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Abstract— The growth of air traffic in future years requires
a paradigm shift in the way the aircraft are controlled.
Major innovative projects (SESAR in Europe, NexGen in USA)
have started in order to define and implement control tools
based on time-space constraints on aircraft trajectories. As
a consequence, an increasing level of automation is expected.
In this framework, it is of primary importance to be able to
quantify the hardness to produce conflict free trajectories for
a given situation and the robustness of the solution found. In
this paper, a characterisation based on the lyapunov exponents
of a dynamical system interpolating the observed data will be
presented. A first part will be devoted to vector field fitting,
and a second one to efficient lyapunov exponents computation.
Then, some practical implementation issues will be discussed.

I. INTRODUCTION

The Air Traffic Management (ATM) system has to cope

with an increasing number of flights, pushing the capacity

to its limits. As an example, the average daily traffic above

Europe was 26286 flights/day, with a peak traffic demand in

excess of 31000 flights [1]. Although delays are kept low,

it is expected from the same reference that capacity has to

be extended in the future. Basically, two strategies can be

devised : adapt the demand to capacity (slot-route allocation,

collaborative decision making, . . . ) or adapt the capacity

to the demand (Airspace design, 4D trajectory planning,

autonomous aircraft, . . . ). The first approach can be used in

the context of current ATM system, while innovative future

designs will mainly follow the second strategy.

Currently, complexity of the traffic is measured only as

an operational capacity : the maximum number of aircraft

that controllers are willing to accept is fixed on a per-

sector basis and complexity is assessed by comparing the

real number of aircraft with the sector capacity. It must be

noted that under some circumstances controllers will accept

aircraft beyond the capacity threshold while rejecting traffic

at other times although the number of aircraft is well below

the maximum capacity. This simple fact clearly show that

capacity as a crude complexity metric is not enough by

itself to fully account for the controller’s workload. In order

to better quantify the complexity, geometric features of the

traffic have to be included. Some works have been conducted

on the subject, mainly with the idea of finding an indicator

that measures the workload of human controller [2], [3].

These studies cleary show that traffic structure is one of

the most influencial factor for controllers workload. Within

the framework of future ATM systems, where a higher level

of automation will be introduced and where autonomous or

nearly autonomous aircraft will be present in the traffic, such

indicators are no longer relevant. To adress this problem, it

is needed to have a metric of complexity that is sensitive

to the structure of the set of aircraft trajectories, but makes

no assumption on how the traffic will be controlled. Such a

structural measure is quite difficult to design, mainly because

there is no agreement on what an intrinsic complexity can be.

The new approach presented here is based on a dynamical

system model of the traffic, namely we assume that the

observed velocities and positions of aircraft are samples of

an underlying smooth vector field. The complexity is then

obtained by computing geometrical features of this field.

Currently the Lyapunov exponents are used to produce a map

of complexity, that is to give a value describing the level of

sensitivity to perturbations at points sampled in the airspace.

It has to be noted that the methodology described here can

be extended to a wider context than Air Traffic Management.

As an example, a priori analysis of situations involving

several autonomous or coordinated robots can be done using

complexity, with the purpose of planning robust trajectories.

II. THE VECTOR FIELD FITTING PROBLEM

The first step towards air traffic complexity evaluation is to

fit a vector field to the observed velocities at aircraft positions

and at given sample times.

Assuming that N observations have been made, the dataset

is a finite sequence of N triples (ti,xi,vi)N
i=1 with first com-

ponent the sampling time, second component the observed

position and third component the observed velocity. The

interpolating problem is to find a smooth enough mapping

X : R×R3 → R3 such that ∀i = 1 . . .N, X(ti,xi) = vi. It is

sometimes more convenient to solve instead a smoothing

problem that is formulated as finding a mapping X mini-

mizing the error :

E(X) =
N

∑
i=1

‖vi −X(ti,xi)‖2
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Both the interpolating and the smoothing problems are ill-

posed since it is clear that an infinite number of vector fields

X will satisfy the constraints. In order to obtain a unique

solution, some assumptions have to be made on X . Basically,

there is two ways to add more constraints :

• Add a criterion based on smoothness of X and select

the X that realizes the minimum of the criterion while

satisfying the interpolating/smoothing conditions.

• Restrict the possible X to a family parametrized with a

finite number of parameters.

A. Time-Space spline interpolation
In spline interpolation (or smoothing), we require that

the vector field X is optimal with respect to a smoothness

criterion. Keeping in mind that our final goal is to fit a vector

field to air traffic samples, the smoothness criterion can be

build from operational considerations :

• From a spatial point of view, given a velocity v at

point x, it is expected that the velocity will not be very

different from v in a neighborood of x. Furthermore,

since real traffic is supposed to be conflict free, at

least in the short term, we may assume that aircraft

tend to adjust their own velocities as beeing as close

as possible to the mean velocity of their neighboors.

This requirement has to be mitigated in an operational

context as pointed out by one reviewer of this work

since high discrepancy may exist if aircraft are separated

in flight levels. This is somewhat taken into account by

expressing aircraft velocities and position in separation

norms instead of isotropic coordinates. It is well known

that smooth vector fields satisfying this mean value

principle are harmonic ones, that is such that ΔX = 0,

with Δ the laplacian, acting only on spatial coordinates.

It is then natural to seek for an optimal vector field

X that is “as harmonic as possible”, or more formally

minimizing : ∫
R

∫
R3

‖ΔX(t,x)‖2dxdt

• From a temporal point of view, it is expected that

the interpolating X has slow variation (namely, aircraft

acceleration is kept as low as possible), that is realizes

the minimum of :∫
R

∫
R3

∥∥∥∥∂X
∂ t

(t,x)
∥∥∥∥2

dxdt

Gathering the two terms, we obtain a final criterion

E(X) =
∫

R

∫
R3

∥∥∥∥∂X
∂ t

(t,x)
∥∥∥∥2

+ μ‖ΔX(t,x)‖2dxdt (II.1)

with μ a positive real number tuning the relative importance

of harmonicity. The interpolating problem becomes in this

context a minimization problem with equality constraints,

namely find X such that E(X) is minimum and X(ti,xi) =
vi, i = 1 . . .N. The smoothing problem is more or less similar,

but is unconstrained, with criterion :

E(X)+
N

∑
i=1

αi‖X(ti,xi)− vi‖2

where the αi are weighting factors. This kind of problem

falls in the general category of interpolating or smoothing

L-splines. Before deriving a closed-form solution, we will

recall some definitions.

Definition 1: A time-dependent measurable vector field is

said to be square summable if :∫
R

∫
R3

‖X(t,x)‖2dxdt < +∞
The space of all square summable fields will be denoted as

L2. L2 is an hilbert space with respect to the inner product :

〈X ,Y 〉L2 =
∫

R

∫
R3
〈X(t,x),Y (x, t)〉dxdt

Definition 2: A vector field X is said to admit a weak

partial derivative with respect to coordinate k if it exists a

vector field denoted by DkX satisfying :

∀φ ∈ S
∫

R

∫
R3
〈X ,

∂
∂xk

φ〉dxdt = −
∫

R

∫
R3
〈DkX ,φ〉dxdt

where S is the space of smooth and rapidly decreasing

functions.

Definition 3: W is the vector space of fields X such that :∫
R

∫
R3

∥∥∥∥∂X
∂ t

(t,x)
∥∥∥∥2

+ μ‖ΔX(t,x)‖2dxdt < +∞

where all derivatives are taken in a weak sense.

W has a natural inner product :

〈X ,Y 〉W =
∫

R

∫
R3
〈∂X

∂ t
,

∂Y
∂ t

〉+ μ〈ΔX ,ΔY 〉dxdt

but is not an Hilbert space since the inner product is not

positive definite. However, we may quotient out by the vector

subspace of W whose elements X are such that :

∂X
∂ t

= 0 ΔX = 0 (II.2)

The resulting quotient space provided with the induced inner

product becomes an Hilbert space, denoted by W .

Definition 4: A mapping G : R×R3 →R3⊗W is a vector

reproducing kernel for W if for any X ∈W and any (t,x) ∈
R×R3 :

∀u ∈ R3,〈X(t,x),u〉 = 〈G(t,x)u,X〉W
A vector reproducing kernel has to satisfy a symmetry

property :

Proposition 1: For any (t0,x0),(t1,x1), G(t0,x0, t1,x1) =
G(t1,x1, t0,x0)h where G(t1,x1, t0,x0)h is the adjoint of

G(t1,x1, t0,x0).
Proof: Let u,v be vectors. We have by the reproducing

property :

〈G(t0,x0, t1,x1)u,v〉 = 〈G(t1,x1)v,G(t0,x0)u〉W
= 〈G(t0,x0)u,G(t1,x1)v〉W = 〈G(t1,x1, t0,x0)v,u〉
= 〈G(t1,x1, t0,x0)hu,v〉

Let G be a reproducing kernel for W . A constraint

X(ti,xi) = vi can be rewritten as ∀u ∈ R3,〈G(ti,xi)u,X〉W =
vi or equivalently, by taking a basis (e1,e2,e3) of
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R3 : 〈G(ti,xi)ek,X〉W = vi,k, k = 1,2,3 with vi,k the k-

th component of vector vi. An elementary constraint

〈G(ti,xi)ek,X〉W = vi,k is satisfied on a closed affine space of

codimension one, so that the complete constraint X(ti,xi) = vi
is satisfied by a closed affine space of finite codimension.

Since there is a finite number of constraints, the set of all

vectors in W satisfying all the constraints is again a closed

affine space Q of finite codimension. The solution of the

interpolation problem is then easily obtained : since the

orthogonal projection on a closed convex set in an Hilbert

space is well defined, the field X in W with minimum norm

and satisfying the constraints is the orthogonal projection of

the zero vector on the affine space Q. We have then proved

the proposition :

Proposition 2: If W admits a vector reproducing kernel

G, the solution of the interpolation problem is a linear

combination :

X =
N

∑
i=1

G(ti,xi)λi

with coefficients λi being vectors from R3.

Some care must be taken when expressing X : W is a quotient

space so the solution to the original interpolation problem

will be :

X =
N

∑
i=1

G(ti,xi)λi +K

with K satisfying (II.2) Instead of trying to find directly a

vector reproducing kernel in W , we will seek for the solution

of an easier problem, that is find a G such that for all (t0,x0)
and all u ∈ R3 :

∀φ ∈ S ,〈G(t0,x0)u,φ〉W = 〈φ(t0,x0),u〉
we assume high enough smoothness on G (defering thus

checking at the end of the computation), we may perform

an integration by parts to obtain :

〈G(t0,x0)u,φ〉W =∫
R

∫
R3
〈
(
− ∂ 2

∂ t2
+Δ2

)
G(t0,x0)(t,x)u,φ(t,x)〉dtdx

The first important consequence of the previous expression

is that the vector kernel will take its value in the subspace

of diagonal 3×3 matrices. It is thus enough to find a scalar

valued function φ(t0,x0, t,x) such that :

G(t0,x0, t,x) =⎛⎝ φ(t0,x0, t,x) 0 0

0 φ(t0,x0, t,x) 0

0 0 φ(t0,x0, t,x)

⎞⎠
The repoducing kernel condition in this new context appears

then to be the requirement that in a distributional sense,

φ is an elementary solution (at (t0,x0)) for the differential

operator :

L = − ∂ 2

∂ t2
+Δ2

that is :

Lφ(t0,x0, t,x) = δt0,x0

Taking the Fourier transform with respect to x only in S ′
of both sides of the equation yields :

− ∂ 2

∂ t2
̂φ(t0,x0, t,ξ )+‖ξ‖4 ̂φ(t0,x0, t,ξ ) = δt0 1(ξ )

where φ̂ is the Fourier transform of φ with respect to x, ξ is

the Fourier variable and 1(ξ ) is the constant function equal

to 1. A standard trick for finding φ̂ is to introduce a jump

at t0 in the function or one of its derivative to make the δt0
appear. Here, the jump has to be in the first derivative, so

that the solution is :

pf
(

1√μ‖ξ‖2

)
exp(−|t − t0|√μ|ξ |2)

The inverse Fourier transform of this distribution can be

obtained readily by integration and has the form of a translate

of a mother function :

φ(t0,x0, t,x) = p(t − t0,x− x0)

The mother function p is given by :

p(t,x) =
1

8π3

∫
R3

1√μ‖ξ‖2

exp(−|t|√μ‖ξ‖2)exp(i〈x,ξ 〉)dξ

by Fubini’s theorem and polar change of variables it be-

comes :

p(t,x) =
1

8π3
√μ

∫
R

exp(−|t|√μr2)∫
S 2

exp(i〈x,rs〉)dσ(s)dr

with dσ the solid angle measure. Using a polar parametriza-

tion of the unit sphere :

p(t,x) =
1

8π3
√μ

∫
R

exp(−|t|√μr2)∫ 2π

0

∫ π

0
exp(i‖x‖r cosθ)sinθdθdφdr

and finally :

p(t,x) =
1

2π2
√μ∫

R

exp(−|t|√μr2)
sin‖x‖r
‖x‖r

dr

by Parseval equality :

p(t,x) =
1

4‖x‖π2

√
π

|t|√μ∫ ‖x‖
2π

−‖x‖
2π

exp
(
− π2ω2

|t|√μ

)
dω

so in terms of error function erf :

p(t,x) =
1

4π2‖x‖erf

(
‖x‖

2
√|t|√μ

)
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Like the heat kernel, the fundamental solution obtained

is singular for x = 0, t = 0. Before introducing a way of

obtaining computable kernels, it is interesting to look at some

properties of p(t,x) :

• The function obtained is a radial basis function both in

x and t, the t part being based on a 1-norm, while the

x part is a standard 2-norm.

• Error function is rapidly converging to 1 when its

argument goes to +∞. In fact, er f (4) is equal to

1 at machine precision when computing with single

precision float numbers. It thus means that contributions

in the interpolating field coming from aircraft far from

the evaluation point are very close to being proportional

to a standard 1/‖x‖ potential function.

• Unlike classical div− curl splines, commonly used for

vector field interpolation [4], [5], these new splines are

decreasing at infinity, allowing to drop contributions of

far enough aircraft (strictly speaking, this is the case

even for the div-curl splines, but decrease is due to

cancellations between contributions and is slower).

The main issue in using the kernel p is that the reconstructed

field :

X(t,x) =
N

∑
i=1

λi p(t − ti,x− xi)

is singular at observation points (ti,xi,vi). A simple way of

avoiding this is to change the interpolation criterion : instead

of enforcing that X(ti,xi) = vi, i = 1 . . .N, we impose that

the mean value of the field in a neighborood of xi has to

be equal to vi. In order to allow simple computation of the

interpolating splines in closed-form, it has been chosen to

compute the mean of X with respect to a gaussian density,

so that the interpolation condition becomes :

1

(2πσ)3/2

∫
R3

e−
‖x−xi‖2

2σ2 X(t,x)dx = vi

σ is the standard deviation for the gaussian density and

is a tuning parameter for the shape of the field. Solving

the functional equation with this new interpolation criterion

yields a non singular kernel :

p(t,x) =
σ
‖x‖er f

(
‖x‖

σ
√

2+ |t|

)
Here again, it worth notice that the asymptotic behaviour of

p is to revert to a classical 1/‖x‖ potential.

The vector field fitting problem is thus solved with an

optimal field of the form :

X(t,x) =
N

∑
i=1

p(t − ti,x− xi)λi +Ax+b

with λi ∈ R3, A a 3×3 matrix and b ∈ R3 (A and b account

for the term belonging the subspace II.2). The coefficients

are found by the interpolation condition :

∀ j = 1 . . .N,
N

∑
i=1

p(t j − ti,x j − xi)λi +Ax j +b = v j

which is a classical linear system. Some care has to be taken

in the case of large samples since the matrix involved is dense

and may require a large amount of storage : it is much more

convenient for samples above 1000 to use an iterative solver

(GMRES for example) and to compute the sums on the fly.

Multipole methods dedicated to the new splines are under

study for that purpose.

The smoothing problem has the same solution, except that

the number of terms in the sum is no longer constrained to be

the number of measurements. Instead of solving a standard

linear system, a least squares formulation is used :

min
Q

∑
j=1

N

∑
i=1

‖2 p(ε j − ti,ξ j − xi)λi +Aξ j +b− v j‖2

where the measurements are the triples (ε j,ξ j,v j)
Q
j=1 and the

nodes for the spline smoothing are given by (ti,xi)N
i=1. Most

of the time, the number of nodes is well below the number

of measurements, so that the amount of computation needed

is lower than for interpolating. This can be a benefit for an-

alyzing large samples, like those produced when computing

complexity on country-sized airspaces.

III. LYAPUNOV EXPONENTS COMPUTATION

The metric chosen for complexity computation relies on a

measure of sensitivity to initial conditions of the underlying

dynamical system called Lyapunov exponents. In order to

figure out what Lyapunov exponents are, let consider a point

and look at its evolution when transported by the dynamical

system.

Let x be fixed (initial point) and let γ be a point trajectory

of the dynamical system associated to the vector field X given

by :

γ(t,x) = x+
∫ t

0
X(s,γ(s,x))ds

Assume now that trajectory γ is disturbed by a small

perturbation ε , we have :

γ(t,x+ ε) = γ(t,x)+Dxγ(t,x) · ε +o(‖ε‖)
where Dxγ(t,x) is the differential of the vector field at x that

satisfies :

Dxγ(t,x)
dt

= DxX(γ(t,x)) ·Dxγ(t,x) (III.1)

This equation is a linear differential equation called the

cocyle equation. To have simpler notations, we put :

A(t,x) = Dxγ(t,x)

We now assume that the trajectory perturbation is such

that ε(0) = v. The forward Lyapunov exponent at x and v is

defined to be :

λ+(x,v) = limsup
t→+∞

1

t
log‖ε(t)‖

It can be shown that only a finite number of different

Lyapunov exponents for a given x exist.
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The Lyapunov exponents are closely related to the singular

values of the matrix A(t,x) and can be thought as local shear

values for the dynamical system.

When Lyapunov exponents are high, the trajectory of a

point under the action of the dynamical system is very

sensitive to initial conditions (or to the parameters on which

the vector field may depend), so that situation in the future

is unpredictable. On the other hand, small values of the

Lyapunov exponents mean that the future is highly pre-

dictable (expected to be comfortable for a controller). So,
the Lyapunov exponent map determines the areas where the
underlying dynamical system is organized. It identifies the
places where the relative distances between aircraft do not
change with time (low real value) and the ones where such
distance change a lot (hight real value). The practical com-

putation of Lyapunov exponents using the cocyle equation is

quite a difficult task :

• By construction A(t,x) tends to grow exponentially fast

in some directions (corresponding to positive Lyapunov

exponents) and to decay exponentially fast in others

(corresponding to negative Lyapunov exponents) : the

condition number is thus increasing again exponentially.

• A limsup is involved, which is not easy to obtain.

The next Lemma, due to Perron, gives at more tractable

characterization of Lyapunov exponents.

Lemma 1: Let :

d
dt

v(t) = A(t)v(t)

be a linear differential equation. It exists a smooth mapping

t → Q(t) with values in the unitary matrices such that :

d
dt

Q−1(t)v(t) = T (t)Q−1(t)v(t)

with T (t) an upper triangular matrix.

Because it has some interest for our purpose, we will give an

outline of the proof of the lemma. First, take e1, . . .en a basis

and construct the solutions e1(t), . . .en(t) of the differential

equation with respective initial conditions e1, . . .en. Let E(t)
be the matrix with columns e1(t), . . .en(t) (E(t) describes

how the original basis is deformed by the flow). E(t) admits

a (smooth) decomposition E(t) = Q(t)R(t) with Q(t) unitary

and R(t) upper triangular with positive diagonal elements. It

is clear from the definition that :

d
dt

E = AE

so that :

AE =
dQ
dt

R+Q
dR
dt

using the fact that Q is unitary and R is invertible :

T = tQAQ− tQ
dQ
dt

=
dR
dt

R−1

proving that T is upper triangular as a product of two upper

triangular matrices. Now, by the change of variable y(t) =

Q−1(t)v(t), we obtain the equation :

d
dt

y = (tQAQ− tQ
dQ
dt

)y

= Ty

which proves the lemma. In the previous representation, the

diagonal elements of the matrix R are positive. It is thus

possible to write this matrix as :⎛⎝ eμ1 r12 . . . r1n
0 eμ2 . . . r2n
0 . . . 0 eμn

⎞⎠
The matrix T involved in the lemma is equal to dR

dt R−1 and

can be written as :⎛⎜⎝ dμ1
dt . . . . . . . . .

0
dμ2
dt . . . . . .

0 . . . 0
dμn
dt

⎞⎟⎠
A very interesting property is that when the Perron lemma is

applied to the cocyle matrix A(t,x) with a fixed x, the limit :

lim
t→+∞

μi

t
is precisely a lyapunov exponent at x (and for almost all ini-

tial conditions, the sequence of lyapunov exponents obtained

by considering diagonal entries of R is in increasing order).

Since we are dealing with true limits and not with limsup,

this formula gives a procedure for computing Lyapunov

exponents.

For practical computations, it is very inefficient to estimate

A(t) = A(t,x) and to factor it as Q(t)R(t) time step by time

step : a differential equation satisfied by Q(t) and R(t) is

solved instead, thus producing in a single step an updated

factorization. Based on the equation established before, if

X ′(γ(t))) is the derivative of the field at time t along the

trajectory γ :

tQ
Q
dt

+
dR
dt

R−1 = tQX ′(γ(t))Q

to simplify the notations, we put :

S(t) = tQX ′(γ(t))Q

Since tQQ = Id :

dtQ
dt

Q = −tQ
Q
dt

this matrix is skew-symmetric : its diagonal entries must

be 0. When considering the equation of evolution for these

entries only, we obtain that :

λ ′
i (t) = Sii(t)

with λi(t) the i-th diagonal term of R. A simple ordinary

differential equation solver can be used to find λi(t) given

Sii(t). At the same time, since dR
dt R−1 us upper triangular, all

the elements of D = tQ Q
dt located below the main diagonal

can be identified :

∀i < j,Di j = Si j(t)
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Because D is skew-symmetric, all the elements of D are

known. Again, a standard differential equation allows to

compute Q(t) as the solution of :

Q
dt

= QD

Note that only the diagonal elements of R are useful to

compute Lyapunov exponents : the remaining terms can be

left unevaluated. The main concern with the algorithm given

above is that Q may (and indeed will) fail to be orthogonal

during the time evolution. Since this property is required,

any algorithm computing Lyapunov exponents has to correct

Q from time to time. An interesting alternative approach has

been presented in [6] : instead of periodically orthogonalizing

Q, a representation is chosen so that orthogonality of Q is

guaranteed. It is well known that any rotation matrix in

dimension n can be obtained as a product of n(n − 1)/2

elementary Givens’ rotations with angles θi j, i = 1 . . .n, i < j.
The parametrization of Q is obtained precisely by the θi j.

The details can be found in the original article. It has to

been noted however that the method is interesting mainly in

low dimension, which is our case (n = 3). This algorithm has

been successfully implemented in our application. The main

drawback of this implementation is that a lot of trigonometric

computations have to be done, but matrices involved are only

3×3.

IV. RESULTS

We give below two examples of complexity maps. In the

first example, a synthetic traffic has been generated with a

well defined structure :

• Two areas with dense traffic and quasi-random positions

and velocities (airspeed is nearly constant as in real

situations, but heading is randomly sampled). It is

expected that in this areas many conflicts occur with

interdepedance, that is solving a conflict will induce

other conflicts.

• A path with dense traffic,but well organized (it is a

common organization in USA called miles-in-trail).

The resulting complexity map appears in figure 1. The

picture clearly shows that even if the traffic is dense on

the miles-in-trail path, the complexity remains low because

of the high structuration. On the opposite, many hot spots

appear in the two quasi-random areas.

The second example (figure 2) is real traffic over France,

at 8am. While the resulting complexity map is more difficult

to analyze because of the size of the airspace, it can be noted

that major airports are considered as high complexity areas.

As before, low complexity occurs in low density or highly

structured traffic.

Computation time is for less than one hundred aircraft

and 10 past or future positions in the order of 10 seconds

on a dual XEON 5400 workstation. It is possible to adress

country-size airspaces within less than one minute on a

cluster of 4 workstation using GPU computing.

Fig. 1. Low complexity valley

Fig. 2. Traffic over France

V. CONCLUSION

The approach based on modelling the air traffic by a dy-

namical system and to assess complexity values to points in

airspace by computating the associated Lyapunov exponents

appears to be a powerful tool for future trajectory based

ATM systems. Most of the work has been devoted to im-

provements in interpolating splines used to fit a vector field

to the observations and to efficient and stable computation

of Lyapunov exponents. Future directions of research will

focus on computational speed enhancement, with country-

sized airspaces in mind. Furthermore, a trajectory planner

generating conflict-free trajectories that are optimal with

respect to complexity is currently investigated in the context

of a PhD thesis.
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