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Quickest detection in coupled systems

Olympia Hadjiliadis, Tobias Schaefer and H. Vincent Poor

Abstract— This work considers the problem of quickest detec-
tion of signals in a coupled system ofN sensors, which receive
continuous sequential observations from the environment.It
is assumed that the signals, which are modeled a general Itô
processes, are coupled across sensors, but that their onsettimes
may differ from sensor to sensor. The objective is the optimal
detection of the first time at which any sensor in the system
receives a signal. The problem is formulated as a stochastic
optimization problem in which an extended average Kullback-
Leibler divergence criterion is used as a measure of detection
delay, with a constraint on the mean time between false alarms.
The case in which the sensors employ cumulative sum (CUSUM)
strategies is considered, and it is proved that the minimum of N
CUSUMs is asymptotically optimal as the mean time between
false alarms increases without bound.

Keywords: Kullback-Leibler divergence, CUSUM, quick-
est detection

I. INTRODUCTION

We are interested in the problem of quickest detection
of the onset of a signal in a system ofN sensors. We
consider the situation in which, although the observations
in one sensor can affect the observations in another, the
onset of a signal can occur at different times (i.e., change
points) in each of theN sensors; that is, the change points
differ from sensor to sensor. As an example in which this
situation arises consider a system of sensors monitoring the
health of a physical structure in which fault conditions are
manifested by vibrations in the structure. Before a change
affects a given sensor, we have only noise in that sensor.
Then, after a change, the system is vibrating and thus the
signal received in any location reflects a vibrating system.
Thus, observations at any given sensor are coupled with
those received in other locations. The change points observed
at different sensors can occur at different times because
the source of the vibrations (i.e., the excitation) may arrive
at different structural elements at different times. Relevant
literature related to such models includes, for example, [1]–
[3], [5], [7], [8], [15].

We assume that the probability law of the observations is
the same across sensors. This assumption although seemingly
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restrictive, is realistic in view of the fact the system of
sensors is coupled. We model the signals through continuous-
time Itô processes. The advantage of such models is the
fact that they can capture complex dependencies in the
observations. For example, an autoregressive process is a
special case of the discrete-time equivalent of an Ornstein-
Uhlenbeck process, which in turn, is a special case of an Itô
process. Other special cases of this model include Markovian
models, and linear state-space systems commonly used in
vibration-based structural analysis and health monitoring
problems [1]–[3], [5], [7], [8], [15]. It is important to stress
that the fact that the system ofN sensors is coupled makes
the probabilistic treatment of the problem equivalent to
the one in which all observations become available in one
location. The reason is that one integrated information flow
is sufficient for describing such a system.

Our objective is to detect the first onset of a signal in such
a system. So far in the literature of this type of problem
(see [12], [19]–[22]) it has been assumed that the change
points are the same across sensors. Recently the case was
also considered of change points that propagate in a sensor
array [17]. However, in this configuration the propagation
of the change points depends on the unknownidentity of
the first sensor affected and considers a restricted Markovian
mechanism of propagation of the change.

In this paper we consider the case in which the change
points can be different and do not propagate in any specific
configuration. The objective is to detect the minimum (i.e.,
the first) of the change points. We demonstrate that, in the
situation described above, at least asymptotically, the mini-
mum ofN CUSUMs is asymptotically optimal in detecting
the minimum of theN different change points, as the mean
time between false alarms tends to∞, with respect to an
appropriately extended Kullback-Leibler divergence criterion
criterion [11] that incorporates the possibility ofN different
change points.

In the next section we formulate the problem, discuss
special cases of our Itô models and demonstrate asymptotic
optimality (as the mean time between false alarms tends to
∞), in an extended min-max Kullback-Leibler sense, of the
minimum ofN CUSUM stopping times. We finally discuss
extensions of these results to the case of different structures
of observations in each sensor.

II. FORMULATIONS & RESULTS

We sequentially observe the processes{Z
(i)
t ; t ≥ 0} for

all i = 1, . . . , N . In order to formalize this problem we
consider the measurable space(Ω,F), whereΩ = C[0,∞]N

andF = ∪t>0Ft with Ft = σ{s ≤ t;Z
(1)
s , . . . , Z

(N)
s }.
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The processes{Z(i)
t ; t ≥ 0} for all i = 1, . . . , N are

assumed to have the following dynamics:

dZ
(i)
t =

{

dw
(i)
t t ≤ τi

α
(i)
t dt+ dw

(i)
t t > τi,

(1)

where {α
(i)
t ; t ≥ 0} is a process on the same probability

space adapted to the filtration{Ft} and {w
(i)
t ; t ≥ 0} are

independent standard Brownian motion. The case considered
in this paper that in whichα(i)

t is the same for alli. This
can be described as a signal symmetry across sensors.

We notice that{Ft} is the filtration generated by the
observations received by all sensors. Thus by requiring that
α
(i)
t beFt-measurable for alli , we have managed to capture

the coupled nature of the system. In particular, in the special
case in which, say,α(1)

t = −r
∑N

i=1 Z
(i)
t , (1) describes a

process which displays an autoregressive (or its continuous
equivalent [13]) behavior in{Z(1)

t ; t ≥ 0}, while still being
coupled with the observations received by the other sensors.
More specifically, the magnitude of each increment of the
process{Z(1)

t ; t ≥ 0} at each instantt is not only affected
by Z

(1)
t but also byZ(i)

t , i = 2, . . . , N the observations
at sensor2, . . . , N . This couples the observations received
in sensor1 with those received in sensors2, . . . , N at each
instantt and results in a system of interdependent sensors.
We notice that the special case described above can also be
written in the form of a linear state-space model as follows:

d







Z
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t
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Z
(N)
t
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. . . . . . . . .
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Autoregressive models and, more generally, linear state space
models have been used to capture seismic signals, navigation
systems, vibrating mechanical systems, etc. (see, e.g., [4]).
Another special case of (1) is

d

(

Z
(1)
t

Z
(2)
t

)

=

(

0 1
−1 0

)

dt+

(

dW
(1)
t

dW
(2)
t

)

,

a model that describes sinusoidal waves driven by noise.
Such a model could also be used to capture vibrating
mechanical systems. The generality of 1 however is much
greater than the special cases described above. This is seen
in the fact thatα(i)

t at each instantt can depend on the
totality of the observed paths of each of the signals received
up to timet.

On the spaceΩ, we have the following family of probabil-
ity measures{Pτ1,...,τN}, wherePτ1,...,τN corresponds to the
measure generated onΩ by the processes(Z(1)

t , . . . , Z
(N)
t )

when the change in theN -tuple process occurs at time point
τi, i = 1, . . . , N . Notice that the measureP∞,...,∞ corre-
sponds to the measure generated onΩ by N independent
standard Brownian motions.

Our objective is to find a stopping ruleT that balances
the trade-off between a small detection delay subject to a
lower bound on the mean-time between false alarms and will
ultimately detectmin{τ1, . . . , τN}. In what follows we will
use τ̃ to denotemin{τ1, . . . , τN}.

To this effect we propose a generalization of theJKL of
[11], namely

J
(N)
KL (T ) =

sup
τ1,...,τN

essup Eτ1,...,τN

{

1

2

(

1

N

∫ T

τi

N
∑

i=1

(α(i)
s )2ds

)

| Fτ̃

}

,

(2)

where the supremum overτ1, . . . , τN is taken over the set
in which min{τ1, . . . , τN} < ∞. That is, we consider the
worst detection delay over all possible realizations of paths
of the N -tuple of stochastic processes(Z(1)

t , . . . , Z
(N)
t ) up

to min{τ1, . . . , τN} and then consider the worst detection
delay over all possibleN -tuples{τ1, . . . , τN} over a set in
which at least one of them is forced to take a finite value.
This is becauseT is a stopping rule meant to detect the
minimum of theN change points and therefore if one of the
N processes undergoes a regime change, any unit of time by
which T delays in reacting, should be counted towards the
detection delay. This gives rise to the following stochastic
optimization problem:

(3)
inf
T

J
(N)
KL (T ), subject to

E∞,...,∞

{

1
2

∫ T

0
1
N

∑N
i=1(α

(i)
s )2ds

}

≥ γ.

The criterion in (2) can be similarly motivated by consid-
ering the average over all sensors of the Kullback-Leibler
divergence:

Eτ1,...,τN

{

1

N
log

dPτ1,...,τN

dP∞,...,∞

∣

∣

∣

∣

Ft

∣

∣

∣

∣

∣

Fτ̃

}

= Eτ1,...,τN

{

1

N

N
∑

i=1

∫ t

τi

1

2
(α(i)

r )2dr|Fτ̃

}

(4)

where the last equality follows as long as

Eτ1,...,τN

{∫ t

τ̃

(α(i)
r )2dr

∣

∣

∣
Fτ̃

}

< ∞ a.s.(5)

for all i = 1, . . . , N and all t < ∞.
Using an argument similar to the randomization argument

of [6], it is also possible to show that the optimal stopping
rule T ∗ must be an equalizer rule in that it would react at
exactly the same time regardless of which change takes place
first. In order to demonstrate this fact we begin by noting that
minimization of (2) is equivalent to minimizing

sup
τ1,...,τN

essup Eτ1,...,τN

{

1

2

(

∫ T

τ̃

1

N

N
∑

i=1

(α(i)
s )2ds

)

| Fτ̃

}

(6)



Now define

J
(N)
i (T ) =

sup
τi≤τj,j 6=i

essupEτ1,...,τN

{(

1

2

∫ T

τi

1

N

N
∑

i=1

(α(i)
s )2ds

)∣

∣

∣

∣

∣

Ft

}

,

for i = 1, . . . , N . That is,J (N)
i (T ) is the detection delay of

the stopping ruleT whenτi ≤ minj 6=i{τj}. Then

J
(N)
KL (T ) = max

{

J
(N)
1 (T ), J

(N)
2 (T ), . . . , J

(N)
N (T )

}

.

(7)

The optimal solution to (3),T ∗, satisfies

J
(N)
1 (T ∗) = J

(N)
2 (T ∗) = . . . = J

(N)
N (T ∗).(8)

To see this, let us consider the case whenN = 2. Let T
be a stopping rule such thatJ (2)

1 (T ) < J
(2)
2 (T ). Consider

another stopping ruleS, which stops asT does, but observes
Z

(2)
t in place ofZ(1)

t andZ
(1)
t in place ofZ(2)

t . It follows
that

J
(2)
1 (S) = J

(2)
2 (T ) and J

(2)
2 (S) = J

(2)
1 (T ).

We trivially also have that

E∞,∞{S} = E∞,∞{T }.

Now let us use a binary random variableX ∈ {0, 1}, which
is independent of{Ft}, to construct a randomized stopping
rule adapted toF̂t = Ft ∨ σ(X),

T̂ = XT + (1−X)S.(9)

It is easy to observe that

E∞,∞{T̂} = E∞,∞{T },

and

J
(2)
1 (T̂ ) = J

(2)
2 (T̂ ) =

1

2

[

J
(2)
1 (T ) + J

(2)
2 (T )

]

< J
(2)
2 (T ),

which implies

J (2)(T̂ ) < J (2)(T ),

by (7). Therefore the optimal solution to (3) must satisfy
(8)1.

For a fixed i, and the dynamics of (1) the CUSUM
stopping rule is

Tν = inf{t ≥ 0; y
(i)
t = ν},(10)

where

y
(i)
t = u

(i)
t −m

(i)
t , i = 1, . . . , N(11)

with m
(i)
t = infs≤t u

(i)
s , i = 1, . . . , N and

u
(i)
t =

∫ t

0

α(i)
s dZ(i)

s −
1

2

∫ t

0

(α(i)
s )2ds.(12)

1Although T̂ of equation (9) is measurable with respect to the enlarged
filtration

n

F̂t

o

, the optimal solution to (3) must be adapted to the original

filtration {Ft}.

In the case thatN = 1, in which the drift denoted byαt is
measurable with respect to the filtration generated by only
one process, say{Zt; t ≥ 0} the CUSUM stopping rule
(10) is optimal in minimizing the Kullback-Leibler diver-
gence criterion of [11] subject to the false alarm constraint
E∞{ 1

2

∫ Tν

0
α2
t dt} ≥ γ. The ν in (10) is chosen so that

E∞

{

1
2

∫ Tν

0
α2
t dt
}

≡ f(ν) = γ, with f(ν) = eν − ν − 1

(see [11]) and

J
(1)
KL(Tν) ≡ E0

{

1

2

∫ Tν

0

α2
t dt

}

= f(−ν).(13)

The fact that the worst detection delay is the same as that
incurred in the case in which the change point is exactly0 is
a consequence of the non-negativity of the CUSUM process,
from which it follows that the worst detection delay occurs
when the CUSUM process at the time of the change is at0
[11].

The CUSUM stopping rule (10) is an optimal solution to
one-dimensional problem of detecting one change-point in
the one-dimensional equivalent of (3). The details can be
found in [11] and [16]. It is important however to point out
that a vital assumption necessary for the optimality of the
CUSUM (10) in [11] is

Pτi

(∫ ∞

0

αs
2ds = ∞

)

= P∞

(∫ ∞

0

αs
2ds = ∞

)

= 1.(14)

This assumption ensures the a.s. finiteness of the CUSUM
stopping time (see [9]), whose physical interpretation is
that the signal received after the change point has sufficient
energy. We will thus assume that conditions (14) are satisfied
for all processes{α(i)

s }.
We remark here that if theN change points were the same

then the problem (3) is equivalent to observing only one
stochastic process which is nowN -dimensional. Thus, in
this case, the detection delay and mean time between false
alarms are given by the formulas in the above paragraph.

Returning to problem (3), it is easily seen that in seeking
solutions to this problem, we can restrict our attention to
stopping times that achieve the false alarm constraint with
equality [10]. The optimality of the CUSUM stopping rule
in the presence of only one observation process suggests
that a CUSUM type of stopping rule might display similar
optimality properties in the case of multiple observation
processes. In particular, an intuitively appealing rule, when
the detection ofmin{τ1, . . . , τN} is of interest, isTh =
T 1
h ∧ . . . ∧ TN

h , whereT i
h is the CUSUM stopping rule for

the process{Z(i)
t ; t ≥ 0} for i = 1, . . . , N . That is, we use

what is known as a multi-chart CUSUM stopping time [18],
which can be written as

Th = inf
{

t ≥ 0;max{y
(1)
t , . . . , y

(N)
t } ≥ h

}

,(15)

where

y
(i)
t = sup

0≤τi≤t
log

dPτi

dP∞

∣

∣

∣

∣

Ft

,



and thePτi are the restrictions of the measurePτ1,...,τN to
C[0,∞).

It is easy to see that (15) is an equalizer rule. That is, it
satisfies (8). This follows from the assumption that{α

(i)
t }

are the same for alli.
Moreover,

J
(N)
KL (Th) = E0,∞,...,∞

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

= E∞,0,∞,...,∞

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

= . . .

= E∞,...,∞,0

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

.(16)

This is because the worst detection delay occurs when at
least one of theN processes does not change regime. Thus,
the worst detection delay will occur when none of the other
processes changes regime and due to the non-negativity of
the CUSUM process the worst detection delay will occur
when the remaining one processes is exactly at0.

Notice that the thresholdh is used for the multi-chart
CUSUM stopping rule (15) in order to distinguish it fromν
the threshold used for the one sided CUSUM stopping rule
(10).

In what follows we will demonstrate asymptotic opti-
mality of (15) as γ → ∞. In view of the constraint
in (3), the assumption that{α(i)

t } are the same for all
i and (16), in order to assess the optimality proper-
ties of the multi-chart CUSUM rule (15), we will need
to begin by evaluatingE0,∞,...,∞

{

1
2

∫ Th

0 (α
(1)
t )2dt

}

and

E∞,...,∞

{

1
2

∫ Th

0
(α

(1)
t )2dt

}

.
In order to demonstrate asymptotic optimality of (15) we

bound the detection delayJ (N)
KL of the unknown optimal

stopping ruleT ∗ by

E0,∞,...,∞

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

> J
(N)
KL (T ∗),(17)

whereh is chosen so that

E∞,...,∞

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

= γ.(18)

It is also obvious thatJ (N)
KL (T ∗) is bounded from below by

the detection delay of the one CUSUM when there is only
one observation process, in view of the fact that

supτ1,...,τN essupEτ1,...,τN

{

1
2

∫ T

τ̃
(α

(1)
t )2dt|Fτ̃

}

≥

≥ supτ1 essupEτ1

{

1
2

∫ T

τ1
α2
tdt|F

(1)
τ1

}

,(19)

whereαt is measurable w.r.t. the filtration generated by the
1-dimensional process{Z(1)

t }, denoted by{F (1)
t }, and is the

projection of{α(1)
t } on the filtration{F (1)

t }.
The stopping time that minimizes the right hand side is

the CUSUM stopping ruleTν of (10), with ν chosen so as

to satisfy

E∞

{

1

2

∫ Tν

0

α2
tdt

}

= γ.(20)

We will demonstrate that the difference between the upper
and lower bounds

E0,∞,...,∞

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

> J
(N)
KL (T ∗)

> E0

{

1

2

∫ Tν

0

α2
tdt

}

,

(21)

is bounded by a constant asγ → ∞, with h andν satisfying
(18) and (20), respectively.

Lemma 1:Suppose that{α(i)
t } are the same for alli. We

have

E0,∞,...,∞

{

1

2

∫ Th

0

(α
(1)
t )2dt

}

= [log γ + logN − 1 + o(1)] ,

(22)

asγ → ∞
Proof: Please refer to the Appendix for a sketch of the proof.
Moreover, it is easily seen from (13) that

E0

{

1

2

∫ Tν

0

α2
tdt

}

= [log γ − 1 + o(1)] .(23)

Thus we have the following result.
Theorem 1:Suppose that{α(i)

t } are the same for alli.
Then the difference in detection delayJ (N)

KL of the unknown
optimal stopping ruleT ∗ and the detection delay ofTh of
(15) with h satisfying (18) is bounded above by

logN,

asγ → ∞.
Proof: The proof follows from Lemma 1 and (23).

Remark:SinceJ (N)
KL (Th) increases without bound asγ →

∞, Theorem 1 asserts the asymptotic optimality ofTh.

III. CONCLUSIONS AND FUTURE WORKS

In this paper we have demonstrated the asymptotic op-
timality of the minimum ofN CUSUMs for detecting the
minimum ofN different change points in a coupled system
of N sensors which receive sequential observations from
the environment. We have allowed for a general dependence
structure in the observations and we have shown that the
N -CUSUM stopping rule is asymptotically optimal, as the
mean time to the first false alarm increases without bound,
in detecting the minimum ofN different change-points
in the sense that it minimizes a worst average Kullback-
Leibler divergence criterion. This has been seen by the fact
that the difference in detection delay of the proposedN -
CUSUM stopping rule and the unknown optimal stopping
rule is bounded above by the constantlogN . An interesting
extension of this work would incorporate the fact that the



distributions of the signals received in different sensorsmay
be different. In this case the fact that the optimal stopping
rule has to be an equalizer rule (i.e. satisfy (8)) would
determine the optimal selection of thresholds in each sensor
which in the general case should be different.
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V. A PPENDIX

As an illustration for the general case, let us prove the
result forN = 2.

We begin by deriving the Partial Differential equations
satisfied by the functions

• S̃(x̃, ỹ) = E
(x̃,ỹ)
0,∞

{

1
2

∫ Th

0
(α

(1)
t )2dt

}

,

• T̃ (x̃, ỹ) = E
(x̃,ỹ)
∞,∞

{

1
2

∫ Th

0 (α
(1)
t )2dt

}

,

where the subscript (x̃, ỹ) indicates the indicates
the initial value of the pair of CUSUM processes
(y

(1)
t , y

(2)
t ). With this representation, it is easy to

see that E0,∞

{

1
2

∫ Th

0
(α

(1)
t )2dt

}

= S̃(0, 0) and

E∞,∞

{

1
2

∫ Th

0 (α
(1)
t )2dt

}

= T̃ (0, 0). In the sequel we

will denote byT̃x̃, T̃ỹ, S̃x̃, S̃ỹ, the first partial derivatives of
T̃ and S̃ with respect tõx and ỹ respectively. Similarly, we
will denote byT̃x̃x̃, T̃ỹỹ, S̃x̃x̃, S̃ỹỹ the second partials.

Using Itô’s rule [14], we have

(24)

T̃ (y
(1)
t , y

(2)
t )− T̃ (x̃, ỹ) =

∫ t

0

α(1)
s T̃x̃dw

(1)
s +α(2)

s T̃ỹdw
(2)
s

−

∫ t

0

T̃x̃(y
(1)
s , y(2)s )dm(1)

s + T̃ỹ(y
(1)
s , y(2)s )dm(2)

s

+

∫ t

0

(α(i)
s )2(T̃x̃x̃ + T̃ỹỹ − T̃x̃ − T̃ỹ)ds,

where the arguments of each of the above functions are
(ỹ

(1)
s , ỹ

(2)
s ) when omitted and where in the last line we use

the fact thatα(i)
s are of the same form for alli. Evaluating

the above equation atTh and taking expectations under the
P∞,∞ measure, while using conditions (5), (14), we obtain
that T̃ has to satisfy

T̃x̃x̃ + T̃ỹỹ − T̃x̃ − T̃ỹ = −1, (x̃, ỹ) ∈ D̃ = [0, h]2,(25)

with the Dirichlet boundary conditions

(26) T̃ (x̃, ỹ)|x̃=h = T̃ (x̃, ỹ)|ỹ=h = 0

and the Neumann boundary conditions

(27)
∂T̃

∂x̃

∣

∣

∣

∣

∣

x̃=0

=
∂T̃

∂ỹ

∣

∣

∣

∣

∣

ỹ=0

= 0.

Notice that the Neumann boundary conditions ensure that the
terms in the second line of (24) vanish. Similarly,S̃ satisfies

S̃x̃x̃ + S̃ỹỹ + S̃x̃ − S̃ỹ = −1, (x̃, ỹ) ∈ D̃ = [0, h]2,(28)

with the same boundary conditions asT̃ .
We can now introduce a change of variablex = x̃

h and
y = ỹ

h . By settingǫ = 1
h , we can rewrite (25) as

(29)

ǫ2T̃xx + ǫ2T̃yy − ǫT̃x − ǫT̃y = −1, (x, y) ∈ D = [0, 1]2,



with the Dirichlet boundary conditions

(30) T̃ (x, y)|x=1 = T̃ (x, y)|y=1 = 0

and the Neumann boundary conditions (27). By lettingǫT̃ =
T , we now obtain

(31)

ǫTxx + ǫTyy − Tx − Ty = −1, (x, y) ∈ D = [0, 1]2,

with T satisfying the Dirichlet boundary conditions of (30)
and the Neumann condition of (27). We are interested in the
asymptotics ofT (0, 0) for small values ofǫ (or equivalently
large values ofh). T (0, 0) can be interpreted as the mean
exit time of a particle that is placed initially at the origin,
with reflecting boundaries along the axes and absorbing
boundaries on the top and the right side of the rectangular
domainD. In order to solve the above problem, we note,
that we can write the solutionT as

(32) T (x, y) =

∫ ∞

0

G(x, y, t) dt

whereG denotes the probability that the particle, initially
placed at a point(x, y) in D leaves the domainD at a time
τ > t. The evolution ofG is then governed by the backward
Fokker-Planck equation:

(33)
∂G

∂t
= ǫ∆G−

∂G

∂x
−

∂G

∂y
.

Boundary conditions forG correspond to boundary condi-
tions ofT and the initial condition ofG is given by the fact
that, att = 0, G has the value1 in D.

In the case of the particular geometry under consideration,
we can find an approximate solution to (33) and use this to
find T . This is due to the fact that, for a rectangular domain
under the assumptions given, the solution of (33) can be
found by simple separation of variables, hence we findG as
a product of the form

(34) G(x, y, t) = G1(x, t)G2(y, t),

whereG1 satisfies the equation

(35)
∂G1

∂t
= ǫ

∂2G1

∂x2
−

∂G1

∂x

on [0, 1] with reflecting boundary at0 and absorbing bound-
ary at1. The same holds forG2 with respect to the variable
y.

In order to solve (35), we apply a Laplace transform in
t and obtain forG̃1 = G̃1(s, x) the ordinary differential
equation

(36) sG̃1 − 1 = ǫG̃′′
1 − G̃′

1.

Making use of the fact thatǫ is small, we find as leading
order approximation to the solution of (36):

(37) G̃1(0, s) ≈
ǫ e1/ǫ

ǫs e1/ǫ + 1
.

For this approximation it is simple to find the inverse Laplace
transform to obtain

(38) G1(0, t) ≈ exp

(

−
1

ǫ
e−1/ǫt

)

.

Using this formula for bothG1(0, t) andG2(0, t) we obtain
immediately forT (0, 0) in (31) the asymptotic formula

(39) T (0, 0) ≈
1

2
ǫ e1/ǫ

from which it follows that T̃ (0, 0) ≈ 1
2 e

1/ǫ. Setting
T̃ (0, 0) = γ, and usingh = 1

ǫ , we further obtain that as
γ → ∞, h ≈ log γ + log 2.

For the asymptotic formula of̃S(0, 0) of (28), we also
let S = ǫS̃ and use the same change of variable as in the
previous case. The only difference is that we have to solve
for G̃1 the different problem

(40) sG̃1 − 1 = ǫG̃′′
1 + G̃′

1.

In this case, the approximate solution takes the form

(41) G̃1(0, s) ≈
1− e−s

s
− ǫ e−s (1 + s).

From here we obtain after inverse Laplace transform

(42) G1(0, t) ≈ H(1− t)− ǫ (δ(t− 1) + δ′(t− 1)) ,

whereH denotes the Heaviside function andδ denotes the
Dirac delta distribution. Combining the formulas (42) forG1

and (38) forG2 we find as approximation ofS(0, 0) for the
problem (28)

(43) S(0, 0) =

∫ ∞

0

G1(0, t)G2(0, t) dt ≈ 1− ǫ,

from which we obtainS̃(0, 0) ≈ 1
ǫ − 1 = h− 1, from which

it follows that S̃(0, 0) ≈ log γ + log 2− 1 asγ → ∞.
Using the same derivational steps it is possible to gener-

alize toN sensors. In particular, in this case the integrand
for T (x1, . . . , xN ) in (32) becomes the product (see (34))
of N functions, G1(x1, t), . . . , GN (xN , t) each of which
satisfies equation (35) with the same boundary conditions
with respect to their respective variables. Their respective
Laplace transforms satisfy (36). This leads to

T (0, . . . , 0) ≈
1

N
ǫ e1/ǫ.(44)

Similarly, S(0, . . . , 0) takes the form (43), with integrand
consisting of the product ofN functions, the Laplace trans-
form of the first of which satisfies (40) and the Laplace
transforms of the others satisfy (36). Following the same
steps as before, this leads to the asymptotic formula

(45) S(0, . . . , 0) ≈ 1− ǫ.

Using (44) and (45), we derivẽS(0, 0) ≈ log γ + logN − 1
asγ → ∞. This completes the proof of Lemma 1.
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