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Résumé : Dans ce rapport, nous considérons des systèmes ayant des périodes d’inacti-
vité de durée inconnue, pendant lesquelles le serveur est en vacance. La question qui
nous intéresse c’est de déterminer, de façon optimale, à quel moment le serveur doit-il
vérifier si la période d’inactivité dure toujours. Dans les systèmes considérés, il existe
un coût proportionnel au laps de temps s’écoulant entre la fin de la période d’inactivité
et l’instant où le serveur s’en rend compte. À celui-ci, s’ajoutent un coût, assez faible,
de fonctionnement et une pénalité à chaque vérification du serveur. Comme applica-
tion, nous considérons la gestion de l’énergie dans la norme WiMAX où les terminaux
mobiles entrent en veille par souci d’économie d’énergie. Il existe plusieurs standards
définissant des politiques différentes d’ordonnancement pour le réveil des terminaux.
Nous vérifions leurs performances et identifions des politiques optimales sous diverses
hypothèses statistiques. Dans le cas où les périodes d’inactivité sont exponentiellement
distribuées, nous montrons qu’il est optimal de vérifier périodiquement si la période
d’inactivité ne serait pas finie et calculons la période optimale. Nous montrons que
cette politique perd son optimalité en présence de périodes d’inactivité ayant une autre
distribution, auquel cas nous dérivons des politiques d’ordonnancement qui sont sous-
optimales et qui ont de meilleures performances que la politique constante. En dernier
lieu, nous trouvons des propriétés structurelles des politiques optimales pour le cas où
les périodes d’inactivité ont une distribution arbitraire.

Mots-clés : Programmation dynamique, optimisation, échantillonnage, WiMAX,
évaluation de performance
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1 Introduction

Mobile terminals using contemporary radios can benefit greatly by shutting off the
transceiver whenever there is no scheduled activity. Nevertheless, if the attention of the
mobile is suddenly required, the mobile will be shut off and therefore unavailable. The
longer the shut off (vacation) periods, the longer the expected response delay. There-
fore, one can identify the inherent tradeoff of energy management: increase vacation
length to improve energy saving or decrease vacation length to reduce delays.

Past approaches have considered incoming/outgoing traffic [17, 20, 18], the effect
of setup time [11, 8], or even the queueing implications in the analysis [12, 2]. Concern-
ing the arrival process, it has been assumed to be Poisson (cf. the above references),
having a hyper-Erlang distribution [19] or a hyper-exponential distribution [7, 1]. In
all cases, it does not depend on the energy management scheme. As for delay, it is the
average packet delay in the system that is considered.

Recent works [11, 16, 10] focus on heuristic adaptive algorithms whose goal is
to control the vacation length according to the incoming arrival process. The work
[14] derives an optimal sleep policy using average cost structure for a given number of
consecutive sleep durations.

Our work departs from the existing models in two aspects. First, rather than an
exogenous independent arrival process, we have in mind elastic arrival processes in
which (i) a “think time” or “off time” begins when the activity of the server ends, and
(ii) the duration of the “on time” does not depend on the wake up delay, defined as
the time that elapses between the instant a request is issued and the instant at which
the request service actually begins. Both assumptions are appropriate to interactive
applications such as web browsing. As a result, the measure for delay is taken to be the
wake up delay.

Our objective is to optimize the vacation duration in order to achieve the desired
balance between delay and energy saving. We shall investigate in this paper optimal
energy management systems under one of the following assumptions on the off time
distribution:

a. Exponential distribution;

b. Hyper-exponential distribution;

c. General distribution.

Themotivation behind the hyper-exponential distribution assumption comes fromworks
that provide evidence of heavy-tailed off time distributions on the Internet [15] and of
Pareto type distribution on theWorld WideWeb [5]. Furthermore, it is well-known that
heavy-tailed distributed random variables (rvs) can be well approximated by hyper-
exponential distributions [7].

Our contributions are as follows:

1. Our problem formulation allows us to minimize the weighted sum of the two
costs, which is essentially obtaining the optimal tradeoff of delay against energy
saving. We use dynamic programming (DP) which allows to obtain the optimal
vacation size at each wake up instant.

2. For exponential off times, we show that the constant vacation policy is optimal
and we derive it.
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2 Azad, Alouf, Altman, Borkar & Paschos

3. For hyper-exponential off times, we derive interesting structural properties. We
show that the optimal control is bounded. Asymptotically, the optimal policy
converges to the constant policy corresponding to the smallest rate phase, irre-
spective of the initial state. This policy can be computed numerically using value
iteration.

4. For any general off time distribution, we show that the optimal control is bounded.

5. We propose suboptimal policies using policy iteration which perform strictly
better than optimal “homogeneous” policies and are simpler to compute. We
show numerically the performance of such suboptimal solutions using one stage
and two stage policy iteration.

6. We compare the proposed policies with that of the IEEE 802.16e standard [9]
under various statistical assumptions.

In the rest of the paper, Sect. 2 outlines our system model and introduces the cost
function. Section 3 introduces DP and derives the optimal sleep control and relevant
characteristics for hyper-exponential off times. Section 4 tackles the problem of finding
the optimal policy under the worst case process of arrivals. Numerical results and a
comparative study of the different (sub)optimal strategies and of the IEEE 802.16e
standard are reported in Sect. 5. Section 6 concludes the paper.

2 System Model

We consider a system with repeated vacations. As long as there are no customers, the
server goes on vacation. We are interested in finding the optimal policy, so that at any
start of vacation, the length of this vacation is optimal. This system models a mobile
device that turns off its radio antenna while inactive to save energy. A vacation is then
the time during which the mobile is sleeping. At the end of a vacation, the mobile
needs to turn on the radio to check for packets.

Let X denote the number of vacations in an idle period. X is a discrete random
variable (rv) taking values in IN∗. The duration of the kth vacation is a rv denoted
Bk, for k ∈ IN∗. For analytical tractability, we consider vacations {Bk}k∈IN∗ that are
mutually independent rvs. The time at the end of the kth sleep interval is a rv denoted
Tk, for k ∈ IN∗. We denote T0 as the time at the beginning of the first vacation; by
convention T0 = 0. We naturally have Tk = Tk−1 + Bk =

∑k

i=1 Bi. Observe that a
generic idle ends at time TX .

We will be using the following notation Y(s) := E[exp(−sY )] to denote the
Laplace-Stieltjes transform of a generic rv Y evaluated at s. Hence, we can readily
write Tk(s) =

∏k
i=1 Bi(s).

Let τ denote the time length between the start of the first vacation and the arrival
of a customer; this time is referred to as the “off time”. Since a generic idle period
ends at time TX , the service of the first customer to arrive during the idle period will
be delayed for TX − τ units of time.

τ is a rv whose probability density function is fτ (t), t ≥ 0. We will be as-
suming that τ is hyper-exponentially distributed with n phases and parameters λλλ =
(λ1, . . . , λn) and q = (q1, . . . , qn). In other words, we have

fτ (t) =
n∑

i=1

qiλi exp(−λit),
n∑

i=1

qi = 1. (1)

INRIA



Optimal Sampling for State Change Detection 3

Given its definition, the off time τ is also the conditional residual inter-arrival time.
Observe that when n = 1, τ will be exponentially distributed with parameter λ = λ1,
which, thanks to the memoryless property of this distribution, is equivalent to having a
Poisson arrival process with rate λ.

The energy consumed by a mobile while listening to the channel and checking for
customers is denoted EL. This is actually a penalty paid at the end of each vacation.
The power consumed by a mobile in a sleep state is denoted PS . The energy consumed
by a mobile during vacationBk is then equal to EL +PSBk, and that consumed during
a generic idle period is equal to ELX + PSTX .

We are interested in minimizing the cost of the power save mode, which is seen as a
weighted sum of the energy consumed during the power save mode and the extra delay
incurred on the traffic by a sleeping mobile. Let V be this cost; it is written as follows

V := E [ǭ (TX − τ) + ǫ (ELX + PSTX)] (2)

= −ǭ E[τ ] + ǫELE[X ] + ηE[TX ] (3)

where ǫ is a normalized weight that takes value between 0 and 1; ǭ = 1 − ǫ; and
η := ǭ + ǫPS . The derivation of the elements of (3) when τ is hyper-exponentially
distributed is straightforward. We derive

P (X = k) = P (τ > Tk−1) − P (τ > Tk) =

n∑

i=1

qiTk−1(λi) (1 − Bk(λi)) ;

E[τ ] =

n∑

i=1

qi/λi;

E[X ] =

∞∑

k=0

n∑

i=1

qiTk(λi); (4)

E[TX ] =

∞∑

k=0

n∑

i=1

qiTk(λi)E[Bk+1]. (5)

Using (3)-(5), the cost can be rewritten

V = −ǭ E[τ ] +

∞∑

k=0

n∑

i=1

qiTk(λi) (ǫEL + ηE[Bk+1]) . (6)

For convenience, we have grouped the major notation used in the paper in Table 1.

Cost of IEEE 802.16e’s sleep policy

Our system model enables us to evaluate the cost, denoted VStd, incurred by the sleep
policy of the IEEE 802.16e protocol, and more precisely, the sleep policy advocated
for type I power saving classes [9]. There, vacations are deterministic (so we use small
letters to express that) and the size of a sleep window (i.e., a vacation) is doubled over
time until a maximum permissible sleep window, denoted bmax, is reached. The size
of the kth vacation is then

bk = b12
min{k−1,l}, k ∈ IN∗

where l := log2(bmax/b1). We also have

tk = b1

(
2min{k,l} − 1 + 2l(k − l)1I{k > l}

)
, k ∈ IN∗.

RR n° 7026



4 Azad, Alouf, Altman, Borkar & Paschos

Table 1: Glossary of notations

X Number of vacations
Bk Duration of kth vacation
Tk Time until kth vacation, Tk =

∑k

i=1 Bi

T0 Starting time of power save mode, T0 = 0
τ Arrival time of first customer
Y Laplace-Stieltjes transform of a random variable Y
EL Energy consumed when listening to the channel
PS Power consumed by a mobile in a sleep state
ǫ, ǭ Normalized energy/delay weight, 0 < ǫ ≤ 1, ǭ = 1 − ǫ
V Cost function
c(t, b) Cost incurred by vacation of size b having started at time t
W−1 Branch of the Lambert W function that is real-valued on the interval

[− exp(−1), 0] and always below −1
λλλ, q rate/probability vector in the n-phase hyper-exponential distribution, λλλ =

(λ1, . . . , λn), q = (q1, . . . , qn)
η = ǭ + ǫPS , 0 < η ≤ 1 + PS

ζ = 1 + λǫEL

η
, i = 1, . . . , n, ζ > 1

The cost of the standard’s policy is, using (6),

VStd = −ǭ E[τ ] +
∞∑

k=0

n∑

i=1

qie
−λitk (ǫEL + ηbk+1) , (7)

3 Dynamic Programming

Dynamic programming (DP) is a well-known tool which allows to compute the op-
timal decision policy to be taken at each intermediate observation point, taking into
account the whole lifetime of the system. Considering our system model, we want
to identify the optimal sleep strategy where decisions are taken at each intermediate
wake-up instance. Hence, a DP approach is a natural candidate for determining the
optimal policy.

The observation points are at the end of the vacations, i.e., at tk. The conditional
residual off time at a time t is denoted τt. We introduce the following DP:

V ⋆
k (tk) = min

bk+1≥0

{
E[c(tk, bk+1)] + P (τtk

> bk+1)V
⋆

k+1(tk+1)
}
.

Here, V ⋆
k (tk) represents the optimal cost at time tk where the argument tk denotes the

state of the system at time tk. The terms P (τtk
> bk+1) and c(tk, bk+1) respectively

represent the transition probability and the stage cost at tk when the control is bk+1. In
generic notation, the per stage cost is

c(t, b) = ǭ E[(b − τt)1I{τt ≤ b}] + ǫ(EL + PSb). (8)

We can see that each stage is characterized by the distribution of the residual off time
τt. The state of the system in sleep mode can then by described by the distribution of
τt.

INRIA



Optimal Sampling for State Change Detection 5

In the rest of this section, three cases will be considered following the distribution
of the off time. We start with the DP solution for exponential off times, then derive
some structural properties of the DP solution for hyper-exponential off times. Last, the
case of general off times is considered: structural properties of the optimal policy are
found and then suboptimal solutions through DP are discussed.

3.1 Exponential Off Time

When arrivals form a Poisson process with rate λ, both the off time τ and the condi-
tional residual off time τt will be exponentially distributed with parameter λ, whatever
t is (i.e., whatever stage). The distribution of τt is characterized solely by the rate λ.
In other words, as time goes on, the state of the system is always represented by the
parameter λ. Henceforth, the DP involves a single state, denoted λ.

We are faced with a Markov Decision Process (MDP), a single state λ, a Borel
action space (the positive real numbers) and discrete time. Note that the sleep durations
are not discrete. However, decisions are taken at discrete embedded times: the kth
decision is taken at the end of the (k − 1)st vacation. Therefore, we are dealing with
a discrete time MDP. This is called “negative” dynamic programming [13]. It follows
from [6] that we can restrict to stationary policies (that depend only on the state) and
that do not require randomization. Since there is only one state (at which decisions are
taken) this implies that one can restrict to vacation sizes that have fixed size and that
are the same each time a decision has to be taken. In other words, the optimal sleep
policy is the constant one. Hence the optimal value is given by the minimization of the
following MDP:

V ⋆(λ) = min
b≥0

{
ǭE

[(
b − τ(λ)

)
1I{τ(λ) ≤ b}

]

+ǫ(EL + bPS) + P
(
τ(λ) > b

)
V ⋆(λ)

}
. (9)

Proposition 3.1 The optimal vacation size for exponential off time and the minimal

cost are given by

b⋆ = −
1

λ

(
ζ + W−1

(
−e−ζ

))
; (10)

V ⋆(λ) = −
1

λ

(
ǭ + ηW−1

(
− e−ζ

))
, (11)

with ζ := 1+λǫEL/η, and where W−1 denotes the branch of the Lambert W function1

that is real-valued on the interval [− exp(−1), 0] and always below −1.

Proof: From (9) we can express

V (λ) =
ǭE

[(
b − τ(λ)

)
1I{τ(λ) ≤ b}

]
+ ǫ(EL + bPS)

1 − P
(
τ(λ) > b

) (12)

Substituting

E
[(

b − τ(λ)
)
1I{τ(λ) ≤ b}

]
=

λb − 1 + exp(−λb)

λ

1The Lambert W function, satisfies W (x) exp(W (x)) = x. As y exp(y) = x has an infinite number
of solutions y for each (non-zero) value of x, the function W (x) has an infinite number of branches.
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6 Azad, Alouf, Altman, Borkar & Paschos

and
P

(
τ(λ) > b

)
= exp(−λb)

in (12) and differentiating w.r.t. b we obtain

V ′(λ) = η

{
1 − exp(−λb)(ζ + λb)

(1 − exp(−λb))2

}
. (13)

At the extremum of V (λ), denoted b⋆, we must have

1 − exp(−λb⋆)(ζ + λb⋆) = 0

⇔ exp(−ζ − λb⋆)(−ζ − λb⋆) = − exp(−ζ).

The last expression is of the form y exp(y) = x with y = −ζ − λb⋆ and x =
− exp(−ζ). The solution y is the Lambert W function [4], denoted W , at the point
x. Hence,

−ζ − λb⋆ = W (− exp(−ζ)).

Since ζ ≥ 1, we have− exp(−1) ≤ − exp(−ζ) < 0. Therefore, we needW (− exp(−ζ))
to be real-valued in [− exp(−1), 0[. Also, given that ζ+λb⋆ ≥ 1, we needW (− exp(−ζ))
to be always negative and smaller than −1. Both conditions are satisfied by the branch
numbered −1. Hence, −ζ − λb⋆ = W−1(− exp(−ζ)) and (10) is readily found. Re-
placing (10) in (12) and using the relation exp(y) = x/y, one can derive (11).

Similarly we proceed to the second order conditions to determine if b⋆ yields min-
imum cost. The second derivative function of the cost is

V ′′(λ) =
ηλ1e

−λ1b

(1 − e−λ1b)3
{
(1 + e−λ1b)(1 + ζ1 + λ1b) − 4

}
.

The sign of V ′′(λ) depends on the value of

z1(b) := (1 + exp(−λ1b))(1 + ζ1 + λ1b).

The following can be easily derived

z′1(b) = λi (1 − exp(−λ1b)(ζ1 + λ1b))

lim
b→0

z′1(b) = −λ1(1 − ζ1) < 0

lim
b→∞

z′1(b) = λ1 > 0

The derivative z′1(b) is null for b = b⋆ > 0, negative for b < b⋆ and positive for
b > b⋆. Hence, z1(b) decreases from limb→0 z1(b) = 2(1 + ζ1) > 4 to its minimum

z1(b
⋆) = − (W−1(−e−ζ1 )−1)2

W−1(−e−ζ1)
> 4 and then increases asymptotically to +∞. We have

shown that z1(b) > 4 for any positive b. Therefore, V ′′(λ) > 0 for any positive b.
V (λ) is then a convex function in b and the extremum b⋆ is a global minimum, which
concludes the proof. ♦

3.2 Hyper-Exponential Off Time

We assume in this section that τ is hyper-exponentially distributed with n phases and
parameters λλλ = (λ1, . . . , λn) and q = (q1, . . . , qn).

INRIA



Optimal Sampling for State Change Detection 7

3.2.1 Distribution of the Conditional Residual Off Time τt

The tail of τt can be computed as follows

P (τt > a) = P (τ > t + a | τ > t) =
P (τ > t + a)

P (τ > t)

=

∑n

i=1 qi exp(−λit) exp(−λia)∑n
j=1 qj exp(−λjt)

=

n∑

i=1

gi(q, t) exp(−λia) (14)

where

gi(q, t) :=
qi exp(−λit)∑n

j=1 qj exp(−λjt)
, i = 1, . . . , n. (15)

We denote g(q, t) as the n-tuple of functions gi(q, t), i = 1, . . . , n. Observe that
g(q, 0) = q. The operator g transforms the distribution q into another distribution q

′

such that
∑n

j=1 q′j = 1 and q′j > 0.
Equation (14) is nothing but the tail of a hyper-exponential rv having n phases and

parameters λλλ and g(q, t). Except for the probabilities of the n phases, the off time τ
and its residual time τt have the same distribution and same parameterλλλ. As time goes
on, the residual time keeps its distribution but updates its phases’ probabilities, through
the operator g. It can be shown that

gi(q, b1 + b2) = gi

(
gi(q, b1), b2

)
. (16)

In other words, the operator g is such that the result of the transformation after b1 + b2

units of time is the same as that of a first transformation after b1 units of time, followed
by a second transformation after b2 units of time.

To simplify the notation, we will drop the subscript of the residual off time τt,
and instead, we will add as argument the current probability distribution (which is
transformed over time through the operator g). For instance, if at some point in time,
the residual off time has the probability distribution q

′, then we will use the notation
τ(q′).

The results above can be extended to account for a random passed time T . We have

P (τ > T + a | τ > T ) =

n∑

i=1

gi(q, T ) exp(−λia)

where

gi(q, T ) :=
qiT (λi)∑n

j=1 qjT (λj)
=

qiT (λi)

P (τ > T )
. (17)

There is an abuse of notation in the definition of gi(q, T ), as this function depends
on the distribution of T and not on the rv T itself. The function gi(q, T ) is not a rv.
Observe that (15), where time is deterministic, is a particular case of (17). Asymptotic
properties of g are provided next.

Define the composition g
m(q, b) = g

(
g

m−1(q, b), b
)

= g(q, mb), where g
1(q, b)

is the vector whose ith element is given in (15). Assume, without loss of generality,
that λ1 ≤ . . . ≤ λn. Let e(i) be the n-dimensional vector whose ith element is 1 and
all other elements are zero.

RR n° 7026
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Lemma 3.1 Fix q and let I(q) be the smallest j for which qj > 0. The following limit
holds:

lim
m→∞

g
m(q, b) = e(I(q)).

Proof: Let α(i) := exp(−λib)
exp(−λI(q)b)

. Then (15) can be rewritten

gi(q, b) =
qiαi∑n

j=I(q) qjαj

.

In particular,

gm
I(q)(q, b) =

qI(q)

qI(q) +
∑

j>I(q) qjαm
j

.

Since λi ≤ λj for I(q) < i < j, then αj < αi ≤ αI(q)+1 ≤ αI(q) = 1. Hence

gm
I(q)(q, b) ≥

qI(q)

qI(q) + αm
I(q)+1

∑
j>I(q) qj

⇔
∑

j>I(q)

gm
j (q, b) ≤

αm
I(q)+1(1 − qI(q))

qI(q) + αm
I(q)+1(1 − qI(q))

≤ αm
I(q)+1

1 − qI(q)

qI(q)
.

We then have that
lim

m→∞

∑

j>I(q)

gm
j (q, b) = 0,

which implies the lemma. ♦
Lemma 3.1 states that, as time passes, the residual off time’s distribution translates

its mass towards the phase with the smallest rate, and converges asymptotically irre-
spective of the initial distribution. This suggests that there exists a threshold on the
time after which the optimal policy is the one that corresponds to the optimal policy
for state I(q).

Lemma 3.2 For any q we have

lim
q′→q

V (q′) = V (q).

Lemma 3.2 states that as the state converges, the value also converges to the value at
the converged state.

3.2.2 DP Solution

Below we formulate the optimization problem as an MDP where the state space is
taken to be the simplex of dimension n, i.e. the set of probability measures over the
set {1, 2, ..., n}. At each stage, the residual off time sees its probability distribution
being updated. Let q0 denote the probability distribution of the total off time. It is then
the probability distribution of the residual off time at time 0. Thanks to the property
(16), the probability distribution of the residual off time at stage k + 1, i.e., at time
tk, is q = g(q0, tk). Henceforth, there is a one to one relation between the stage and

INRIA



Optimal Sampling for State Change Detection 9

the current probability distribution of the residual off time. Without loss of optimality,
either of them can be the state in the MDP [3, Sect. 5.4].

The system state is denoted q and represents the current probability distribution of
the residual off time. The initial state is q

0. We assume that the controller can choose
any time b (a constant or a rv) until he wakes up. The transition probabilities are simply

Pq,b,q′ = 1I{q′ = g(q, b)} .

We are faced with an MDP with a Borel action space and a state space that is the
set of probability vectors q. Note however that, starting from a given q, there is a
countable set Q of q’s so that only states within Q can be reached from q. Therefore
we may restrict the state space to the countable set Q. We can again use [6] to conclude
that we may restrict to policies that choose at each state a non-randomized decision b,
and the decision depends only on the current state (and need not depend on the previous
history). We next show that there is some b such that actions may be restricted to the
compact interval [0, b] without loss of optimality.

Consider the policy w that takes always a constant one unit length vacation. It is
easily seen that the total expected cost, when using policy w, is upper bounded by

v := ǭ + ǫ
(
1 + sup

i

1/λi

)
(EL + PS).

Here, ǭ is an upper bound on the expected waiting cost and 1 + supi 1/λi is an upper
bound on E[X ], the expected number of vacations, and on E[TX ], the expected idle
time. We conclude that

Lemma 3.3 For all q, V (q) ≤ v.

Lemma 3.4 Without loss of optimality, one may restrict to policies that take only ac-

tions within [0, b] where

b =
1

ǭ
{v + 1 + 1/(min

i
λi)}.

Proof: Let u be an ǫ-optimal Markov policy that does not use randomization, where
ǫ ∈ (0, 1). If ui > b for some i then the expected immediate cost at step i is itself
larger than 1 plus the total expected cost that would be incurred under the policy w:

E
[(

b − τ(q)
)
1I{τ(q) ≤ b}

]
> v + 1.

Thus, by switching from time i onwards to w, the expected cost strictly decreases by
at least 1 unit; thus u cannot be ǫ-optimal. ♦

We conclude that the MDP can be viewed as one with a countable state space, com-
pact action space, discrete time, and non-negative costs (known as “negative dynamic
programming”). Using [13] we then conclude:

(i) The optimal value (minimal cost) is given by the minimal solution of the follow-
ing DP:

V (q) = min
b≥0

{
ǭE

[(
b − τ(q)

)
1I{τ(q) ≤ b}

]
(18)

+ǫ(EL + bPS) + P
(
τ(q) > b

)
V

(
g(q, b)

)}
.
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10 Azad, Alouf, Altman, Borkar & Paschos

(ii) Let B(q) denote the set of all b’s that minimize the right hand side of (18) for a
given q. Then any policy that chooses at state q some b ∈ B(q) is optimal.

The value iteration can be used as an iterative method to compute V (q). Starting
with V0 = 0 we write

Vk+1(q) = min
b≥0

{
ǭE

[(
b − τ(q)

)
1I{τ(q) ≤ b}

]

+ǫ(EL + bPS) + P
(
τ(q) > b

)
Vk

(
g(q, b)

)}
.

Then V (q) = limk→∞ Vk(q), see [3]. The iteration is to be performed for every possi-
ble state q. Lemma 3.1 implies that the moving state, g(q, b), converges asymptotically
to e(I(q)). To complete the value iteration, we compute, for a fixed b,

E
[(

b − τ(q)
)
1I{τ(q) ≤ b}

]
= b −

n∑

i=1

qi

1 − exp(−λib)

λi

.

3.3 General Distribution of Off Time

In this section, off times have a general distribution. As a consequence, one can no
longer expect that the residual off time will keep the same distribution over time, updat-
ing only its parameters. Therefore, the system state is the instant t at which a vacation
is to start. We use again τt to denote the conditional residual value of τ at time t (i.e.,
τ − t given that τ > t.

As a state space, we consider the set of non-negative real numbers. An action b
is the duration of the next vacation. We shall assume that b can take value in a finite
set. The set of t reachable (with positive probability) by some policy is countable. We
can thus assume without loss of generality that the state space is discrete. Then the
following holds:

Proposition 3.2

(i) There exists an optimal deterministic stationary policy.

(ii) Let V 0 := 0, V k+1 := LV k, where

LV (t) := min
b

{c(t, b) + P (τt > b)V (t + b)}

where c(t, b) has been defined in (8). Then V k converges monotonically to the

optimal value V ⋆.

(iii) V ⋆ is the smallest nonnegative solution of V ⋆ = LV ⋆. A stationary policy that

chooses at state t an action that achieves the minimum of LV ⋆ is optimal.

Proof: (i) follows from [13, Thm 7.3.6], and (ii) from [13, Thm 7.3.10]. Part (iii) is
due to [13, Thm 7.3.3]. ♦

Observe that V k expresses the optimal cost for the problem of minimizing the total
cost over a horizon of k steps.

Proposition 3.3 Assume that τt converges in distribution to some limit τ̂ . Define

v(b) := ĉ(b)/[1 − P (τ̂ > b)]. Then

INRIA



Optimal Sampling for State Change Detection 11

(i) limt→∞ V ⋆(t) = minb v(b).

(ii) Assume that there is a unique b that achieves the minimum of v(b) and denote it

by b̂. Then there is some stationary optimal policy b(t) such that for all t large

enough, b(t) equals b̂.

Proof: By the bounded convergence theorem,

lim
t→∞

c(t, b) = ǭ E[(b − τ̂ )1I{τ̂ ≤ b}] + ǫ(EL + bPS)

= ĉ(b).

Let V 0 := 0. Then

V̂ 1 := lim
t→∞

(LV 0)(t) = min
b

ĉ(b)

which is a constant. Assume that V̂ k := limt→∞ V k(t) exists for some k. Then

V̂ k+1 := lim
t→∞

(LV k)(t)

= lim
t→∞

min
b

{
c(t, b) + P (τt > b)V k(t + b)

}

= min
b

{
ĉ(b) + P (τ̂ > b)V̂ k

}

which is a constant. Hence by the monotone convergence of V k to V ⋆, the limit V̂ :=
limt→∞ V ⋆(t) exists and satisfies the limit dynamic programming (DP)

V̂ = min
b

LV̂

This DP corresponds to an MDP that has a single state and thus there exists an optimal
constant deterministic policy that takes always the same b, which we denote b̂. This
gives

V̂ = ĉ(̂b) + P (τ̂ > b̂)V̂

so that

V̂ =
ĉ(̂b)

1 − P (τ̂ > b̂)
= v(̂b) = min

b
v(b).

Any other stationary (constant) deterministic policy b for the limit DP gives a larger
value

ĉ(b)

1 − P (τ̂ > b)
≥ V̂

This establishes (i).
In part (ii), the last inequality is strict for all b 6= b̂. Since the limit DP is obtained from
the original one by considering large t, it follows that for all t large enough, b̂ will give
a strictly lower value of c(t, b) + P (τt > b)V (t + b) than any other value of b. Thus
by part (iii) of the previous theorem, b̂ is optimal at all t large enough. ♦

To recapitulate, we have shown, that for a general off time, it is enough to consider
deterministic policies to achieve optimal performance. Also, if the residual off time
distribution converges in time then the optimal policy converges to the constant policy
and in fact becomes constant after finite time (under the appropriate conditions). This
can be shown to be the case with the hyper-exponential distribution. Indeed, its residual
time converges in distribution to an exponential distribution, having as parameter the
smallest among the rates of the hyper-exponential distribution.
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12 Azad, Alouf, Altman, Borkar & Paschos

3.3.1 Suboptimal policies through dynamic programming

In this section, we propose a suboptimal solution approach using policy iteration for
a few stages. For the rest of the stages, we consider a static control that is computed
through parametric optimization, which is done next.

Consider a class of policies in which all vacations are i.i.d. exponentially dis-
tributed rvs with parameter b. We will refer to this class as the “Exponential vacation
policy.” With this policy, the cost, denoted Ve, depends only on E[τ ], as detailed here-
after. Conditioning on a given inactivity period τ , the number of vacations decremented
by one is a Poisson variable with rate τ/b. It is straightforward to write

E[X ] = E[τ ]/b + 1; E[TX ] = bE[X ] = E[τ ] + b.

Equation (3) can be rewritten (recall that η = ǭ + ǫPS)

Ve = ǫ
(
PS + EL/b

)
E[τ ] + ǫEL + ηb. (19)

Observe that (19) stands for any distribution of τ . We next find the optimal total cost
under the Exponential policy.

Proposition 3.4 The cost Ve is a convex function having a minimum at

b⋆
e =

√
ǫELE[τ ]

ǭ + ǫPS

. (20)

The minimal total cost is

V ⋆
e = ǫ(PSE[τ ] + EL) + 2

√
ǫ(ǭ + ǫPS)ELE[τ ] (21)

Proof: Let us compute the first and second derivative of the cost w.r.t. b. We find

V ′
e = η −

ǫELE[τ ]

b2
; V ′′

e = 2
ǫELE[τ ]

b3
.

Clearly, V ′′
e ≥ 0 for any b > 0, hence Ve is a convex function. The derivative

V ′
e has a root at b⋆

e as given in (20), which yields a minimum in the cost Ve at b⋆
e .

Substituting the optimal b⋆
e in (19) we obtain the minimal cost (21). ♦

The optimal control is b⋆
e . Proposition 3.4 is really interesting in that it says that

with i.i.d. exponential vacations, only the expected inactivity period defines the optimal
control. The inactivity period τ can be generally distributed. Therefore, Proposition
3.4 stands valid for any user application.

Now that we have computed the static control for all stages, we proceed with one
stage policy iteration. With this iteration, the vacations have the form (b1, B, B, . . .)
where B is an exponentially distributed rv with mean b. We can use DP to compute the
optimal policy within this class. The problem is given by

V ⋆
1 (0) = min

b≥0
{c(0, b1) + P (τ > b1)V

⋆(b1)} (22)

where V ⋆(b1) is equivalent to V ⋆
e in (21) after replacing the off time τ with the residual

off time at time b1, i.e., τb1 . The optimal control identified through DP is b⋆
1 and b⋆.

When τ is hyper-exponentially distributed, the system state is the distribution q

which is transformed after each stage through the operator g.
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Optimal Sampling for State Change Detection 13

If we add the constraint that the first vacation should be exponentially distributed
with the same distribution as B, then we will be back to the problem of finding an
optimal exponentially distributed vacation with state-independent mean. Since we do
not impose this restriction, the policy obtained after one stage iteration will do strictly
better than the Exponential vacation policy.

This suboptimal method for one stage policy iteration can be extended to more
stages. Instances of the two stage policy iteration are provided in Sect. 5. As the
number of stages of the policy iteration increases, the suboptimal solution converges to
the optimal solution (obtained from (18) if τ is hyper-exponentially distributed).

4 Worst Case Performance

We consider in this section the case where the off time is exponentially distributed with
an unknown parameter. When the distribution of the parameter is known (Bayesian
framework) the problem reduces to the study of the hyper-exponentially distributed off
time. In practice there could be many situations when the statistical distribution of
the off time is unknown or hard to estimate. In such non-Bayesian frameworks, we can
conduct a worst-case analysis: optimize the performance under the worst case choice of
the unknown parameter. We assume that this parameter lies within the interval [λa, λb].
The worst case is identified as follows

λw := arg max
λ∈[λa,λb]

min
{Bk},k∈IN∗

V (23)

Given that τ is assumed to be exponentially distributed, it is enough to analyze the case
of the Constant vacation policy, which has been found to be the optimal in Sect. 3.1.
The minimal cost under this policy is given in (11). We have studied (11) using the
mathematics software tool, Maple 11. We found the following: V ⋆(λ) is a monotonic
function, decreasing with λ; limλ→+∞ V ⋆(λ) = ǫEL; and limλ→0 V ⋆(λ) = +∞.
Thus, the optimal control under worst case is the one corresponding to the smallest rate
in the interval considered, i.e., λw = λa.

5 Numerical Investigation

In this section we show some numerical results of our model, when the off time τ is
either exponentially or hyper-exponentially distributed. In each case, the best control
and the corresponding cost are computed. The cost VStd of the standard’s policy is
reported (using (7)) for comparison. The physical parameters are set to the following
values: EL = 10, and PS = 1. The parameters of the standard protocol are b1 = 2 and
l = 10.

5.1 Exponential Off Time

In this case, the optimal is to fix all vacations to the value found in (10). This optimal
control is depicted in Fig. 1. We naturally find that the optimal sleep duration decreases
as λ increases. The physical explanation is that, a large arrival rate forces the server to
be available after shorter breaks, otherwise the cost is too high. Also, as ǫ gets smaller,
the extra delay gets more penalizing (cf. (2)), enforcing then smaller optimal sleep
durations.
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Figure 1: Optimal sleep duration with exponential off times.
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Figure 2: Optimal expected cost with exponential off times.
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Figure 3: Sleep durations and costs with hyper-exponential off times.

Figure 2 depicts the optimal (cf. (11)) and standard (cf. (7)) costs. Observe in Fig.
2(a) how the cost decreases asymptotically to ǫEL (1 for ǫ = 0.1 and 9 for ǫ = 0.9)
as foreseen in Sect. 4. As λ decreases, the increase of the optimal cost is due to the
increase of the optimal sleep duration, while for the standard’s policy the cost increase
is due to the extra (useless and costly) listening. The optimal cost increases with ǫ (cf.
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Fig. 2(b)). Small values of ǫ make the cost more sensitive to delay, thereby enforcing
vacations to be smaller and subsequently incurring smaller costs.

The cost of the standard’s policy is high at small ǫ, when delay is very penalizing.
This is because the standard has been designed to favor energy over delay. As the
vacation size increases exponentially over time, the extra delay can get very large.

5.2 Hyper-Exponential Off Time

In this case, we are able to compute two suboptimal policies using policy iteration.
We compare the performance of these to that of the Exponential vacation policy and
the standard’s policy. The off time distribution is hyper-exponential with parameters
λλλ = {0.2, 3, 10} and q = {0.1, 0.3, 0.6}. The suboptimal solutions are evaluated
using (22), the exponential vacation policy using (21)-(20) and the standard’s policy
using (7).

The performance of the four policies is depicted in Fig. 3 against the energy co-
efficient weight ǫ. Naturally, the suboptimal policies perform strictly better than the
Exponential vacation policy, having the two stage iteration policy strictly outperform-
ing the one stage one (cf. Fig. 3(b)). Interestingly, for large value of ǫ, the standard’s
policy outperforms all the other policies. As observed earlier, the standard favors en-
ergy over delay, so that at large ǫ, it is very efficient in reducing the cost. It is expected
however that n-stage policy iteration will outperform the standard for sufficiently large
n.

6 Concluding Remarks

We have introduced a model for the control of vacations for optimizing energy saving
in wireless networks taking into account the tradeoff between energy consumption and
delays. Previous models studied in the literature have considered an exogenous arrival
process, whereas we considered an on-off model in which the off duration begins when
the server leaves on vacation and where the duration of the on time does not depend
on when it starts. We derived the optimal policy in case of a Poisson arrival process
and found many structural properties of the optimal policy for hyper-exponential and
general off times. Suboptimal policies have been derived in this case using one and
two stage policy iteration.
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