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Abstract— In recent years, idempotent methods (specifically, convex functions differs from that in [6], [25] via a reveksa
max-plus methods) have been developed for solution of nonk of the ordering on the range space. This Change creates
ear control problems. It was thought that idempotent lineaiity a more useful space for our purposes here. We will note

of the associated semigroup was required for application of that th f | functi - .
these techniques. It is now known that application of the a € space Of max-plus convex functions Is a min-

max-plus distributive property allows one to apply the max- Max vector space (or moduloid). This is an analogy of
plus curse-of-dimensionality-free approach to stochasticontrol ~ the useful property that the space of standard-sense convex
problems. Here, we see that a similar, albeit more abstract, fynctions is a max-plus vector space (or moduloid). We
approach can be applied to deterministic game problems. i then consider max-plus convex functions givenfiste

The main difficulty is a curse-of-complexity growth in the . f | ffine functi Reducing th
computational cost. Attenuation of this effect requires firding min-max sums of max-plus aifine functions. ~eaucing the

reduced-complexity approximations to min-max sums of max- COmplexity of such representations is the key to practiali
plus affine functions. We demonstrate that that problem can in an idempotent algorithm for game problems. We will

be reduced to a pruning problem. demonstrate that such a complexity reduction is reduced to a
pruning operation. That is, given a min-max sumiéfmax-
. INTRODUCTION plus affine functions, the best approximation (in a sense to

In recent years, idempotent methods have been develope® defined) in the class of min-max sums 8f max-plus
for solution of nonlinear control problems. (Note that idemaffine functions (withN' < M) consists of a subset of the
potent algebras are those for whiek® a = a for all ¢; this ~ original set. This greatly reduces the solution space of the
class includes the well-known max-plus algebra.) Most ngzomplexity reduction problem.
tably, max-plus methods have been applied to deterministic Due to space limitations, almost all results will be pre-
optimal control problems. These consist of max-plus basBented without their proofs. Many of these are lemmas where
methods, exploiting the max-plus linearity of the assatat the proofs would be relatively short and clear. The proofs of
semigroup [1], [2], [8], [11], [15], [18] [19], and max-plus Theorems 3.6, 3.13, 3.14 and 4.2 are included to give a sense
curse-of-dimensionality-free methods which exploit thexm of the analysis.
plus additivity and the invariance of the set of quadratic
forms under the semigroup operator [11], [14], [16]. These
methods achieved truly exceptional computational speads o We briefly describe the idempotent approach to dynamic
some classes of problems. Recently, use of the idempotegg@gmes. The purpose here is only datline the algorithm;
distributive property has allowed some first expansions dhis will motivate the complexity reduction problem. We il
max-plus curse-of-dimensionality-free concepts intodoe keep all control spaces finite so as to simplify the analysis.

Il. IDEMPOTENTMETHOD FORGAMES

main of stochasticcontrol problems [13], [22], [23]. We suppose the dynamics are governed by

In this paper, we use some similar, but more abstract,
tools which will bring game problems into the realm under Eev1 = h(&e,ue, wr), @)
which curse-of-dimensionality-free idempotent method$s w L=2€GC R, 2

be applicable. We will first demonstrate how one may,

apply the min-max distributive property to develop curse: heres is the initial time. We suppose; € U and w; <
bply the min- property to develop CUrSey,, tor all ¢, with W = #W (the cardinality ofV) and

of-dimensionality-free methods for discrete-time, detier .
istic dynamic games. We will only outline the steps inU = . We as;umeﬁ((-,_u,w) me}psG into G for all
' u € U, w € W. Time is discrete witht €]s, T[= {s,s +

that development. The difficulty with idempotent curse—of—1 s+ 2, ..T}, and this notation will be use throughout,

dimensionality-free methods for stochastic and game progjso for simplicity, we assume only a terminal cost, which
lems is an extreme curse-of-complexity difficulty. A means : '

for attenuating that difficulty will be the focus of this pape will be ¢ : G — . We letl/ l.t)e.t.he mlnlml’zmg player's
. L control set, andV be the maximizing player’s control set.
We will see that the proper space to work in is the spa

of max-plus convex functions. Our definition of max—plug?he payoff, starting from ant, z) €]s, T[xG will be

_ Jie (@, upe rap wye r—1p) = 6(é7), 3
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the lower value is analogous. The upper value for any timBefine, for anyt €|s + 1,77, Z, = {Z: + W — Z}.

tels, T —1[is Applying the min-max distributive property to (8),
Vi = i Je(x, W _ _ TV \Y V[ gT2r(w
2 (2) Jnax | owin + (0, up 1[0 (wpe, r—1p) Vra(2) =@ PV R { B2 (w)

N (4) WEU e B, wEW
where Wt = {@' : UT=t — WT-t}. The associated a7 © A(u w)®x}
dynamic programming equation (which we present without ’

proof) is = @\/ @\/ &y [ prAr(w) 9)

Vo) = mip g Ve (o). 9 I oo 0 Ay
ustw Pa T O A(u, w ®x}.

Supposep takes the form

. Let
¢(z) = min gr(z;2r), ) .
2r€Zr a?*LZT (u) = @ @az",zr(w) ® A j(u,w) Vj € T,
where we letZy = #Z7 < co. Then, ' weW ieT
A1 - T, 27 (w)
Vr(z) = min gr(x;2r). (6) s t= @ pr
27 €EZT weW
Combining (5) and (6), one has With these definitions, (9) becomes

Vr_1(z) = 21161{{1 max z;neigT gr(h(z,u,w); zr).  (7) Vi1 (2) = @\/ @\/ [ngl,iT @al—ber (y) o x}

We now introduce the relevant idempotent algebras. As e zreZy
usual, the max-plus algebra (more properly, the max-plus | o Zr_1 = U(Zr)V, and let Zp_; =]1, Zr_q[. Let

commutative semifield) is defined by Ty be a one-to-one, onto mapping frditx Zy to Zr_,

adb= max{a,b}, a®b=a+b, given byZT_l = I‘T_l(u,éT) for each(u,éT) eU X Zrp.
Then,
operating onlR~ = IR U {—oc}. In the min-max algebra y
(more properly, the min-max commutative semiring), the Vr—1(z) = @ [5T71’ZT*1 @ T b @x}, (10)
addition and multiplication operations are defined as z2r_1€Z71
a®"b = min{a, b}, a®"b = max{a, b}, where
operating onlk = IR U {—oc} U{+o0}, where we note that ol ~her—r = gT=1ar(y),
+oo®¥b = b for all b € IR and+o0o®"b = 400 for all b € gr-ter—1 = Fr-lir

IR. We suppose eachy(-; zr) is max-plus affine. In other

words, ¢ will be formed as the lower envelope of a finite setRepeating this process, one easily finds the following.
of max-plus affine functions. In fact, we are going to think Theorem 2.1:For anyt €]s + 1, T,

of ¢ as a max-plus convex function. (We will have reason to

reverse the ordering on the range space, and so our definition V; ;(z) = @\/ {ﬂt*““ @ a1 o),

of max-plus convex functions will look directly analogows t 2 1€Z41

the definition of standard-sense convex functions.) We may

write these max-plus affingy(-; zr) as Where

t—1,2¢—1 - t,% .
T,zr T,z1 T,zr T, 27 @ s @ @ Q; Zi(w) ® Ai,j (ua w) Vjiel,
gr(z;2r) = " 0ze T = |Pal T @ x| @p" wew iel
i€l Btfl-,zt—l - @ ﬂtait(w)’
whereZ =|1, I[. We will assume that th&(-, u, w) are max- wWEW

lus linear. Specifically, we let
P P y where (u, 2;) = F;}l(zt,l) for all z € RY, z_1 € Zi_1,
h(z,u, w) = A(u, w) ® x, andT';_; is a one-to-one, onto mapping frott x Z; to

i L Zi1 =1, Zy [, with Z,_y = U(Z)W.
where here we use to emphasize that this is max-plus The difficulty emerges through the iteratiof, ; —

matrix-vector multiplication. We see that U(Z;)'; in a naive application of this approach, the number

@v ®\/ @\/ T,z T,z of max-plus affine functions defining the value would grow
Vo = |: AT AT A s . .. . .

r-1(®) o e ez b Ga © Au, ) extremely rapidly. This implies that the second piece of the
e algorithm must be complexity reduction in the represeatati

®~’C] (8) at each step. This will be the focus of the paper.



[1l. GENERAL COMPLEXITY REDUCTION PROBLEM AND  arel’s. Let

CONTEXT .
SHR) = {F: R | 02 a4 0) - f(0) < 7,
Certain function spaces may be spanned by infima of max-

plus affine functions, that is, any element of the space may Vee RLS e 01} (11)

be represented as an infimum of a set of max-plus affine ’ ’

functions. It is often useful to employ max-plus polynomialy,q

functions as well as affine. By definition, any function inlsuc

a space as the above has an expangion), = infyxex ¥a(z), S>(RY) = {f R E‘ Jde=¢e(f) >0 s.t (12)

for some index seA, where they, are max-plus affine. If the

expansion is guaranteed to be countably infinite, we would; Flz+6) — fz) < (1—e)||6]|®, Vo € R, 6 € OI}_

write - -

. N TV N = (TN Fora € IR and f,g € S(IR'), we define the inherited
f@) = zléllfl vile) = P'oue) = Pl 0 wi(@)) operations

\Y : I
where they! are max-plus linear. We will refer to this as a /& gl(w) = min{f(z),g(x)} Ve,
min-max basis expansion, or simply a min-max expansion, 02" f)(z) = max{a, f(z)} Vze R
and we think of the set of sualy as a min-max basis forthe  ramark 3.1:In [25], f : R’ — TR is said to besub-
space. The max-plus analog of this concept consists of Mgy or increasing plus-sub-homogenedtis is increas-
plus vector spaces (more typically referred to as modulmqﬁg according to partial order, and if
[3] or as idempotent semimodules [5], [10]) and max-plus -
basis expansions. flx+X1) < f(z)+ X Yeze R, VA>o0. (13)

Now we indicate the complexity reduction problem of theSupposef € SY(R!). Then, it is obvious thatf is sub-

previous section in a general form. Suppose we are givqg : 101 : I
_ . . pical. Suppose’ ¢ S'(IR*). Then, there exists € IR
f: X — IR with representation ands = 0 such that

i€N i€EN

o V _ . _ . ®
fla) = m@A tn(7) = min tn(2) = min tn (o) ) fla+8) > f(a) +[8]°.
Let § = ||§]|®. Then,
where X will be a partially ordered vector space. Except - ®
where noted, we will take¥ = IR! for clarity. We are fla+01) 2 fz +6) > f(z) +[|9]|",
looking for {a,, : X — IR|n €1, N[} with N < M, such which implies thatf is not sub-topical. Therefores (IR!)
that is exactly the space of sub-topical functions frdi to IR.
(2) = @\/a (2) = minan(2) = min_ () Itis alsp_useful to note the followilng elasily obtained résul
9 X n menN nelL,N[ " Proposition 3.2: Supposef € S*(RR"). Suppose there

existsz € IR! such thatf(z) = +oo [resp.,—occ]. Then,

approximatesf(z) from above. Note that throughout the /(¥) = +00 [resp.,—oc] for all y € B{-

paper, we will letM =]1, M[= {1,2,...M}, N =|1,N] Consequently, excepting two special cajes +o00 and
andZ =1, 1]. f = —00, we can assume any € _8_1 is everywherg
finite. Except where there is some difficulty or interesting
phenomenon, we will henceforth ignore these two special
cases.

As indicated earlier, it is well-known that it is useful We will refer to a space as a min-max vector space if it
to apply max-plus basis expansions to solve certain HJgatisfies the standard conditions (c.f. [11]). The definitd
PDEs and their corresponding control problems. In pawicul a max-plus vector space is analogous.
the solutions are represented as max-plus sums of affineTheorem 3.3:S' and S°! are min-max vector spaces.
or quadratic functions. In fact, the spaces of standardesen Remark 3.4:1t is not difficult to show that iff € S* (and
convex and semiconvex functions have max-plus bases (mae, in S°:1), and there exists ¢ IR’ such thatf(z) = +o0
properly, max-plus spanning sets) consisting of linear anghen f(y) = +oco for all y € IR!. Similarly, if there exists
quadratic functions, respectively, xr € IR! such thatf(z) = —oco then f(y) = —oo for all

We will be applying the analogous concept, where thg € IR'.
standard algebra will be replaced by the max-plus, and the There are obvious generalizations of these spaces. These
max-plus will be replaced by the min-max. @R/, we will may be useful for classes of control and game problems
define the partial order < y if x; <y, for all i € Z. Let whose solutions do not naturally fall in the above two spaces
O! denote the closed first octant, i.€ = [0,00)! = {z € However, we leave that to later efforts.

R" |z > 0}.Foréd € O, let||6]|® = max;ez 0; = ;7 ;- One of the most useful aspects of looking at the spaces
Let 1 denote a generic-length vector all of whose elementsf convex and semiconvex spaces as max-plus vector spaces

A. Min-max spaces



was that these spaces had countable max-plus bases. Forvelxere

ample the space of convex functions has the set of (standard-

algebra) linear functionals with rational coefficients as a o(2) = Sup{fgx)W(“%Z) - fz) <0VzeR'} (18)
countable max-plus basis. We are interested in analogous . _/69 —f)dzr Vre R
results here, that is, for any € S°1(IR?), we would like T Jp@aey f@)<f@) '

to represent it in terms of the coefficients in its min-max

basis expansion. (Again, note that our use of the term “basis Proof: Supposef # +oo; otherwise the proof is
expansion” in this context is non-standard.) Specifically, trivial. Supposez is such that)(z, z) — f(z) < 0. Then,
would like {¢p}ren C ST(IR') such that, givenf < by definition,c(z) > f(x). Consequently(z)®"1(z,z) >

SY(IR"), there exists{c; }ren C IR such that f(x) for any z € IR?, and so
@V
=@ awvo (14) [ et s = (o) (19)
keN RI
i.e., forallz € R!, Now, we obtain the reverse inequality. Lét= Z(x) be
B VDRY given by
flx) = g% ck®" ok | () (15) 2 = f(z) —2; VieT.
= kiéllgmax{ck,(bk(:c)}. Then,
We were only able to obtain this result fgre S°(IRY). ¥(z,2) =20z =max(f(z) -z + z] = f(z).  (20)

We will also be interested in finding the best approximation

5 is impli i I
given that we can use at madt < oo suchgy. A particular Supposec(z) > f(x). This implies there existy € It

subclass of this second problem will be our main focus iﬁUCh that

the paper. fy) > f(z), (21)
Returning to the first issue, we takgx, z) : R x R’ — Wy, 2) < fy). (22)

IR to be -

LetZ' = {i € T|y; > =;}. By (21) and the fact that € S1,
Wz, 2) =20 = @zz ®x; = meazx{zi +ax;}. (16) one finds thafZ’ # (. Also,

€L
| - | . ¥(@,2) = max(f(x) + (v — )]
We may think ofy(-, z) as a max-plus linear function with o
“slope”, z. We will be taking¢y(z) = ¥ (x, z*) where the = fla)+ ?é%)/([yi - i (23)
2% will form a countable dense subset B . The result will
follow if we have

oY Fy) = f(2) < (1 = e) max[y; — ai]. (24)
i@ _/ ()", 2) dz iier}lgf{max[c(z)’wx"z)]}’ Combining (23) and (24), one has

Wherec_ has sufficient continuity properties. Note that this Wy, 2) > fly) + Emagi[yi — ),
would imply that f was the lower envelope of a set of . i€l
functions. Further, note that which, sinceZ’ # 0,

, > f(y),
A2)®"(, 2) = cz) & ¥(x,2) which contradicts (22). Therefore,
where thew(-,z) are max-plus linear. In other wordg, c(3) < f(x) (25)

would be an infimum of max-plus affine functions.
Remark 3.5:Alternatively, we would say that, with Then, by (20) and (25),

Now, f € S implies that there exists > 0 such that

RI

f(z) = —f(z) for all 2, f would be the upper envelope RV o
of a set of max-plus affine functions. This would correspond c(2)® Y(x, 2) = f(2). (26)
to the notion of “abstract convexity” [24], [25], where the Combining (19) and (26) yields the result. u

standard affine functions are replaced by max-plus affine Now define, for any: € IR’,
functions. See also [6] in this regard.

We now fill in the details of this plan for min-max basis
representations. First we obtain what may be part of a gualif g note

result. c(z) = sup{f(z) |z € A.}.
Theorem 3.6:Let f € S>1(IR). Then, (2) /(@] }

A ={z e R'|P(z,2) — f(zx) < 0}, (27)

In the next results, we will be obtaining a continuity prayer

e on ¢(+). This will allow us to obtain our countable min-max
flz) = /IRI c(2)@V(x,2)dz Ve e R (17) basis forge:!.



Lemma 3.7:Let f € S*Y(IR!), f # +oo. Let z € IR,
anda € IR. There existsV/ = M (z,a, f) such thatr; < M
for all i € 7 and allz € IR! such thaty)(z,2) — f(z) <a.

The next lemma follows by taking = 0 in Lemma 3.7.

Lemma 3.8:Let f € S®Y(IRY), f # doo. Let z € IRL.
There existsM = M(z, f) such thatr; < M forall i € 7
and allz € A,.

Lemma 3.9:Let f € S®Y(IRY), f # doo. Let z € IRL.
Then, there exist$ € A, such thatt = x for all x € A,
andy(z, z) — f(&) = 0.

Theorem 3.10.Let f € S>1, f # +oo. Let z € IR!. Let
z € IRT. Then, there exist$ € A, such that

2=z V€A, (28)

(&, 2)—f(&) =0andf (&) = ¢(z). Further,z is the unique
element ofA, satisfying (28).

Henceforth, we denote this asi* = #%(A,).

Lemma 3.11:Let f € S>, f # 4o0. Letz € IR!. Then,
7+ 2z = f(z7%) foralli e Z.

Lemma 3.12:Let f € S>'. Let z € R!, anda € IR!
with a = 0. Then,c(z) < ¢(z — a).

Theorem 3.13Let f € S>1. For anyz € R, c(z) =

lim, o c(z — ).

Proof: From Lemma 3.12, fot > 0, ¢(z — ) > ¢(2).

Theorem 3.14:Let {z;}ren be a countable dense subset
of R!. Let ¢x(x) = 9 (x, 2zx) for all z € IR and allk € N.
For any f € S,

\Y
@ ck®v¢>k(x) Vz e JRI,

keEN

f(x)

where
ek = sup{ f(2) [ d(z, 1) — f(x) < 0 Va € R'} (33)

for all kK € N.

(32)

Proof: Letx € IR! ande > 0. By Theorem 3.6, there
existsz € IR! such that

f(x) < c(2)®@V(w, 2) = max{c(z),¥(x, 2)} < f(x)+e/2.

(34)
By the density of{_zk}keN, Theorem 3.13 and the continuity
of ¢, there exists: € N such that

c(z) <c(zz) <c(z)+¢/2 (35)
and
[Y(x, 2) — P(z, 2z5)| < £/2. (36)
Combining (34)—(36), we have
f(x) < @Y op(z) < fa) +e.
Since this is true for alk > 0, we are done. ]

We will show that it cannot be too much larger. We skip the

trivial casesf = +oo.
Let a = 0. Sincef € S>1 and A4, C A,_,, this implies

f@ =) = f(27).
Further, by Theorem 3.10,

(29)

Ptz —f(@) =0 and @i “+z—a;— f(# ) =0

for all ¢ € Z, and so

T = 4o+ f(E7TY) — f(7F), (30)
which by (29) and the choice af,
>3 Viel. (31)

Now, by (31) and the fact that € S°-1,

@) -
which by (30),

F5°) < (1= &) maxli ™™ = 87,

- {76 - 56°) + mafa] |

i€l

This implies
] ~z —¢€ .
F(&*7%) < £(%) + —— maxfai],
which, by Theorem 3.10, implies
(2~ 0) < ofz) + —— max]os]
clz—a) <clz - rznezx Q.

[ |
We are now ready to prove our countable basis result.

B. S°1 and max-plus convexity

In [13], a problem similar to that described above was
formulated, but in that case the max-plus algebra was re-
placed by the standard field, and the min-max algebra was
replaced by the max-plus algebra. In solving that problem,
we used a certain optimization criterion which was convex
and increasing. Below, we will use a similar technique.
Consequently, we will be dealing here with max-plus convex
functions; the optimization criterion will be max-plus c@x.

As the min-max algebra suggests a natural order on the range
space,lR, which is the opposite of the standard order, this
will lead us to a different definition of max-plus convex
functions from that used elsewhere (c.f. [6], [25]).

We begin with the definition of max-plus convex sets. A
set,C C IR! is max-plus convei

MR eer?el

for all !, 22 € C and all \;, Ay € [—o0, 0] such that\; @

A2 = 0. See [6], [25]. We now turn to max-plus convex
functions. We would like the set of such functions to form a
min-max vector space. Consequently, we define the ordering
on the range spacdR, by y; <"y, if y1 > 3o, andy; <Ry,

if y1 > yo; relations=%* and -~ are defined analogously.
We henceforth refer to this as tmange order.Supposef :

R! — IR, and define the max-plus epigraph as

epi”f = {(z,y) € R' x R|y="f(x)}.

Note that ep? f lies belowthe graph off in the standard
sense. Alternativelyf may be referred to as the hypograph
[25], but due to the natural reversal of order in the range

(37)



space here, the term max-plus epigraph is more appropridter any K € N, let

in this context. Lastly, we say is max-plus conveif epi® f

is max-plus convex. We now show that functions formed byS@K ~dr=1r K
. X L X : = = € [—00,0

min-max integrals (infima) of max-plus affine functions are ke i € [=o0.0]

max-plus convex. helLKI
Theorem 3.151et Z C R!, ¢: Z — TR, and Given P C Y, let {(P)® denote the max-plus convex hull of
& P. That is,
J(@) = /Z A Oz de = i) 002} (38) po - {4 e y‘ IN N, (MY, € 597 and
for all z € IR!. Then f is max-plus convex. ~ N
Corollary 3.16: Supposef (z) :_EBZE,C ek ® 2F o for (P}, CP stqg= @ & @pk},
all x, whereX C N, andc;, € R and z* € IR! for all k=1
k € K. Then, f is max-plus convex. _ Finally, given P C ), define themax-plus cornice ofP to
Corollary 3.17: If f € §%1, then f is max-plus convex. pe
Theorem 3.181f f is max-plus convex, thefi € S*. co(p) = U D(q).

®
IV. COMPLEXITY REDUCTION AND ABSTRACT a€(P)

FORMULATION We extend these definitions to product spaces. We define

the inherited (component-wise) partial order @iV as

follows. Let P,Q € YV, whereP = {p'}icar and Q =

{¢'}ien- ThenQ=®P if ¢'=<®pi for all i € N =]1, N|.

We will be abusing notation slightly by letting € YV also

flz) = @Vtm(a:) = min tm(z), denote a set oV elements ofy (Otherwise, one may define
meM meM a mapping from elements gf" to subsets of of size N.)

Prior to obtaining the abstract-formulation result, weaitt

we are looking for a reduced complexity expansion : .
a simple equivalence.
min a, (z) Lemma 4.1:Let P C Y. Then

\
9(@) = " an(x) = min
nenN ne o1V _ /pN\®
© (Y] = (PY)
approximatingf as “well” as possible from above. Thg,
andt,, will be selected from a specified class of function
1 i - I
\SA[/JCh 'TIIS affine functlons.fWe ta@’ _t R thlr_ct)ughrc])_ua . Now, given? C Y, define the N-dimensional outer-
e will use a measure of approximation quality whic 'Zproduct max-plus cornice aP to be
monotonic (in a sense to be specified) and max-plus convex.

Recall that our originating problem was complexity reduc
tion in a min-max expansion. Thatis, givén G C X — R
with representation

where theN superscripts indicate outer produbt-times,
e, PePNif P={p},en wherep’ € P for all i.

Specifically, we wish to minimize C@N(P) = [comP)V
@ =1Q={¢Vien €YV |qd €COP)Vie N}.
J fantoen) = [ { [@Van@] - l @vtm(@] } " { € J
G neN meM We will say thatJ : Y — IR is monotonically increasing,
— Sup{mm an(2) — min ¢ (I)} (39) relative to the inherited partial order and range oreéf, if
veG nen " mem " ’ Q=®P implies J(Q)="J(P). We can now state and prove

our abstract result.

Theorem 4.2:.Let ) be a max-plus vector space with
@van(x) > @\/tm(x) VzeQG, partial order,<®. Let P = {p"}mem C Y. Suppose
neN meM N < M. SupposeJ : YV — IR is monotonically
increasing (relative to the inherited partial order andgean
order) and max-plus convex (ﬁBN(P). Then, there exists
an(z) > @Vtm(a:) VeeG, YneN. (40) Q= {q}ien With @ € P for all i € N, such that

meM — N
J@Q)=J" =maxJJ ece (P
A. Abstract formulation (@) Hmax { (Q)‘Q ( )}

. N
We consider an abstract problem which will subsume = mm{J(Q)‘Q ec® (7’)}-
(39),(40), and prove the main result for this abstract pFobl - R .
here. Further below, we will demonstrate that (39),(40) igvhere forZ c I, max™Z = min Z.

conditioned on

or equivalently, conditioned on

indeed subsumed by the following problem. Proof: Lete > 0. Let Q = {gi}icx € C®(P) be
Let Y be a max-plus vector space with partial ordéf.  such that/(Q)~%.J* — ¢. SinceQ € C®N(P), there exists
Givenp € ), define thedownward coneof p to be Q" = {¢"}ien such that

D(p) = {g € ¥ |¢=®p}. Qe [Py (41)



andQ=®Q". Then, by the monotonicity of, Note that the range-order of the previous section will now
b [ to th fficients in the li functisnal
JQY=RIQ)=FT" —c. (42) e carrying over to the coefficients in the linear functisna

here.
By (41) and Lemma 4.1Q“ € (PV)®. Consequently, there  The following series of lemmas is easily obtained.
exists K < oo, {\i |k €]1, K[} € S®K and Pk ¢ PN for Lemma 5.1:}((ordering product-invariance) Lek € N
k €]1, K[ such that anda,b,c€ R, with a<"b. Then,c® axfc ©b.
~ Lemma 5.2:C(T) is range-order downward.
u o k ~
Q"= i %BK[/\’“ © P (43) Lemma 5.3:C(T) is max-plus convex.
€,

_ Lemma 5.4:For any P C EI, C®(P) is range-order
By (43), the max-plus convexity of/, and the fact that yownward.

{A |k €]L, K[} € S9F, We do not include a proof of the following.
~ ~ —I .
J(Q“)=R @ Mo ® J(PR)=Fsupfs_,v J(P), (44) Lemma 5.5:For anyP C JR_} (P)® is max-plus convex.
kel K| Lemma 5.6:For anyP C R, C®(P) is max-plus con-
where forZ C IR, sup*Z = inf Z. Now, by (42) and (44), "eﬁ'he next lemma. is obvious
supRﬁepNJ(ﬁ)iRJ* —c. Lemma 5.7:For anyP C o C(P) 2 P andC®(P) D
. _ P.
Since this is true for alt > 0, __Note that we have now shown that for aRyC ﬁl, both
SupRﬁepN J(ﬁ)tRJ*. C(P andC®(P) are range-order downward, max-plus convex

N o and contairP We will show that they are identical.
However, P™ is a finite set. Therefore, the range-order | . c g ot P C = Supposed C R is range-

supremum is attained at sompe P, and s0J(Q)="J". order downward, max-plus convex and such taiC A.
Then,C®(P) C A.
V. MAX-PLUS AFFINE FUNCTIONALS Lemma 5.9:C(T) C C(T).
Recall that we are interested in min-max expansions of L€MMa 5.10:There existsn € M such thata<"7" if

max-plus convex functionals. More specifically, we are in@nd only ifa- € C*(T). .
terested in the special case of reduced-complexity expagssi LeLnIma 5.11:Supposex © z > minyepm 7" © x for all
of finite min-max sums of max-plus affine functionals. Wez € IR . Then, there exists» € M such thatn="7" (i.e.,
will reduce this problem to the abstract formulation ofe; = 7" forall i € 7).
the previous section, and apply Theorem 4.2 to show that Lemma 5.12:If o € C(T'), then there exists: € M such
pruning is optimal. thata<®rm™.
Our problem is to minimize, i.e., range-order maximize, Lemma 5.13:C(T') C C®(T).
criterion J of (39) subject to constraints (40), where now We now have
thet,, anda, functionals will be max-plus affine functions. Theorem 5.14C(T) = C®(T).
More specifically, we range-order maximize (minimize) Recall that we want to minimize (range-order maximize)

& J(A) given by (45) subject td = {a"},en With o™ €
J(A) i/ {l@\/a" ozl — [@Vrm o } dx C(T) for all n € N. By Theorem 5.14, the constraint is
G

neN meM equivalent toa™ € C®(T) for all n € N, or equivalently,
(45)
where A = {a"},cn, Subject to the constraints Ae C@N(T). (47)
a’ x> @\/Tm Or Yre R, YneN. (46) In order to apply Theorem 4.2 to problem (45)/(47), we need
meM to show that/ has the required properties. We now proceed
Let T = {7 },em, and let to do this.
Theorem 5.15:J given by (45) is monotonically increas-
5(T) - {a cR |a®a<P @va O Ve El} ing (relative to the inherited partial order and the ranggeo)
 mem and max-plus convex o R
s v I We are now in a position to state and prove our main result
=jacR |aoz> P "o VeeR . of the section.
meM

Theorem 5.16:There existsA* minimizing (i.e., range-
We want to show tha€(T) is the max-plus cornice of. ~ order maximizing).J subject to constraints (46). Further,

That is, we want to show(T) = C(T). there exist{my }nen C M such thatd™ = {77 } e .
We say that a set? C R! is (range-order) downwardf Remark 5.17:Note that the above result covers only the
p € P, g=EFp implies ¢ € P, whereq=Fp if ¢;<7p, for Max-plus linear case. We may extend this to the affine case

all : € Z. (Of course, this isupwardin the normal sense.) on G’ C R with ' =1-1 by letting G = G’ x {0}.



Then witha™ = ([o/]",3) € TR, for any 2’ € G’ there
exists uniquer € G given byz = (2/,0) such that

"o epf=a"6 (@, 0)=a" o

(5]

(6]

With this equivalence, one extends our result to affinel”]
functionals.
The point of Theorem 5.16 is that the search for an

optimal reduced-complexity approximation can be reduced

(8]

to a pruning problem. That is, suppose we have a min-max
approximate expansion of some max-plus convex functiof0]
f € S>1(IRY), given by

fa') ~ oY max{a] +af)
meM

whereZ’ =]1,1'[

= @\/max

m n /
= {c ,mrlxézg({zi —l—xl}}
meM

@VTm o (.I'/,O) — @va o

meM meM

for z € G’ x {0} = G with

1<I-1

T_m:{z;”
' cm =1,

[11]
[12]

[13]

[14]

[15]

[16]

[17]

Furthermore, suppose we would like a lower-complexity
approximation from above. (Note that if one goes “below”
f with an approximation, this can never be corrected by th%g]
addition of more terms to the approximation.) If we skas
a measure of the quality of the approximation, then Theorem
5.16 tells us that we may find the best approximation meretxg]
through pruning of the set af™.

VI. CLOSING REMARKS

[20]

There are three main purposes to this paper. The first
is to give a brief introduction to an idempotent cursei2l]
of-dimensionality-free algorithm for discrete-time dynia
games. It is easily seen that the feasibility of that appmoac

will rely on a means for complexity reduction of the solution

representation at each step. That motivates the seconetheff!
of the paper, where this second theme is captured in the main
result that the optimal complexity reduction is achievedaby [23]
pruning of the given set of max-plus affine functions. Lastly
this naturally suggests a discussion of the min-max sp&ites [24]
andS°-1, and that is included. From a practical standpoint,

the main point is the introduction of a new approach to thE®

solution of dynamic games, and the related machinery.

(1]

(2]

(31
(4
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