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Abstract— In recent years, idempotent methods (specifically,
max-plus methods) have been developed for solution of nonlin-
ear control problems. It was thought that idempotent linearity
of the associated semigroup was required for application of
these techniques. It is now known that application of the
max-plus distributive property allows one to apply the max-
plus curse-of-dimensionality-free approach to stochastic control
problems. Here, we see that a similar, albeit more abstract,
approach can be applied to deterministic game problems.
The main difficulty is a curse-of-complexity growth in the
computational cost. Attenuation of this effect requires finding
reduced-complexity approximations to min-max sums of max-
plus affine functions. We demonstrate that that problem can
be reduced to a pruning problem.

I. I NTRODUCTION

In recent years, idempotent methods have been developed
for solution of nonlinear control problems. (Note that idem-
potent algebras are those for whicha⊕ a = a for all a; this
class includes the well-known max-plus algebra.) Most no-
tably, max-plus methods have been applied to deterministic
optimal control problems. These consist of max-plus basis
methods, exploiting the max-plus linearity of the associated
semigroup [1], [2], [8], [11], [15], [18] [19], and max-plus
curse-of-dimensionality-free methods which exploit the max-
plus additivity and the invariance of the set of quadratic
forms under the semigroup operator [11], [14], [16]. These
methods achieved truly exceptional computational speeds on
some classes of problems. Recently, use of the idempotent
distributive property has allowed some first expansions of
max-plus curse-of-dimensionality-free concepts into thedo-
main of stochasticcontrol problems [13], [22], [23].

In this paper, we use some similar, but more abstract,
tools which will bring game problems into the realm under
which curse-of-dimensionality-free idempotent methods will
be applicable. We will first demonstrate how one may
apply the min-max distributive property to develop curse-
of-dimensionality-free methods for discrete-time, determin-
istic dynamic games. We will only outline the steps in
that development. The difficulty with idempotent curse-of-
dimensionality-free methods for stochastic and game prob-
lems is an extreme curse-of-complexity difficulty. A means
for attenuating that difficulty will be the focus of this paper.
We will see that the proper space to work in is the space
of max-plus convex functions. Our definition of max-plus
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convex functions differs from that in [6], [25] via a reversal
of the ordering on the range space. This change creates
a more useful space for our purposes here. We will note
that the space of max-plus convex functions is a min-
max vector space (or moduloid). This is an analogy of
the useful property that the space of standard-sense convex
functions is a max-plus vector space (or moduloid). We
will then consider max-plus convex functions given asfinite
min-max sums of max-plus affine functions. Reducing the
complexity of such representations is the key to practicality
in an idempotent algorithm for game problems. We will
demonstrate that such a complexity reduction is reduced to a
pruning operation. That is, given a min-max sum ofM max-
plus affine functions, the best approximation (in a sense to
be defined) in the class of min-max sums ofN max-plus
affine functions (withN < M ) consists of a subset of the
original set. This greatly reduces the solution space of the
complexity reduction problem.

Due to space limitations, almost all results will be pre-
sented without their proofs. Many of these are lemmas where
the proofs would be relatively short and clear. The proofs of
Theorems 3.6, 3.13, 3.14 and 4.2 are included to give a sense
of the analysis.

II. I DEMPOTENTMETHOD FORGAMES

We briefly describe the idempotent approach to dynamic
games. The purpose here is only tooutline the algorithm;
this will motivate the complexity reduction problem. We will
keep all control spaces finite so as to simplify the analysis.

We suppose the dynamics are governed by

ξt+1 = h(ξt, ut, wt), (1)

ξs = x ∈ G ⊆ IRI , (2)

wheres is the initial time. We supposeut ∈ U andwt ∈
W for all t, with W

.
= #W (the cardinality ofW) and

U = #U . We assumeh((·, u, w) mapsG into G for all
u ∈ U , w ∈ W . Time is discrete witht ∈]s, T [

.
= {s, s +

1, s + 2, . . . T}, and this notation will be use throughout.
Also for simplicity, we assume only a terminal cost, which
will be φ : G → IR. We let U be the minimizing player’s
control set, andW be the maximizing player’s control set.
The payoff, starting from any(t, x) ∈]s, T [×G will be

Jt(x, u]t,T−1[, w]t,T−1[) = φ(ξT ), (3)

where u]t,T−1[ denotes a sequence of controls,
{ut, ut+1, . . . uT−1}, with similar meaning forw]t,T−1[. We
will work with the upper value, although the analysis for



the lower value is analogous. The upper value for any time
t ∈]s, T − 1[ is

Vt(x) = max
w̃t∈fW t

min
u]t,T−1[∈UT−t

Jt(x, u]t,T−1[.w̃(u]t,T−1[)

(4)
where W̃ t = {w̃t : UT−t → WT−t}. The associated
dynamic programming equation (which we present without
proof) is

Vt(x) = min
u∈U

max
w∈W

Vt+1(h(x, u, w)). (5)

Supposeφ takes the form

φ(x) = min
zT∈ZT

gT (x; zT ),

where we letZT = #ZT <∞. Then,

VT (x) = min
zT ∈ZT

gT (x; zT ). (6)

Combining (5) and (6), one has

VT−1(x) = min
u∈U

max
w∈W

min
zT∈ZT

gT (h(x, u, w); zT ). (7)

We now introduce the relevant idempotent algebras. As
usual, the max-plus algebra (more properly, the max-plus
commutative semifield) is defined by

a⊕ b
.
= max{a, b}, a⊗ b

.
= a+ b,

operating onIR− .
= IR ∪ {−∞}. In the min-max algebra

(more properly, the min-max commutative semiring), the
addition and multiplication operations are defined as

a⊕∨b
.
= min{a, b}, a⊗∨b

.
= max{a, b},

operating onIR
.
= IR∪ {−∞}∪{+∞}, where we note that

+∞⊕∨b = b for all b ∈ IR and+∞⊗∨b = +∞ for all b ∈
IR. We suppose eachgT (·; zT ) is max-plus affine. In other
words,φ will be formed as the lower envelope of a finite set
of max-plus affine functions. In fact, we are going to think
of φ as a max-plus convex function. (We will have reason to
reverse the ordering on the range space, and so our definition
of max-plus convex functions will look directly analogous to
the definition of standard-sense convex functions.) We may
write these max-plus affinegT (·; zT ) as

gT (x; zT ) = αT,zT ⊙x⊕βT,zT =

[
⊕

i∈I

αT,zT

i ⊗ xi

]
⊕βT,zT

whereI =]1, I[. We will assume that theh(·, u, w) are max-
plus linear. Specifically, we let

h(x, u, w) = A(u,w) ⊗ x,

where here we use⊗ to emphasize that this is max-plus
matrix-vector multiplication. We see that

VT−1(x) =
⊕

u∈U

∨ ⊗

w∈W

∨ ⊕

zT ∈ZT

∨
[
βT,zT ⊕ αT,zT ⊙A(u,w)

⊗x
]
. (8)

Define, for anyt ∈]s + 1, T [, Ẑt = {ẑt : W → Zt}.
Applying the min-max distributive property to (8),

VT−1(x) =
⊕

u∈U

∨
⊕

ẑT ∈ bZT

∨
⊗

w∈W

∨
[
βT,ẑT (w)

⊕αT,ẑT (w) ⊙ A(u,w) ⊗ x
]

=
⊕

u∈U

∨ ⊕

ẑT∈ bZT

∨ ⊕

w∈W

[
βT,ẑT (w) (9)

⊕αT,ẑT (w) ⊙ A(u,w) ⊗ x
]
.

Let

α̃T−1,ẑT

j (u)
.
=

⊕

w∈W

⊕

i∈I

α
T,ẑT (w)
i ⊗Ai,j(u,w) ∀j ∈ I,

β̃T−1,ẑT
.
=

⊕

w∈W

βT,ẑT (w).

With these definitions, (9) becomes

VT−1(x) =
⊕

u∈U

∨ ⊕

ẑT ∈ bZT

∨
[
β̃T−1,ẑT ⊕ α̃T−1,ẑT (u) ⊙ x

]
.

Let ZT−1 = U(ZT )W , and letZT−1 =]1, ZT−1[. Let
ΓT−1 be a one-to-one, onto mapping fromU × ẐT to ZT−1,
given by zT−1 = ΓT−1(u, ẑT ) for each(u, ẑT ) ∈ U × ẐT .
Then,

VT−1(x) =
⊕

zT−1∈ZT−1

∨
[
βT−1,zT−1 ⊕ αT−1,zT−1 ⊙ x

]
, (10)

where

αT−1,zT−1
.
= α̃T−1,ẑT (u),

βT−1,zT−1
.
= β̃T−1,ẑT .

Repeating this process, one easily finds the following.
Theorem 2.1:For anyt ∈]s+ 1, T [,

Vt−1(x) =
⊕

zt−1∈Zt−1

∨
[
βt−1,zt−1 ⊕ αt−1,zt−1 ⊙ x

]
,

where

α
t−1,zt−1

j

.
=

⊕

w∈W

⊕

i∈I

α
t,ẑt(w)
i ⊗Ai,j(u,w) ∀j ∈ I,

βt−1,zt−1
.
=

⊕

w∈W

βt,ẑt(w),

where(u, ẑt) = Γ−1
t−1(zt−1) for all x ∈ IRI , zt−1 ∈ Zt−1,

and Γt−1 is a one-to-one, onto mapping fromU × Ẑt to
Zt−1

.
=]1, Zt−1[, with Zt−1 = U(Zt)

W .
The difficulty emerges through the iterationZt−1 =

U(Zt)
W ; in a naive application of this approach, the number

of max-plus affine functions defining the value would grow
extremely rapidly. This implies that the second piece of the
algorithm must be complexity reduction in the representation
at each step. This will be the focus of the paper.



III. G ENERAL COMPLEXITY REDUCTION PROBLEM AND

CONTEXT

Certain function spaces may be spanned by infima of max-
plus affine functions, that is, any element of the space may
be represented as an infimum of a set of max-plus affine
functions. It is often useful to employ max-plus polynomial
functions as well as affine. By definition, any function in such
a space as the above has an expansion,f(x) = infλ∈Λ ψλ(x),
for some index setΛ, where theψλ are max-plus affine. If the
expansion is guaranteed to be countably infinite, we would
write

f(x) = inf
i∈N

ψi(x) =
⊕

i∈N

∨ψi(x)
.
=

⊕

i∈N

∨[ai ⊕ ψ′
i(x)],

where theψ′
i are max-plus linear. We will refer to this as a

min-max basis expansion, or simply a min-max expansion,
and we think of the set of suchψ′

i as a min-max basis for the
space. The max-plus analog of this concept consists of max-
plus vector spaces (more typically referred to as moduloids
[3] or as idempotent semimodules [5], [10]) and max-plus
basis expansions.

Now we indicate the complexity reduction problem of the
previous section in a general form. Suppose we are given
f : X → IR with representation

f(x) =
⊕

m∈M

∨tm(x) = min
m∈M

tm(x) = min
m∈]1,M [

tm(x),

whereX will be a partially ordered vector space. Except
where noted, we will takeX = IRI for clarity. We are
looking for {an : X → IR |n ∈]1, N [} with N < M , such
that

g(x)
.
=

⊕

n∈N

∨an(x) = min
n∈N

an(x) = min
n∈]1,N [

an(x)

approximatesf(x) from above. Note that throughout the
paper, we will letM =]1,M [= {1, 2, . . .M}, N =]1, N [
andI =]1, I[.

A. Min-max spaces

As indicated earlier, it is well-known that it is useful
to apply max-plus basis expansions to solve certain HJB
PDEs and their corresponding control problems. In particular,
the solutions are represented as max-plus sums of affine
or quadratic functions. In fact, the spaces of standard-sense
convex and semiconvex functions have max-plus bases (more
properly, max-plus spanning sets) consisting of linear and
quadratic functions, respectively,

We will be applying the analogous concept, where the
standard algebra will be replaced by the max-plus, and the
max-plus will be replaced by the min-max. OnIRI , we will
define the partial orderx � y if xi ≤ yi for all i ∈ I. Let
OI denote the closed first octant, i.e.,OI = [0,∞)I

.
= {x ∈

IRI
∣∣x ≥ 0}. Forδ ∈ OI , let ‖δ‖⊕

.
= maxi∈I δi =

⊕
i∈I δi.

Let 1 denote a generic-length vector all of whose elements

are1’s. Let

S1(IRI)
.
=

{
f : IRI → IR

∣∣∣∣ 0 ≤ f(x+ δ) − f(x) ≤ ‖δ‖⊕,

∀x ∈ IRI , δ ∈ OI

}
, (11)

and

So,1(IRI)
.
=

{
f : IRI → IR

∣∣∣∣∃ ε = ε(f) > 0 s.t. (12)

0 ≤ f(x+ δ) − f(x) ≤ (1 − ε)‖δ‖⊕, ∀x ∈ IRI , δ ∈ OI

}
.

For a ∈ IR and f, g ∈ S1(IRI), we define the inherited
operations

[f⊕∨g](x) = min{f(x), g(x)} ∀x ∈ IRI ,

[a⊗∨f ](x) = max{a, f(x)} ∀x ∈ IRI .

Remark 3.1:In [25], f : IRI → IR is said to besub-
topical or increasing plus-sub-homogeneousif f is increas-
ing according to partial order�, and if

f(x+ λ1) ≤ f(x) + λ ∀x ∈ IRI , ∀λ > 0. (13)

Supposef ∈ S1(IRI). Then, it is obvious thatf is sub-
topical. Supposef 6∈ S1(IRI). Then, there existsx ∈ IRI

andδ � 0 such that

f(x+ δ) > f(x) + ‖δ‖⊕.

Let δ̄
.
= ‖δ‖⊕. Then,

f(x+ δ̄1) ≥ f(x+ δ) > f(x) + ‖δ‖⊕,

which implies thatf is not sub-topical. Therefore,S1(IRI)
is exactly the space of sub-topical functions fromIRI to IR.

It is also useful to note the following easily obtained result.
Proposition 3.2:Supposef ∈ S1(IRI). Suppose there

existsx ∈ IRI such thatf(x) = +∞ [resp.,−∞]. Then,
f(y) = +∞ [resp.,−∞] for all y ∈ IRI .

Consequently, excepting two special casesf = +∞ and
f = −∞, we can assume anyf ∈ S1 is everywhere
finite. Except where there is some difficulty or interesting
phenomenon, we will henceforth ignore these two special
cases.

We will refer to a space as a min-max vector space if it
satisfies the standard conditions (c.f. [11]). The definition of
a max-plus vector space is analogous.

Theorem 3.3:S1 andSo,1 are min-max vector spaces.
Remark 3.4:It is not difficult to show that iff ∈ S1 (and

so, inSo,1), and there existsx ∈ IRI such thatf(x) = +∞
then f(y) = +∞ for all y ∈ IRI . Similarly, if there exists
x ∈ IRI such thatf(x) = −∞ then f(y) = −∞ for all
y ∈ IRI .

There are obvious generalizations of these spaces. These
may be useful for classes of control and game problems
whose solutions do not naturally fall in the above two spaces.
However, we leave that to later efforts.

One of the most useful aspects of looking at the spaces
of convex and semiconvex spaces as max-plus vector spaces



was that these spaces had countable max-plus bases. For ex-
ample the space of convex functions has the set of (standard-
algebra) linear functionals with rational coefficients as a
countable max-plus basis. We are interested in analogous
results here, that is, for anyf ∈ So,1(IRI), we would like
to represent it in terms of the coefficients in its min-max
basis expansion. (Again, note that our use of the term “basis
expansion” in this context is non-standard.) Specifically,we
would like {φk}k∈N ⊂ S1(IRI) such that, givenf ∈
S1(IRI), there exists{ck}k∈N ⊂ IR such that

f =
⊕

k∈N

∨ck⊗
∨φk, (14)

i.e., for all x ∈ IRI ,

f(x) =

[
⊕

k∈N

∨ck⊗
∨φk

]
(x) (15)

= inf
k∈N

max{ck, φk(x)}.

We were only able to obtain this result forf ∈ So,1(IRI).
We will also be interested in finding the best approximation
given that we can use at mostN <∞ suchφk. A particular
subclass of this second problem will be our main focus in
the paper.

Returning to the first issue, we takeψ(x, z) : IRI×IRI →
IR to be

ψ(x, z)
.
= z ⊙ x

.
=

⊕

i∈I

zi ⊗ xi = max
i∈I

{zi + xi}. (16)

We may think ofψ(·, z) as a max-plus linear function with
“slope”, z. We will be takingφk(x) = ψ(x, zk) where the
zk will form a countable dense subset ofIRI . The result will
follow if we have

f(x) =

∫ ⊕∨

IRI

c(z)⊗∨ψ(x, z) dz
.
=inf
z∈IRI

{
max[c(z), ψ(x, z)]

}
,

where c has sufficient continuity properties. Note that this
would imply that f was the lower envelope of a set of
functions. Further, note that

c(z)⊗∨ψ(x, z) = c(z) ⊕ ψ(x, z)

where theψ(·, z) are max-plus linear. In other words,f
would be an infimum of max-plus affine functions.

Remark 3.5:Alternatively, we would say that, with
f̃(x)

.
= −f(x) for all x, f̃ would be the upper envelope

of a set of max-plus affine functions. This would correspond
to the notion of “abstract convexity” [24], [25], where the
standard affine functions are replaced by max-plus affine
functions. See also [6] in this regard.

We now fill in the details of this plan for min-max basis
representations. First we obtain what may be part of a duality
result.

Theorem 3.6:Let f ∈ So,1(IRI). Then,

f(x) =

∫ ⊕∨

IRI

c(z)⊗∨ψ(x, z) dz ∀x ∈ IRI (17)

where

c(z) = sup{f(x) |ψ(x, z) − f(x) ≤ 0 ∀x ∈ IRI} (18)

= −

∫ ⊕∨

ψ(x,z)⊗∨f(x)≤f(x)

−f(x) dx ∀ z ∈ IRI .

Proof: Supposef 6= ±∞; otherwise the proof is
trivial. Supposez is such thatψ(x, z) − f(x) < 0. Then,
by definition,c(z) ≥ f(x). Consequently,c(z)⊗∨ψ(x, z) ≥
f(x) for any z ∈ IRI , and so

∫ ⊕∨

IRI

c(z)⊗∨ψ(x, z) dz ≥ f(x). (19)

Now, we obtain the reverse inequality. Letz̃ = z̃(x) be
given by

[z̃]i = f(x) − xi ∀ i ∈ I.

Then,

ψ(x, z̃) = z̃ ⊙ x = max
i∈I

[f(x) − xi + xi] = f(x). (20)

Supposec(z̃) > f(x). This implies there existsy ∈ IRI

such that

f(y) > f(x), (21)

ψ(y, z̃) ≤ f(y). (22)

Let I ′ .= {i ∈ I | yi > xi}. By (21) and the fact thatf ∈ S1,
one finds thatI ′ 6= ∅. Also,

ψ(x, z̃) = max
i∈I

[f(x) + (yi − xi)]

= f(x) + max
i∈I′

[yi − xi] (23)

Now, f ∈ So,1 implies that there existsε > 0 such that

f(y) − f(x) ≤ (1 − ε)max
i∈I′

[yi − xi]. (24)

Combining (23) and (24), one has

ψ(y, z̃) ≥ f(y) + εmax
i∈I′

[yi − xi],

which, sinceI ′ 6= ∅,
> f(y),

which contradicts (22). Therefore,

c(z̃) ≤ f(x). (25)

Then, by (20) and (25),

c(z̃)⊗∨ψ(x, z̃) = f(x). (26)

Combining (19) and (26) yields the result.
Now define, for anyz ∈ IRI ,

Az
.
= {x ∈ IRI |ψ(x, z) − f(x) ≤ 0}, (27)

and note
c(z) = sup{f(x) |x ∈ Az}.

In the next results, we will be obtaining a continuity property
on c(·). This will allow us to obtain our countable min-max
basis forSo,1.



Lemma 3.7:Let f ∈ So,1(IRI), f 6= ±∞. Let z ∈ IRI ,
anda ∈ IR. There existsM = M(z, a, f) such thatxi ≤M
for all i ∈ I and allx ∈ IRI such thatψ(x, z) − f(x) ≤ a.

The next lemma follows by takinga = 0 in Lemma 3.7.
Lemma 3.8:Let f ∈ So,1(IRI), f 6= ±∞. Let z ∈ IRI .

There existsM = M(z, f) such thatxi ≤ M for all i ∈ I
and allx ∈ Az.

Lemma 3.9:Let f ∈ So,1(IRI), f 6= ±∞. Let z ∈ IRI .
Then, there existŝx ∈ Az such thatx̂ � x for all x ∈ Az
andψ(x̂, z) − f(x̂) = 0.

Theorem 3.10:Let f ∈ So,1, f 6= ±∞. Let z ∈ IRI . Let
z ∈ IRI . Then, there existŝx ∈ Az such that

x̂ � x ∀x ∈ Az, (28)

ψ(x̂, z)−f(x̂) = 0 andf(x̂) = c(z). Further,x̂ is the unique
element ofAz satisfying (28).

Henceforth, we denote thiŝx as x̂z = x̂z(Az).
Lemma 3.11:Let f ∈ So,1, f 6= ±∞. Let z ∈ IRI . Then,

x̂zi + zi = f(x̂z) for all i ∈ I.
Lemma 3.12:Let f ∈ So,1. Let z ∈ IRI , andα ∈ IRI

with α � 0. Then,c(z) ≤ c(z − α).
Theorem 3.13:Let f ∈ So,1. For anyz ∈ IRI , c(z) =

limα↓0 c(z − α).

Proof: From Lemma 3.12, forα � 0, c(z−α) ≥ c(z).
We will show that it cannot be too much larger. We skip the
trivial casesf = ±∞.

Let α � 0. Sincef ∈ So,1 andAz ⊆ Az−α, this implies

f(x̂z−α) ≥ f(x̂z). (29)

Further, by Theorem 3.10,

x̂zi + zi− f(x̂z) = 0 and x̂z−αi + zi−αi − f(x̂z−α) = 0

for all i ∈ I, and so

x̂z−αi = x̂zi + αi + f(x̂z−α) − f(x̂z), (30)

which by (29) and the choice ofα,
≥ x̂zi ∀ i ∈ I. (31)

Now, by (31) and the fact thatf ∈ So,1,

f(x̂z−α) − f(x̂z) ≤ (1 − ε)max
i∈I

[x̂z−αi − x̂zi ],

which by (30),

= (1 − ε)

{
f(x̂z−α) − f(x̂z) + max

i∈I
[αi]

}
.

This implies

f(x̂z−α) ≤ f(x̂z) +
1 − ε

ε
max
i∈I

[αi],

which, by Theorem 3.10, implies

c(z − α) ≤ c(z) +
1 − ε

ε
max
i∈I

[αi].

We are now ready to prove our countable basis result.

Theorem 3.14:Let {zk}k∈N be a countable dense subset
of IRI . Let φk(x)

.
= ψ(x, zk) for all x ∈ IRI and allk ∈ N.

For anyf ∈ So,1,

f(x) =

∨⊕

k∈N

ck⊗
∨φk(x) ∀x ∈ IRI , (32)

where
ck

.
= sup{f(x) |ψ(x, zk) − f(x) ≤ 0 ∀x ∈ IRI} (33)

for all k ∈ N.

Proof: Let x ∈ IRI andε > 0. By Theorem 3.6, there
existsz̄ ∈ IRI such that

f(x) ≤ c(z̄)⊗∨ψ(x, z̄) = max{c(z̄), ψ(x, z̄)} ≤ f(x)+ε/2.
(34)

By the density of{zk}k∈N, Theorem 3.13 and the continuity
of ψ, there exists̄k ∈ N such that

c(z̄) ≤ c(zk̄) ≤ c(z̄) + ε/2 (35)

and
|ψ(x, z̄) − ψ(x, zk̄)| ≤ ε/2. (36)

Combining (34)–(36), we have

f(x) ≤ ck̄⊗
∨φk̄(x) ≤ f(x) + ε.

Since this is true for allε > 0, we are done.

B. So,1 and max-plus convexity

In [13], a problem similar to that described above was
formulated, but in that case the max-plus algebra was re-
placed by the standard field, and the min-max algebra was
replaced by the max-plus algebra. In solving that problem,
we used a certain optimization criterion which was convex
and increasing. Below, we will use a similar technique.
Consequently, we will be dealing here with max-plus convex
functions; the optimization criterion will be max-plus convex.
As the min-max algebra suggests a natural order on the range
space,IR, which is the opposite of the standard order, this
will lead us to a different definition of max-plus convex
functions from that used elsewhere (c.f. [6], [25]).

We begin with the definition of max-plus convex sets. A
set,C ⊆ IRI is max-plus convexif

λ1 ⊗ x1 ⊕ λ2 ⊗ x2 ∈ C

for all x1, x2 ∈ C and allλ1, λ2 ∈ [−∞, 0] such thatλ1 ⊕
λ2 = 0. See [6], [25]. We now turn to max-plus convex
functions. We would like the set of such functions to form a
min-max vector space. Consequently, we define the ordering
on the range space,IR, by y1�Ry2 if y1 ≥ y2, andy1≺Ry2
if y1 > y2; relations�R and≻R are defined analogously.
We henceforth refer to this as therange order.Supposef :
IRI → IR, and define the max-plus epigraph as

epi⊕f
.
= {(x, y) ∈ IRI × IR | y�Rf(x)}. (37)

Note that epi⊕f lies below the graph off in the standard
sense. Alternatively,f may be referred to as the hypograph
[25], but due to the natural reversal of order in the range



space here, the term max-plus epigraph is more appropriate
in this context. Lastly, we sayf is max-plus convexif epi⊕f
is max-plus convex. We now show that functions formed by
min-max integrals (infima) of max-plus affine functions are
max-plus convex.

Theorem 3.15:Let Z ⊆ IRI , c : Z → IR, and

f(x)
.
=

∫ ⊕∨

Z

c(z) ⊕ ψ(x, z) dz = inf
z∈Z

{c(z) ⊕ x⊙ z} (38)

for all x ∈ IRI . Thenf is max-plus convex.
Corollary 3.16: Supposef(x) =

⊕∨
k∈K ck ⊕ zk ⊙ x for

all x, whereK ⊆ N, and ck ∈ IR and zk ∈ IRI for all
k ∈ K. Then,f is max-plus convex.

Corollary 3.17: If f ∈ So,1, thenf is max-plus convex.
Theorem 3.18:If f is max-plus convex, thenf ∈ S1.

IV. COMPLEXITY REDUCTION AND ABSTRACT

FORMULATION

Recall that our originating problem was complexity reduc-
tion in a min-max expansion. That is, givenf : G ⊆ X → IR
with representation

f(x) =
⊕

m∈M

∨tm(x) = min
m∈M

tm(x),

we are looking for a reduced complexity expansion

g(x) =
⊕

n∈N

∨an(x) = min
n∈N

an(x)

approximatingf as “well” as possible from above. Thean
and tm will be selected from a specified class of function,
such as affine functions. We takeX

.
= IRI throughout.

We will use a measure of approximation quality which is
monotonic (in a sense to be specified) and max-plus convex.
Specifically, we wish to minimize

J ({an}n∈N ) =

∫ ⊕

G

{[
⊕

n∈N

∨an(x)

]
−

[
⊕

m∈M

∨tm(x)

]}
dx

= sup
x∈G

{
min
n∈N

an(x) − min
m∈M

tm(x)
}
, (39)

conditioned on
⊕

n∈N

∨an(x) ≥
⊕

m∈M

∨tm(x) ∀x ∈ G,

or equivalently, conditioned on

an(x) ≥
⊕

m∈M

∨tm(x) ∀x ∈ G, ∀n ∈ N . (40)

A. Abstract formulation

We consider an abstract problem which will subsume
(39),(40), and prove the main result for this abstract problem
here. Further below, we will demonstrate that (39),(40) is
indeed subsumed by the following problem.

Let Y be a max-plus vector space with partial order�⊕.
Given p ∈ Y, define thedownward coneof p to be

D(p) = {q ∈ Y | q�⊕p}.

For anyK ∈ N, let

S⊕K .
=



λ = {λk}k∈]1,K[ ∈ [−∞, 0]K

∣∣∣∣∣
⊕

k∈]1,K[

λk = 0



 .

GivenP ⊆ Y, let 〈P 〉⊕ denote the max-plus convex hull of
P . That is,

〈P 〉⊕
.
=

{
q ∈ Y

∣∣∣∣ ∃ N̂ ∈ N, {λk}
bN
k=1 ⊂ S⊕ bN and

{pk}
bN
k=1 ⊆ P, s.t. q =

bN⊕

k=1

λk ⊗ pk
}
.

Finally, givenP ⊆ Y, define themax-plus cornice ofP to
be

C⊕(P ) =
⋃

q∈〈P 〉⊕

D(q).

We extend these definitions to product spaces. We define
the inherited (component-wise) partial order onYN as
follows. Let P,Q ∈ YN , whereP = {pi}i∈N andQ =
{qi}i∈N . ThenQ�⊕P if qi�⊕pi for all i ∈ N =]1, N [.
We will be abusing notation slightly by lettingP ∈ YN also
denote a set ofN elements ofY (Otherwise, one may define
a mapping from elements ofYN to subsets ofY of sizeN .)
Prior to obtaining the abstract-formulation result, we obtain
a simple equivalence.

Lemma 4.1:Let P ⊆ Y. Then
[
〈P〉⊕

]N
= 〈PN 〉⊕

where theN superscripts indicate outer productN -times,
i.e., P ∈ PN if P = {pi}i∈N wherepi ∈ P for all i.

Now, given P ⊆ Y, define theN -dimensional outer-
product max-plus cornice ofP to be

C⊕N (P)
.
= [C⊕(P)]N

=
{
Q = {qi}i∈N ∈ YN

∣∣∣ qi ∈ C⊕(P)∀i ∈ N
}
.

We will say thatJ : YN → IR is monotonically increasing,
relative to the inherited partial order and range order,�R, if
Q�⊕P impliesJ(Q)�RJ(P ). We can now state and prove
our abstract result.

Theorem 4.2:Let Y be a max-plus vector space with
partial order,�⊕. Let P = {pm}m∈M ⊂ Y. Suppose
N < M . SupposeJ : YN → IR is monotonically
increasing (relative to the inherited partial order and range
order) and max-plus convex onC⊕N (P). Then, there exists
Q = {q̄i}i∈N with q̄i ∈ P for all i ∈ N , such that

J(Q) = J∗ .
= maxR

{
J(Q)

∣∣∣Q ∈ C⊕N (P)
}

= min
{
J(Q)

∣∣∣Q ∈ C⊕N (P)
}
.

where forZ ⊂ IR, maxR Z
.
= minZ.

Proof: Let ε > 0. Let Q = {qi}i∈N ∈ C⊕N (P) be
such thatJ(Q)≻RJ∗ − ε. SinceQ ∈ C⊕N (P), there exists
Qu = {qui }i∈N such that

Qu ∈
[
〈P〉⊕

]N
(41)



andQ�⊕Qu. Then, by the monotonicity ofJ ,

J(Qu)�RJ(Q)�RJ∗ − ε. (42)

By (41) and Lemma 4.1,Qu ∈ 〈PN 〉⊕. Consequently, there
existsK < ∞, {λk | k ∈]1,K[} ∈ S⊕K and P̂ k ∈ PN for
k ∈]1,K[ such that

Qu =
⊕

k∈]1,K[

λk ⊗ P̂ k. (43)

By (43), the max-plus convexity ofJ , and the fact that
{λk | k ∈]1,K[} ∈ S⊕K ,

J(Qu)�R
⊕

k∈]1,K[

λk ⊗ J(P̂ k)�RsupR bP∈PNJ(P̂ ), (44)

where forZ ⊆ IR, supRZ = inf Z. Now, by (42) and (44),

supR bP∈PNJ(P̂ )�RJ∗ − ε.

Since this is true for allε > 0,

supR bP∈PNJ(P̂ )�RJ∗.

However, PN is a finite set. Therefore, the range-order
supremum is attained at someQ ∈ PN , and soJ(Q)�RJ∗.

V. M AX -PLUS AFFINE FUNCTIONALS

Recall that we are interested in min-max expansions of
max-plus convex functionals. More specifically, we are in-
terested in the special case of reduced-complexity expansions
of finite min-max sums of max-plus affine functionals. We
will reduce this problem to the abstract formulation of
the previous section, and apply Theorem 4.2 to show that
pruning is optimal.

Our problem is to minimize, i.e., range-order maximize,
criterion J of (39) subject to constraints (40), where now
the tm andan functionals will be max-plus affine functions.
More specifically, we range-order maximize (minimize)

J(A)
.
=

∫ ⊕

G

{[
⊕

n∈N

∨αn ⊙ x

]
−

[
⊕

m∈M

∨τm ⊙ x

]}
dx

(45)
whereA

.
= {αn}n∈N , subject to the constraints

αn · x ≥
⊕

m∈M

∨τm ⊙ x ∀x ∈ IRI , ∀n ∈ N . (46)

Let T
.
= {τm}m∈M, and let

Ĉ(T )
.
=

{
α ∈ IRI

∣∣∣∣∣α⊙ x�R
⊕

m∈M

∨τm ⊙ x ∀x ∈ IR
I

}

=

{
α ∈ IRI

∣∣∣∣∣α⊙ x ≥
⊕

m∈M

∨τm ⊙ x ∀x ∈ IR
I

}
.

We want to show that̂C(T ) is the max-plus cornice ofT .
That is, we want to shoŵC(T ) = C(T ).

We say that a set,P ⊆ IRI is (range-order) downwardif
p ∈ P , q�Rp implies q ∈ P , whereq�Rp if qi�Rpi for
all i ∈ I. (Of course, this isupward in the normal sense.)

Note that the range-order of the previous section will now
be carrying over to the coefficients in the linear functionals
here.

The following series of lemmas is easily obtained.
Lemma 5.1:(ordering product-invariance) LetK ∈ N

anda, b, c ∈ IR
K

, with a�Rb. Then,c⊙ a�Rc⊙ b.
Lemma 5.2:Ĉ(T ) is range-order downward.
Lemma 5.3:Ĉ(T ) is max-plus convex.

Lemma 5.4:For any P ⊆ IR
I
, C⊕(P) is range-order

downward.
We do not include a proof of the following.
Lemma 5.5:For anyP ⊆ IR

I
, 〈P〉⊕ is max-plus convex.

Lemma 5.6:For anyP ⊆ IR
I
, C⊕(P) is max-plus con-

vex.
The next lemma is obvious.
Lemma 5.7:For anyP ⊆ IR

I
, Ĉ(P) ⊇ P andC⊕(P) ⊇

P .
Note that we have now shown that for anyP ⊆ IR

I
, both

Ĉ(P andC⊕(P) are range-order downward, max-plus convex
and containP We will show that they are identical.

Lemma 5.8:Let P ⊆ IR
I
. SupposeA ⊆ IR

I
is range-

order downward, max-plus convex and such thatP ⊆ A.
Then,C⊕(P) ⊆ A.

Lemma 5.9:C⊕(T ) ⊆ Ĉ(T ).
Lemma 5.10:There existsm ∈ M such thatα�Rτm if

and only ifα ∈ C⊕(T ).
Lemma 5.11:Supposeα⊙ x ≥ minm∈M τm ⊙ x for all

x ∈ IR
I
. Then, there existsm ∈ M such thatα�Rτm (i.e.,

αi ≥ τmi for all i ∈ I).
Lemma 5.12:If α ∈ Ĉ(T ), then there existsm ∈ M such

thatα�Rτm.
Lemma 5.13:Ĉ(T ) ⊆ C⊕(T ).
We now have
Theorem 5.14:Ĉ(T ) = C⊕(T ).
Recall that we want to minimize (range-order maximize)

J(A) given by (45) subject toA = {αn}n∈N with αn ∈
Ĉ(T ) for all n ∈ N . By Theorem 5.14, the constraint is
equivalent toαn ∈ C⊕(T ) for all n ∈ N , or equivalently,

A ∈ C⊕N (T ). (47)

In order to apply Theorem 4.2 to problem (45)/(47), we need
to show thatJ has the required properties. We now proceed
to do this.

Theorem 5.15:J given by (45) is monotonically increas-
ing (relative to the inherited partial order and the range-order)

and max-plus convex on
[
IR
I
]N

.
We are now in a position to state and prove our main result

of the section.
Theorem 5.16:There existsA∗ minimizing (i.e., range-

order maximizing)J subject to constraints (46). Further,
there exist{mn}n∈N ⊂ M such thatA∗ = {τmn}n∈N .

Remark 5.17:Note that the above result covers only the
max-plus linear case. We may extend this to the affine case

on G′ ⊆ IR
I′

with I ′
.
= I − 1 by letting G = G′ × {0}.



Then with αn = ([α′]n, β) ∈ IR
I
, for any x′ ∈ G′ there

exists uniquex ∈ G given byx = (x′, 0) such that

[α′]n ⊙ x′ ⊕ β = αn ⊙ (x′, 0) = αn ⊙ x.

With this equivalence, one extends our result to affine
functionals.

The point of Theorem 5.16 is that the search for an
optimal reduced-complexity approximation can be reduced
to a pruning problem. That is, suppose we have a min-max
approximate expansion of some max-plus convex function,
f ∈ So,1(IRI), given by

f(x′) ≃
⊕

m∈M

∨cm⊗∨ max
i∈I′

{zni + x′i}

whereI ′ .=]1, I ′[

=
⊕

m∈M

∨ max

{
cm,mmax

i∈I′
{zni + x′i}

}

.
=

⊕

m∈M

∨τm ⊙ (x′, 0) =
⊕

m∈M

∨τm ⊙ x

for x ∈ G′ × {0} = G with

τmi =
{
zmi i ≤ I − 1
cm i = I.

Furthermore, suppose we would like a lower-complexity
approximation from above. (Note that if one goes “below”
f with an approximation, this can never be corrected by the
addition of more terms to the approximation.) If we seeJ as
a measure of the quality of the approximation, then Theorem
5.16 tells us that we may find the best approximation merely
through pruning of the set ofτm.

VI. CLOSING REMARKS

There are three main purposes to this paper. The first
is to give a brief introduction to an idempotent curse-
of-dimensionality-free algorithm for discrete-time dynamic
games. It is easily seen that the feasibility of that approach
will rely on a means for complexity reduction of the solution
representation at each step. That motivates the second theme
of the paper, where this second theme is captured in the main
result that the optimal complexity reduction is achieved bya
pruning of the given set of max-plus affine functions. Lastly,
this naturally suggests a discussion of the min-max spacesS1

andSo,1, and that is included. From a practical standpoint,
the main point is the introduction of a new approach to the
solution of dynamic games, and the related machinery.
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