konda and Tsitsiklis [7] follow this approach and obtain
rate of convergence for general two-timescale algorithms in
the case of linear systems under certain assumptions. They
generalize the iterate averaging idea of [10] by considering
more general (though linear) recursions. In the recursions
in [7] along the faster timescale, one does not necessarily
do iterate averaging as in [10] but these iterations can be
more general. (Our two-timescale algorithm is also for a
linear system of equations.) One of the main results in [7]
(Theorem 4.1) says that for an algorithm such as (3)-(4)
(under the assumptions in [7]), α−1/2

t (θt − θ) converges in
distribution to that of a Gaussian random variable with mean
zero and a certain covariance matrix. Another important
result in [7] (cf.Theorem 3.1) compares the single-timescale
and two-timescale algorithms and says that the minimal
possible covariance of α−1/2

t (θt−θ) when the ‘gain matrices’
in each can be chosen freely is the same for both two-
timescale and one-timescale recursions. The one-timescale
case corresponds to the scenario where we let αt = ηβt in
our algorithm for some η > 0 (but not arbitrarily close to
zero).



IV. EXPERIMENTAL RESULTS

A. A Low-dimensional Problem

We first consider a low-dimensional problem, in which
we sample from a set comprising of two samples – x(1)

and x(2), for which the targets are y(1) = 1 and y(2) = −1,
respectively. In the experiment, x(1) was sampled 95% of the
time, and x(2) was sampled 5% of the time. At each time step
t, after sampling xt ∈ {x(1), x(2)}, we can observe the target,
yt, with some noise. For our experiments, we let ỹt=yt + εt
be the noise-corrupted target for xt, where εt is obtained as
an independent sample from N(0, 1) (i.e., εl, l = 1, 2, . . .
are independent, N(0, 1)-distributed random variables).

We used the following correlated features:

x1 = [1, 1]′; x2 = [0, 1]′.

We evaluate the performance of the algorithms by using the
2-norm error

et = ||θt − θ∗||2.

For our example, θ∗ can be seen to be θ∗ = [2,−1]T . An
algorithm is “better” if it exhibits a “lower” value of et. The
initial value of θ0 in all the algorithms was set to 0. The
initial value of u0 in algorithm LMS-2 was set to 0 as well.
In the case of RLS, the matrix P0 (the initial value) was
set to 100I (I being the identity matrix).4 In the following,
we show plots of convergence of et for all algorithms. The
curves in the figures from Figures 2 to 6 are averaged over
30 independent runs.

We tested the performance of LMS extensively using the
following schedule of learning rates:

αt = α0(1 +N0)/(tp +N0). (11)

Here α0, N0 > 0 and p ∈ (0.5, 1] are setting parameters that
we varied over a range of values in order to find the best set
of these. Towards this end, we first considered the following
form for the step-sizes αt:

αt =
1
tp
. (12)

We varied the values of p over a range of eleven different val-
ues in the set {0.51, 0.55, 0.60, . . . , 0.95, 1.0}. We observed
that the value of p = 0.51 gives the best performance results
here. Figure 2 shows the performance of LMS using three
different values, p = 0.51, 0.8 and 1 respectively.5 The plot
for p = 0.51 is the best amongst the three. The performance
plots of LMS using the other values of p lie in between those
for p = 0.51 and p = 1.0. In Figure 2, we also show the plot
of RLS in order to facilitate a comparison with the plots of
LMS.

Since we observed that p = 0.51 shows the best perfor-
mance in the range of step-sizes (12), in our subsequent

4We tested I , 10I and 100I , out of which 100I was found to give the
best performance. However, the performance differences were not large.

5We tried iterate averaging on top of the LMS algorithm, but during the
transient that we investigate here, iterate averaging (naturally) did not help.
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Fig. 2: Performance comparisons of LMS with learning rates
(12) for different values of p with RLS.
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Fig. 3: Performance comparisons of LMS using learning
rates (11) for different values of α0 and N0 with RLS.

experiments for obtaining the best setting parameters for
LMS, we fixed the value of p at 0.51 and considered the
following sets of values for the setting parameters α0 and N0,



respectively, in order to find the best combination thereof:

1. α0 = 0.05, N0 = 10;
2. α0 = 0.05, N0 = 100;
3. α0 = 0.1, N0 = 10;
4. α0 = 0.1, N0 = 100;
5. α0 = 0.5, N0 = 10;
6. α0 = 0.5, N0 = 100,
7. α0 = 1, N0 = 100,
8. α0 = 1, N0 = 100. (13)

Figure 3 shows the performance of LMS using the first
six schedules depicted above. The last two schedules did
not show good performance, hence we do not plot in the
figure the performance using these. The results show that
even though there is a variation in performance of LMS when
different setting parameters α0 and N0 in the step-sizes (11)
are used, however still, there is a “performance gap” between
LMS and RLS.

Next, we performed experiments with LMS-2. Note that
LMS-2 requires two step-size schedules αt and βt. We set
these according to:

αt = α0(1 +N0)/(t+N0), (14)

βt = β0(1 +M0)/(tp +M0), (15)

respectively, where 0.5 < p < 1 (in order to obtain a
timescale difference between the step-sizes).

It appears that tuning the parameters in LMS-2 is harder
than LMS because of the additional step-size schedule. For
simplicity, we let N0 = M0 in the two step-size schedules
(14)-(15). Also, we let α0 ≤ β0 in general. We first set β0

and then heuristically set N0 and α0 smaller than β0.
We experimented with three groups of parameters. In each

group of experiments, we first fix β0 and p, then select
the value of α0 and N0 from the combinations in (13). In
particular, we have

(G1) fix β0 = 0.1, p = 0.51, and use one of the following:
1.1: α0 and N0 from 1. of (13)
1.2: α0 and N0 from 2. of (13)
1.3: α0 and N0 from 3. of (13)
1.4: α0 and N0 from 4. of (13)

(G2) fix β0 = 0.5, p = 0.51, and use one of the following:
2.1: α0 and N0 from 1. of (13)
2.2: α0 and N0 from 2. of (13)
2.3: α0 and N0 from 3. of (13)
2.4: α0 and N0 from 4. of (13)
2.5: α0 and N0 from 5. of (13)
2.6: α0 and N0 from 6. of (13)

(G3) fix β0 = 1, p = 0.51, and use one of the following:
3.1: α0 and N0 from 1. of (13)
3.2: α0 and N0 from 2. of (13)
3.3: α0 and N0 from 3. of (13)
3.4: α0 and N0 from 4. of (13)
3.5: α0 and N0 from 5. of (13)

3.6: α0 and N0 from 6. of (13)
3.7: α0 and N0 from 7. of (13)
3.8: α0 and N0 from 8. of (13)
The results of the three groups are shown in Figures 4,

5 and 6 respectively. The schedules showing “better” results
are only shown in the figures. The results suggest that 3. of
(13) gives the best performance for all the three values of
β0 chosen. Thus, for our next set of experiments, we fix
α0 and N0 to their values prescribed by 3. of (13), and
vary β over a range of values from 0.1 to 1.0. We study
the performance in terms of both the mean and standard
deviation of the error et upon termination of each algorithm.
We also vary the values of the parameter α0 of LMS from
0.1 to 1.2 and study the variation in the values of the
error et obtained after convergence of the algorithms. We
did not choose values of α0 and β0 higher than 1.2 and
1 respectively as such values result in a large blow up in
the initial stages of the algorithms, thereby having a bearing
on the overall algorithm performance. For both LMS and
LMS-2, we chose p = 0.51 and N0 = 10, which is a
nearly optimal setting for both algorithms (as suggested by
the experiments). The performance of both algorithms with
these settings is compared after 100, 500 and 1000 steps,
respectively. We obtained the mean and standard deviations
from 500 independent runs in both algorithms in all the
three graphs. For the sake of completeness and comparison,
we also show the plots of RLS that however is a flat line
parallel to x-axis (in each plot) as it does not depend on the
quantities α0 or β0. These results are summarized in Figure
8 and suggest that the larger β0 is for the same schedule
of αt, the faster LMS-2 becomes. It can be seen from the
figure that LMS-2 shows better performance than LMS and
its performance is very close to RLS.
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Fig. 4: Performance comparisons of LMS-2 with setting
parameters (G1) with RLS
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Fig. 5: Performance comparisons of LMS-2 with setting
parameters (G2) with RLS
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Fig. 6: Performance comparisons of LMS-2 with setting
parameters (G3) with RLS

B. A Higher-Dimensional Problem

We consider now the case when the parameter dimension
is 10 and yt = θ′∗φt + εt, where θ = [1, 1, . . . , 1]T , εt ∼
N(0, 1) and φt is generated from a 10-dimensional Gaussian:
φt ∼ N(0,Σ). The covariance matrix Σ was selected in a
way that its eigenvalues are loosely scattered. In particular,
we let Σ = UTDU , where U is an orthogonal matrix and D
is a diagonal matrix. We first set the ten diagonal elements of
D to be 1, 2, . . . , 9 and 100, respectively. We then generate a
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Fig. 7: Performance comparisons of LMS, LMS-2 and RLS
after 500 time steps
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Fig. 8: Performance comparisons of LMS, LMS-2 and RLS
after 1000 time steps.

random matrix and use the Gram-Schmidt orthogonalization
technique to convert the random matrix to an orthogonal
matrix, U . Each curve in the following is averaged over 50
independent simulation runs.

Here we wanted to explore sensitivity of the algorithms
to the value of p in the step-size sequences. For reasonable
behavior (particularly in the initial stages), we observed that
for a large α0, N0 must be small and vice versa. The best
parameters were found to be α0 = 0.01 and N0 = 10 in
the case of LMS while for LMS-2, these were found to be
α0 = 0.005, β0 = 0.005 and N0 = 1000 (these parameter
values made the algorithms perform reasonably well for all



values of p). We then tested the sensitivity of LMS, LMS-2
to the parameter p. In particular, we varied p from 0.51 to
1.0. The plots of mean and standard deviation of et after
1, 000 and 10, 000 time steps are shown in Figures 9 and
10 respectively. Again from these plots, it can be seen that
the performance of LMS-2 is better than that of LMS even
though RLS is the best of the three algorithms.
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Fig. 9: The effect of p on performance of LMS and LMS-2
after 1000 time steps. LMS-2 is not sensitive to the choice
of p parameter in the βt step-size.

V. CONCLUSIONS

LMS-2 attempts to achieve the performance of RLS, while
maintaining the computational complexity of LMS. The price
is that now two step-size sequences must be tuned. Our
experiments show that the algorithm is promising: In an
example with d = 2, the performance improvement over
LMS was considerable and the performance of LMS-2 got
close to that of RLS, while in another example with d = 10,
we observed that the performance of LMS-2 for almost
all settings of the tested learning rate parameters that we
considered was better than that of LMS. Our future work will
include further empirical studies and the study of adaptive
step-size rules. As mentioned in Remark 3, we would replace
Assumption 1 with the weaker requirement that the process
(φt, yt), t ≥ 1 is Markov. We find the LMS-2 approach
promising as we think that the proposed rule has the potential
of being competitive with RLS (when appropriately tuned),
while the tuning problem only involves scalar quantities i.e.,
the step-size sequences (now matrix gains are involved).
Another direction to explore is the tracking performance
of the algorithms, and extensions to other similar learning
problems, such as reinforcement learning with linear function
approximation [13]. In connection to this, it is important to
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Fig. 10: The effect of p on performance of LMS and LMS-2
after 10, 000 time steps. LMS-2 is not sensitive to the choice
of p parameter in the βt step-size.

note that the idea behind the algorithm (to use an auxiliary
parameter to learn the “optimal” update direction on a faster
timescale) generalizes to all kinds of domains.
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