
Real-Time Input-Constrained MPC Using Fast Gradient Methods

Stefan Richter, Colin N. Jones and Manfred Morari

Abstract— Linear quadratic model predictive control (MPC)
with input constraints leads to an optimization problem that has
to be solved at every instant in time. Although there exists com-
putational complexity analysis for current online optimization
methods dedicated to MPC, the worst case complexity bound is
either hard to compute or far off from the practically observed
bound. In this paper we introduce fast gradient methods that
allow one to compute a priori the worst case bound required
to find a solution with pre-specified accuracy. Both warm-
and cold-starting techniques are analyzed and an illustrative
example confirms that small, practical bounds can be obtained
that together with the algorithmic and numerical simplicity of
fast gradient methods allow online optimization at high rates.

I. INTRODUCTION

This paper considers the computational aspects of model

predictive control (MPC) of discrete-time, linear systems

with quadratic costs and linear inequality constraints on the

inputs. In MPC one aims to minimize a specified cost over

a horizon forward in time and applies the first control of

the obtained sequence of controls to the plant. This scheme

is known as Receding Horizon Control and is repeated at

every time-step given the new state information. Since the

solution of an optimization problem is required at every time-

step, the first applications of MPC were restricted to systems

with slow dynamics, enabling large sampling intervals and

therefore sufficient time to solve the optimization problem.

In recent years, MPC has made its way into control

applications with short sampling intervals, mainly because

computational power has increased and new techniques to

solve the optimization problem have emerged. One such

technique is multi-parametric programming, which allows

one to pre-compute the solution for every state offline [1].

The explicit solution is a piece-wise affine map over a

polyhedral partition of the state-space and can be stored

efficiently such that fast online look-up is ensured. As

the number of polyhedral partitions grows exponentially in

the size of the MPC problem in the worst case, recent

approximation methods reduce complexity while maintaining

stability and feasibility of the obtained control law, see

e.g. [2]. However, approximate explicit solutions are also

subject to worst case exponential growth limiting explicit

MPC to small and medium-sized control problems.

Online solution methods in MPC are generally used for

larger scale problems (e.g. > 10 state dimensions) that in

the considered context divide into two categories of iterative

solution schemes: Active set methods and interior point

S. Richter, C.N. Jones and M. Morari are with the Depart-
ment of Electrical Engineering, Swiss Federal Institute of Technology
Zürich, ETL I28, Physikstrasse 3, 8092 Zürich, Switzerland, e-mail:
richters|cjones|morari@ee.ethz.ch

methods (see e.g. [3] for details). For active set methods

convergence can only be guaranteed after a finite number

of steps in general. Nevertheless, these methods show good

practical performance. A dedicated implementation of an

active set method for MPC is discussed in [4]. It makes use

of the piece-wise affine structure of the explicit MPC solution

as well as re-uses the solution from the previous time-step,

a strategy known as warm-starting. Interior point methods

allow one to bound the number of iterations, however, the

obtained bound is too conservative and is known to be much

larger than the number of iterations seen in practice [5,

§11]. A fast implementation of such a method is reported

in [6] and its applicability is demonstrated in simulation

studies. The cut down of computational time is achieved

there by exploiting the special structure of the MPC problem

as well as by applying warm-starting and early stopping of

the iterative scheme. For both approaches neither feasibility

nor stability can be guaranteed under a specified fixed run-

time for the general case of state and input constraints.

More recently, the combination of an approximate explicit

solution and an active set method for MPC with linear cost

was introduced by [7] where it is shown how performance

and run-time guarantees can be obtained a priori. Again, the

explicit part limits its application to medium-sized problems.

In this paper, we propose to use the iterative algorithmic

scheme of fast gradient methods developed in [8] to solve

the optimization problem for the specific case of MPC with

input constraints. We show that fast gradient methods, apart

from allowing an intriguing simple implementation, provide

the possibility to obtain a practical upper bound on the

number of iterations required to obtain a solution of pre-

specified accuracy. Both warm- and cold-starting strategies

are discussed and corresponding upper bounds are derived.

The upper bounds are generally computed by multi-level

programming, but for the case of cold-starting turn out to

be easily found. In the case of warm-starting we present a

way of interpreting a central entity in the upper bound in

terms of optimal control suggesting that the effort required

to solve the optimization problem does not necessarily grow

with the control horizon. An illustrative example backs up

the theoretical results.

Note that for the class of input-constrained control prob-

lems a variety of other control approaches that complement

MPC exists in literature (see e.g. [9]).

II. MPC CONTROL PROBLEM FORMULATION

We consider discrete-time, linear, time-invariant systems

xk+1 = Axk + Buk , ∀k = 0,1 . . . , (1)

where xk ∈R
n and uk ∈R

m denote the state and control input

at time-step k respectively. We restrict the control input to

belong to a convex, compact set described by the intersection

of a finite number of halfspaces (polytope), i.e. uk ∈U ⊂R
m,

where we assume the origin to be contained in its interior.

The regulator MPC problem

J∗N(x) :=min
1

2
xT

NPxN +
1

2

N−1

∑
k=0

xT
k Qxk + uT

k Ruk (2)

subject to xk+1 = Axk + Buk , ∀k = 0 . . .N −1

uk ∈ U , ∀k = 0 . . .N −1

x0 = x ,

is solved at every time-step for the current state x, where N

denotes the finite control horizon, matrix Q∈R
n×n is positive

semi-definite, i.e. Q ≥ 0, and matrix R ∈ Rm×m is positive

definite, i.e. R > 0. We assume system (1) to be stable such

that the positive definite terminal penalty matrix P ∈ Rn×n

follows from the Lyapunov Equation AT PA + Q = P. With

respect to this definition of matrix P, the term 1/2xT
NPxN

in (2) summarizes the infinite horizon cost when no control

is applied at state xN [10].

Remark 1: The fast gradient scheme in this paper also

works for unstable systems (1) but additional measures have

to be employed to ensure stability without introducing a

terminal region, e.g. as described in [10, §3.7.4.1].

If all states in (2) are expressed as a linear function of the

initial state x and the inputs, problem (2) can be rewritten as

J∗N(x) =min JN(U ;x) (3)

subject to U ∈ U
N ,

where the sequence of inputs over the control horizon is

defined as U = (u0,u1, . . . ,uN−1) and constrained to be in

set UN ⊂ RNm, being the direct product of N input sets U.

The objective function in (3) is

JN(U ;x) =
1

2
UT

T U + xT
LU +

1

2
xT

M x (4)

where Hessian matrix T ∈ RNm×Nm is positive definite

and matrices L ∈ Rn×Nm, M ∈ Rn×n are easily derived

from (2), cf. [1].

III. GRADIENT METHODS FOR CONVEX OPTIMIZATION

This section introduces both traditional gradient methods

and fast gradient methods, which appear to be less well-

known in the control community. We cover the main algorith-

mic schemes and introduce the generalization to constrained

optimization problems. At the end of this section, the main

convergence results for both gradient methods are discussed.

Note that the content of this section closely follows [11, §2].

Throughout this section we consider the following opti-

mization problem:

f ∗ =min f (z) (5)

subject to z ∈ C ,

where C ⊆ Rp is a closed, convex set and f is a real-

valued, convex function f : Rp → R, which is at least

once continuously differentiable on C, such that it is lower-

bounded by

f (z) ≥ f (y)+ ∇ f (y)T (z− y) , ∀y,z ∈ C . (6)

In convergence analysis of optimization methods additional

conditions on the function f are often useful and one will

see that they are satisfied for MPC problem (3). One such

additional condition is Lipschitz continuity of the gradient.

Definition 1 (Lipschitz Continuity of Gradient): The gra-

dient of a continuously differentiable function f is Lipschitz

continuous on set C whenever there exists a Lipschitz

constant L ≥ 0 such that

‖∇ f (z)−∇ f (y)‖ ≤ L ‖z− y‖ , ∀z,y ∈ C ,

where ‖.‖ denotes the Euclidean norm throughout the paper.

Lipschitz constant L allows for upper-bounding f by

f (z)≤ f (y)+∇ f (y)T (z−y)+
L

2
‖z− y‖2 , ∀z,y ∈C . (7)

Furthermore, we assume function f to be strongly convex.

Definition 2 (Strong Convexity): A continuously differen-

tiable function f is called strongly convex on set C if there

exists a convexity parameter µ > 0 such that

f (z)≥ f (y)+∇ f (y)T (z−y)+
µ

2
‖z− y‖2 , ∀z,y ∈C . (8)

Strong convexity implies that function f can be lower-

bounded by a quadratic. Comparing (8) with the quadratic

upper bound in (7) the general relation L ≥ µ gets intuitively

clear.

Note that strongly convex functions f with Lipschitz con-

tinuous gradient are regarded as the best possible objectives

when it comes to solving (5) and we will see in Section IV

that the objective function in MPC problem (3) belongs to

this class.

A. Traditional Gradient Methods

In the case of unconstrained optimization, i.e. C = Rp,

a traditional gradient method will find a new iterate zi+1

by following the anti-gradient −hi∇ f (zi) at the previous

iterate zi, i.e. zi+1 = zi −hi∇ f (zi). The factor hi > 0 is called

the step size and ensures that the iterative scheme forms a

so-called relaxation sequence { f (zi)} whereby

f (zi+1) ≤ f (zi) , ∀i ≥ 0 . (9)

Several step size rules exist in the literature. The simplest of

them, and also the choice in this paper, is a constant step size

hi = h > 0 , ∀i ≥ 1 that is defined a priori. This strategy is

often applied if the function is convex since it can be proven

to give the same rate of convergence as other step size rules

(see [11, §2.1.5] and references therein).

Interestingly, the same algorithmic scheme as before can

be applied for constrained optimization problems too, where

C ⊂ Rp, the only difference being that the gradient ∇ f (.)
gets replaced by the gradient mapping gC(.) of f on set C,

given by

gC(z̄) = L(z̄− zC(z̄)) (10a)

zC(z̄) = argmin
z∈C

∥

∥z− z f (z̄)
∥

∥

2
(10b)

z f (z̄) = z̄− 1

L
∇ f (z̄) , (10c)

for some z̄ ∈ Rp. The vector zC(z̄) can be interpreted as

the projection of a gradient step taken at z̄ with step size 1/L

onto the feasible set C. This operation is central to computing

the gradient mapping and defines a simple set as a convex

set for which one can compute this projection easily. Such

simple sets are for instance the n-dimensional Euclidean ball,

positive orthant and box.

B. Fast Gradient Methods

Fast, or optimal gradient methods were developed by

Yurii Nesterov in 1983 [8]. The basic idea underlying these

methods is to drop the stringent condition of forming a

relaxation sequence (9). Instead, fast gradient methods make

use of so-called estimate sequences:

Definition 3 (Estimate Sequence [11]): A pair of sequen-

ces {φi(z)}∞
i=0 and {λi}∞

i=0 , λi ≥ 0 is called an estimate

sequence of function f if λi → 0 and

φi(z) ≤ (1−λi) f (z)+ λiφ0(z) , ∀i ≥ 0, ∀z ∈ C .

The next lemma demonstrates why it is useful for a

gradient method to rely on a relaxation sequence.

Lemma 1: (cf. [11, §2.2.1]) Let the pair of sequences

{φi(z)}∞
i=0 , {λi}∞

i=0 form an estimate sequence of func-

tion f . If for some sequence {zi} , zi ∈ C it holds

f (zi) ≤ φ∗
i ≡ min

z∈C

φi(z) ,

then f (zi)− f ∗ ≤ λi [φ0(z
∗)− f ∗].

Lemma 1 states that the rate of convergence of sequence

{ f (zi)− f ∗} is identical to the rate of convergence of se-

quence {λi} and that the initial residual is proportional to the

difference φ0(z
∗)− f ∗; z∗ being the optimal solution to (5),

i.e. f ∗ = f (z∗).
For a fast gradient method to work, one has to define an

estimate sequence of function f as well as ensure the premise

in Lemma 1. The former can be done by defining function φ0

as the quadratic

φ0(z) = φ∗
0 +

γ0

2
‖z− v0‖2 , γ0 > 0 , (11)

and updating only the parameters φ∗
i , γi and vi for all i ≥ 1

following the recursive update rules given in [11, §2.2.1].

These rules require the (mapped) gradient as is shown in [11,

§2.2.1], which validates the name ‘gradient method’ for the

resulting scheme.

We are now ready to state the general iterative scheme of

a fast gradient method with constant step size following [11,

§2.2.3]. We consider the more general case of constrained

minimization since it includes unconstrained minimization

as a special case:

Algorithm 1 Fast Gradient Method for Constrained Minimization

Require: Initial point z0 ∈ C, y0 = z0, 0 <
√

µ
L
≤ α0 < 1,

Lipschitz constant L, convexity parameter µ , i = 0
1: loop

2: zi+1 = zC(yi), using (10b)

3: Compute αi+1 ∈ (0,1) from α2
i+1 = (1−αi+1)α

2
i +µαi+1/L

4: βi = (αi(1−αi))/
(

α2
i + αi+1

)

5: yi+1 = zi+1 + βi(zi+1 − zi)
6: i = i+ 1

7: end loop

Remark 2: Most notably, the complexity of each iteration

of the fast gradient scheme is of the same order as the

complexity of traditional gradient methods.

C. Convergence Results

For convex optimization problems of type (5) with a

strongly convex objective function f with Lipschitz contin-

uous gradient, gradient methods allow for a global conver-

gence analysis for both the unconstrained and the constrained

case. Not only is it possible to guarantee convergence but

also to specify the rate of convergence.

Definition 4 (Linear Convergence): A sequence {ri ≥ 0}
converges linearly to 0 with convergence ratio q ∈ (0,1), if

for some constant K < ∞

ri ≤ qiK , ∀i = 1,2
Definition 5 (Sublinear Convergence): A sequence {ri ≥

0} that converges to 0, but is not linearly converging, is

called sublinearly converging.

In the context of gradient methods it is natural to define

the entities of the sequence {ri}, let us call them residuals,

as

ri = f (zi)− f ∗ ≥ 0 ,

where zi is the ith iterate of the gradient method.

Traditional gradient methods show global linear conver-

gence of this sequence of residuals with a convergence

ratio 1−O(1/Q f), where the condition number is defined

as Q f := L/µ , Q f ≥ 1. Usually, a termination criterion

ri ≤ ε, ε > 0 is used. In order to meet this criterion it follows

from the convergence analysis that O(1)Q f ln(1/ε) iterations

are required [11, §2]. In practice, the condition number Q f

can be several orders of magnitude in size which may lead

to a prohibitively large number of iterations.

Fast gradient methods also converge linearly and globally

but with a much smaller convergence ratio 1−O(1/
√

Q f),
which allows one to reach an ε-solution in O(1)

√

Q f ln(1/ε)
iterations. Specifically, for Algorithm 1 the following conver-

gence result holds:

Theorem 1 (Convergence of Algorithm 1 [11]): The se-

quence of iterates {zi} obtained from Algorithm 1 generates

a sequence of residuals {ri} whose elements satisfy

ri ≤ min

{

(

1−
√

µ

L

)i

,
4L

(

2
√

L+ i
√

γ0

)2

}

[φ0(z
∗)− f ∗] ,

(12)

for all i ≥ 0, where

γ0 =
α0(α0L− µ)

1−α0
. (13)

Remark 3: The condition α0 ≥
√

µ/L in Algorithm 1

corresponds to condition γ0 ≥ µ , where γ0 is the initial

parameter in (11). This condition is necessary to obtain the

convergence result of Theorem 1 as shown in [11, §2.2.1].

Remark 4: According to Theorem 1 the rate of conver-

gence of residuals {ri} is the best of either a linear or a

sublinear convergence rate.

The convergence result for Algorithm 1 given by The-

orem 1 can be shown to be optimal in the sense that

relying only on gradient information, one cannot find better

convergence ratios for the class of optimization problems

considered here. Details can be found in [11, §2.1].

IV. FAST GRADIENT METHODS IN MPC

We are now ready to apply the fast gradient scheme of

Section III-B to obtain an ε-solution Uε to the MPC problem

for a given state x, i.e. a solution that satisfies

JN(Uε ;x)− J∗N(x) ≤ ε , ε > 0 , (14)

where J∗N(x) is the value of the optimal solution.

For this problem we investigate two different strategies

that differ in the choice of the initial iterate z0 in Algorithm 1.

Let us adapt notation used in control from now on, for

instance denote the initial iterate z0 in the MPC context by

U0.

The first strategy, that we refer to as cold-starting, is based

on picking a fixed, state-independent sequence of control

inputs Uc ∈ UN which will allow us to obtain an admissible

initial iterate U0 – in the sense of Lemma 1 – with a single

projection operation. In Section IV-B it will be shown that

this strategy considerably simplifies the complexity analysis

of the resulting fast gradient scheme.

The obvious alternative strategy is to re-start the algorithm

from an ε-solution that was obtained at the previous time-

step. This strategy is called warm-starting and different

strategies are possible to make use of the previous solution.

One of these possibilities will be examined in Section IV-C

showing that the complexity of solving MPC problem (3) is

linked to entities that are common in optimal control.

For both cold- and warm-starting strategies we derive

upper bounds on the number of iterations required to obtain

an ε-solution for any state x ∈ X, where set X ⊂ Rn is a

compact, convex set of states that is defined for the specific

application.

Before we go to the analysis, we will point out that the

main ingredients of Algorithm 1, i.e. projection on a convex

set and a priori computation of Lipschitz constant L and

convexity parameter µ can be obtained very easily in the

context of the considered MPC problem as will be explained

in the following sections.

A. Computational Aspects of Fast Gradient Method in MPC

1) Projection on Convex Set: Recalling the fast gradient

scheme that is given by Algorithm 1 we observe that in each

iteration we need to compute the projection in (10b). The

problem translates to

UUN (Ū) = arg min
U∈UN

∥

∥U −U f (Ū)
∥

∥

2
(15a)

U f (Ū) = Ū − 1

L
∇JN(Ū ;x) , (15b)

in the context of MPC problem (3). We observe that the

feasible set in this problem is the direct product of N lower-

dimensional sets, UN = U ×U . . .×U. Since the objective

in (15a) can be separated accordingly into N independent

objectives, it suffices to consider minimization problems

uU,k = argmin
u∈U

∥

∥u−u f ,k

∥

∥

2
, k = 0 . . .N −1 , (16)

only, where the original solution UUN (Ū) is obtained

by stacking all N solutions to (16), i.e. UUN (Ū) =
(

uU,0,uU,1, . . . ,uU,N−1

)

. The vectors u f ,k in (16) are ob-

tained by truncating U f (Ū) into N m-dimensional vec-

tors u f ,k, i.e.
(

u f ,0,u f ,1, . . . ,u f ,N−1

)

= U f (Ū).
The only challenge left is to solve the set of minimization

problems (16) efficiently. Fortunately, in control, we often

quite naturally encounter upper/lower bounds on the control

inputs that lead to an m-dimensional box U. Box constraints

allow one to compute the projection (16) analytically by

saturating every component j of u f ,k according to the jth

upper/lower bound of box U.

Remark 5: Even in the case when the set of feasible

inputs U is an arbitrary polytope, there is the possibility of

pre-computing an explicit solution to (16) with u f ,k being the

parameter by means of multi-parametric programming [12].

2) Computation of Lipschitz Constant and Convexity Pa-

rameter: In general, it suffices to have an upper bound on

the Lipschitz constant L and a lower bound on the convexity

parameter µ in order to make the algorithmic scheme of fast

gradient methods work. Of course, the convergence rates are

best if the bounds for both parameters are tight. We will

see that tight bounds can be achieved in the case of MPC

problem (3). In order to show this, we make use of the fact

that function JN(U ;x) is twice continuously differentiable

in U , so that we can apply the following lemmas.

Lemma 2 (cf. [11]): Let function f be twice continuously

differentiable on set C. The gradient ∇ f is Lipschitz contin-

uous on set C with Lipschitz constant L if and only if
∥

∥∇2 f (z)
∥

∥ ≤ L , ∀z ∈ C .

Matrix ∇2 f (.) denotes the symmetric p× p Hessian matrix

of function f and ‖.‖ denotes the induced Euclidean norm,

also called maximum singular value.

Lemma 3 (cf. [11]): Let function f be twice continuously

differentiable on set C. Function f is strongly convex on

set C with convexity parameter µ if and only if there exists

µ > 0 such that

∇2 f (z) ≥ µI , ∀z ∈ C .

Lemmas 2 and 3 indicate to us how to compute Lipschitz

constant L and convexity parameter µ , as shown next.

Proposition 1: For the MPC problem in (3), the Lipschitz

constant L of the gradient ∇JN(U ;x) and the convexity pa-

rameter µ of the objective function JN(U ;x) are independent

of the state x and are given by

L = λmax(T) , µ = λmin(T) ,

where λmax (λmin) denotes the maximum (minimum) eigen-

value of the Hessian matrix T of function JN(U ;x) in (4).

Proof: Hessian T is independent of the variable U

and state x in MPC problem (3). Since T is symmetric and

positive definite under Q ≥ 0, R > 0, the maximum singular

value coincides with the maximum eigenvalue λmax(T). For

the same reasons T ≥ λmin(T)I with λmin(T) > 0.

3) Computational Complexity per Iteration: The main

complexity of an iteration of Algorithm 1 stems from com-

puting the gradient ∇JN(U ;x) = T U +L T x in (15b), since

Hessian T is a dense matrix in general. The matrix-vector

product T U needs approximately 2(Nm)2
floating point op-

erations (flops). Assuming that vector L T x is computed only

once per time-step, computation of the gradient ∇JN(U ;x)
requires 2(Nm)2 +Nm flops in each iteration. The total effort

required for every iteration of the fast gradient scheme given

by Algorithm 1 when applied to the MPC problem (3) is

2(Nm)2 + 7Nm flops per iteration assuming box constraints

and neglecting the computation of scalar variables.

An interior point approach that makes use of the special

structure of the MPC problem as discussed by [6] has a

complexity of O
(

N(n + m)3
)

flops per iteration and in the

case of diagonal weighting matrices Q,R and box constraints

improves to O
(

N(n3 + n2m)
)

. In the context of these meth-

ods an iteration consists of computing a Newton step and

practice shows that the total number of iterations required is

in the order of tens, unless appropriate measures are taken to

decrease this number [6]. However, no theoretical evidence

is given at the moment that underlines these practical results.

The same holds true for active set methods, which are

exponential in the worst case but also show good practical

performance. If efficiently implemented, active set methods

allow one to compute an iteration in O
(

(Nm)2
)

flops, where

the main work is spent in solving the KKT system [3], [4].

B. Coldstart Fast Gradient Method

We are now ready to derive upper bounds on the total

number of iterations required to obtain an ε-solution Uε

defined by (14) for the MPC problem (3). We will perform

the analysis under the assumption that at every time-step

the same fixed sequence of controls Uc ∈ UN is provided, a

strategy that we call cold-starting.

In view of Algorithm 1 and its convergence result in

Theorem 1 as well as the results from Section IV-A we

realize, that the remaining unknown entities for bounding

the total number of iterations by means of (12) are the initial

residual φ0 (U∗;x)−J∗N(x) and the value of γ0. The sequence

of controls U∗ denotes the optimal input sequence for

problem (3) with initial state x satisfying J∗N(x) = JN(U∗;x).

The following analysis will provide a way to upper-bound

this initial residual by making use of compactness of the

feasible set of inputs U. We start the analysis with the

definition of an appropriate quadratic function φ0
1:

Lemma 4: Let Uc ∈ UN and L be the Lipschitz constant

of function JN(U ;x) given by (4). The choice φ0 = φ̂0, where

φ̂0 (U ;x) := JN(Uc;x)+ ∇JN(Uc;x)T (U −Uc)+
L

2
‖U −Uc‖2

provides an upper bound of the initial residual in (12) by

φ̂0 (U∗;x)− J∗N(x) ≤ L

2
‖U∗−Uc‖2 . (17)

Proof: We evaluate function φ̂0 (U ;x) at point U = U∗

and apply relation (6) to obtain (17).

Note that Uc must not be chosen as the initial iterate in

Algorithm 1 since the initial iterate has to satisfy Lemma 1.

We show next how to obtain an admissible initial iterate U0.

Lemma 5: Let φ̂0 be defined as in Lemma 4 with Uc ∈UN .

An admissible initial iterate U0 in the sense of Lemma 1 is

given by

U0 = UUN (Uc) ,

where UUN (.) is defined by (15a).

Proof: According to Lemma 1 we have to show that

JN(U0;x) ≤ φ̂∗
0 ≡ min

U∈UN
φ̂0 (U ;x) . (18)

By considering (7) we observe that φ̂0 upper-bounds JN(U ;x)

JN(U ;x) ≤ φ̂0 (U ;x) , ∀U ∈ U
N ,

such that by choosing

U0 = arg min
U∈UN

φ̂0 (U ;x) , (19)

we certainly fulfill (18). It is left to show that (19) can be

rewritten as the projection given by (15a). For this we simply

observe that φ̂0 can be reformulated as

φ̂0 (U ;x) = φ̂∗
f ,0 +

L

2

∥

∥U −U f (Uc)
∥

∥

2
,

by developing the Taylor series of φ̂0 at the point U f (Uc)
where the unconstrained minimum φ̂∗

f ,0 is attained.

We are now ready to provide an upper bound on the

number of iterations in the case of a cold-starting strategy:

Proposition 2: Let Uc ∈UN be a fixed sequence of control

inputs and the initial iterate U0 in Algorithm 1 be chosen

according to Lemma 5. For the MPC problem in (3) an ε-

solution Uε defined by (14) can be obtained after at most

Imax = min





















ln2ε − lnLd2

ln
(

1−
√

µ
L

)











,

⌈
√

2Ld2

ε
−2

⌉











iterations where d2 is given by

d2 = max
U∈UN

‖U −Uc‖2 . (20)

1Private communication with Y. Nesterov.

Proof: Going back to Theorem 1 we observe that a

sufficient condition for an ε-solution Uε is

min

{

(

1−
√

µ

L

)i

,
4L

(

2
√

L+ i
√

γ0

)2

}

[

φ̂0(U
∗; .)− J∗N(.)

]

≤ ε

Defining φ̂0 as in Lemma 4 we conclude that γ0 = L and that

the initial residual can be upper-bounded by L‖U∗−Uc‖2 /2

which is upper-bounded by Ld2/2 under the assumption that

the feasible set of inputs U is compact. Putting all together

gives the upper bound Imax on the number of iterations.

Remark 6: If the fixed input sequence Uc ∈ UN is chosen

as the center of set UN , the maximum d2 of problem (20)

refers to the squared radius of set U
N and thus is easily

computed in general.

C. Warmstart Fast Gradient Method

An alternative strategy to cold-starting as discussed in

Section IV-B is to find an initial iterate for the fast gradient

scheme based on the solution from the previous time-step.

This strategy is referred to as warm-starting and is generally

used by optimization methods if a reasonable guess about

the solution can be made beforehand, hoping that the effort

needed to solve the problem becomes less than starting from

a fixed point. Warm-starting is also used in the interior point

approach by [6] and the active set method by [4], but it is

generally unclear how to quantify the benefit obtained by

warm-starting a priori for these methods. We will show that

for fast gradient methods it is possible to specify this benefit

and also to interpret the result in the language of optimal

control.

Intuitively, in the context of MPC, we expect warm-

starting to be a promising approach for the following reason:

Having worked out a close to optimal policy for a given state

over N steps into the future and having applied the first one,

the remaining N−1-step policy should be close to optimality

for the successor state. Of course, we ask for an optimal N-

step policy; Nevertheless, re-using the previous N − 1-step

plan might still be useful if one appends a meaningful Nth

element to it. One can think of several possibilities for this

whereby for the upcoming analysis a generic warm-starting

strategy is defined as follows:

Definition 6: Let the sequence of control inputs

(u0,u1, . . . ,uN−1) ∈ UN be a feasible ε-solution in the

sense of (14) to the MPC problem (3) with initial state x−.

Assume, that the first input of this sequence u0 is applied to

the plant and results in state x at the next time-step. Then

Uw := (u1, . . . ,uN−1,uN) , uN ∈ U ,

defines a feasible warm-starting sequence of inputs for the

MPC problem (3) with initial state x.

Now, the same algorithmic framework as discussed in Sec-

tion IV-B with Uc = Uw is applicable. In fact, Proposition 2

will give the desired maximum number of iterations once

a problem similar to (20) is solved. Unfortunately, apart

from being a hard problem no insight with respect to the

optimal control terminology can be gained from its solution.

Therefore we introduce a slightly different approach next,

that will allow us to get an intuition on what we can expect

in terms of number of iterations to solve MPC problem (3)

by applying a certain warm-starting technique.

Before doing so, we define a certificate for optimality in

constrained optimization (cf. e.g. [11, §2.2.2]):

Theorem 2: Let f be once continuously differentiable and

C a closed convex set. Point z∗ ∈ C is an optimal solution

to (5) if and only if

∇ f (z∗)T (z− z∗) ≥ 0 , ∀z ∈ C .
Lemma 6: Let Uw ∈ UN be a feasible sequence of inputs

and µ be the convexity parameter of function JN(U ;x) given

by (4). The choice

φ̂0 (U ;x) := JN(Uw;x)+
µ

2
‖U −Uw‖2

admits to upper-bound the initial residual in (12) by

φ̂0 (U∗;x)− J∗N(x) ≤ 2(JN(Uw;x)− J∗N(x)) . (21)

Also, input sequence Uw is an admissible initial iterate in the

sense of Lemma 1 for Algorithm 1, i.e. U0 = Uw.

Proof: For the upper bound on the initial residual we

exploit strong convexity of the function JN(U ;x), so that

JN(Uw;x) ≥ J∗N(x)+ ∇JN(U∗;x)T (Uw −U∗)+
µ

2
‖Uw −U∗‖2

≥ J∗N(x)+
µ

2
‖Uw −U∗‖2 ,

follows from (8) and Theorem 2. Using this result in

φ̂0 (U∗;x)− J∗N(x) = JN(Uw;x)− J∗N(x)+
µ

2
‖Uw −U∗‖2 ,

gives the upper bound in Lemma 6. The input sequence Uw

is an admissible initial iterate since by definition of φ̂0

Uw = arg min
U∈UN

φ̂0 (U ;x) ,

which satisfies the premise of Lemma 1.

Lemma 6 allows one to obtain an upper bound on the

number of iterations in the case of a warm-starting strategy:

Proposition 3: Let Uw ∈ UN be given by Definition 6 and

X ⊂ Rn be the set of initial states x. For the MPC problem

in (3) an ε-solution Uε defined by (14) can be obtained after

at most

Imax = min





















lnε − ln2δ

ln
(

1−
√

µ
L

)











,

⌈

1√
µ

(
√

8δL

ε
−2

√
L

)⌉











iterations if the initial iterate is chosen as U0 = Uw in

Algorithm 1. Constant δ is defined as

δ =max JN(Uw;x)− J∗N(x) (22)

subject to Uw ∈ U
N (according to Definition 6)

x ∈ X .
Proof: The proof follows closely the proof of Propo-

sition 2 whereby here Lemma 6 is used to upper-bound

the initial residual (12) and also fixes γ0 = µ . Finally, the

maximization problem (22) bounds the worst case residual

over all initial states x ∈ X.

Remark 7: Due to lack of space maximization prob-

lem (22) is only defined informally. This problem is a non-

convex multi-level optimization problem that contains opti-

mizers of other optimization problems as decision variables.

It can easily be defined such that a mismatch between the

real and the predicted successor state can be considered.

Also, one can take into account that the warm-starting

sequence Uw stems from an ε-solution from the previous

time-step. Various solution methods for problem (22) exist

in the literature, see e.g. [13] for an overview. In [14] a way

to rewrite problems of type (22) as a mixed-integer linear

program is discussed and was the author’s choice for solving

this problem.

The careful reader might have noticed that the discus-

sion so far has not revealed an intuitive interpretation on

computational complexity in the language of optimal control

yet, as promised in the introduction of this section. Looking

at Proposition 3 the only entity that prevents one from

developing intuition, is the constant δ given by maximization

problem (22). Interestingly, it turns out that in case of

a specific variant of warm-starting and under additional

assumptions this value has the following interpretation.

Proposition 4: Assume that the optimal solution to the

MPC problem (3) at the previous time-step is known and

that the predicted successor state is equivalent to the real

successor state x ∈ X. Given a warm-starting sequence Uw

defined by Definition 6 where we choose uN = 0 we obtain

JN(Uw;x)− J∗N(x) = J∗N−1(x)− J∗N(x).
Proof: From optimality of the previous solution over

a horizon of length N and equivalence of predicted and real

successor state x we infer from the principle of optimality

that the remaining sequence of N − 1 optimal inputs is

optimal for the MPC problem with horizon N−1 and initial

state x. This gives cost J∗N−1(x) that is equal to cost JN(Uw;x)
with Uw chosen as stated in Proposition 4.

Proposition 4 now means that one can expect – admittedly

in a very idealistic setting – the difference J∗N−1(x)−J∗N(x) to

approach 0 if the control horizon N is chosen large enough.

On the one hand, this result is surprising, on the other hand

it is not since for the limit case, i.e. N → ∞ the “N”-step

policy coincides with the “N −1”-step policy.

V. ILLUSTRATIVE EXAMPLE

We consider the four-state/two-input system given in [2],

restricting the initial state to ‖x‖∞ ≤ 10 and input to ‖u‖∞ ≤
1. The weighting matrices are chosen as Q = I and R = 0.1I.

Figs. 1(a) and 1(b) show two families of plots, parame-

terized by ε , that depict the dependence of the maximum

number of iterations and maximum floating point operations

respectively, needed for cold-starting with Uc = 0 and warm-

starting with uN = 0, on the horizon N. For warm-starting we

assume the maximum mismatch ∆x ∈ R
n between real and

predicted successor state to be bounded by ‖∆x‖∞ ≤ 0.25 (see

Remark 7). From the plots we observe that the cold-starting

strategy requires monotonically increasing computational ef-

forts to obtain a solution whereas warm-starting does not

show this behavior as expected from Proposition 4.

Horizon N

It
e
ra

te
s

I m
a
x

2 4 6 8 10
0

10

20

30

40

50

(a) Maximum number of iterations Imax.

Horizon N

fl
o

p
s

2 4 6 8 10
102

103

104

105

(b) Maximum number of flops.

Fig. 1. Computational complexity of cold-starting (dashed) and warm-
starting (solid) for different horizon lengths in Example V, parameterized
by ε = 0.1 (circle), ε = 0.05 (diamond) and ε = 0.01 (square).

VI. ACKNOWLEDGEMENTS

The authors would like to thank Yurii Nesterov for many

valuable discussions during the preparation of this paper.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The Explicit
Linear Quadratic Regulator for Constrained Systems,” Automatica,
vol. 38, no. 1, pp. 3–20, Jan. 2002.

[2] C. Jones and M. Morari, “The Double Description Method for the
Approximation of Explicit MPC Control Laws,” in Conference on

Decision and Control, CDC, Cancun, Mexico, Dec. 2008.
[3] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New

York: Springer, 2006.
[4] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy

to overcome the limitations of explicit MPC,” International Journal
of Robust and Nonlinear Control, vol. 18, pp. 816–830, 2008.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, Mar. 2004.

[6] Y. Wang and S. Boyd, “Fast Model Predictive Control Using Online
Optimization,” in Proceedings of the 17th World Congress. Seoul:
IFAC, 2008.

[7] M. Zeilinger, C. Jones, and M. Morari, “Real-time suboptimal Model
Predictive Control using a combination of Explicit MPC and Online
Computation,” in Conference on Decision and Control, CDC, Cancun,
Mexico, Dec. 2008.

[8] Y. Nesterov, “A method for solving a convex programming problem
with convergence rate 1/k2 ,” Soviet Math. Dokl., vol. 27, no. 2, pp.
372–376, 1983.

[9] A. Glattfelder and W. Schaufelberger, Control Systems with Input and
Output Constraints. London: Springer, 2003.

[10] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-

tomatica, vol. 36, no. 6, pp. 789–814, June 2000.
[11] Y. Nesterov, Introductory Lectures on Convex Optimization : A Basic

Course, Kluwer Acad. Publ., 2004.
[12] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Non-

Linear Parametric Optimization. Berlin: Akademie-Verlag, 1982.
[13] B. Colson, P. Marcotte, and G. Savard, “Bilevel programming: A

survey,” 4OR: A Quarterly Journal of Operations Research, vol. 3,
no. 2, pp. 87–107, June 2005.

[14] C. Jones and M. Morari, “Approximate Explicit MPC using Bilevel
Optimization,” in European Control Conference, Budapest, Hungary,
Aug. 2009.

