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Quickest detection in coupled systems

Olympia Hadjiliadis, Tobias Schaefer and H. Vincent Poor

Abstract— This work considers the problem of quickest detec- restrictive, is realistic in view of the fact the system of
tion of signals in a coupled system ofV sensors, which receive sensors is coupled. We model the signals through continruous
continuous sequential observations from the environmentlt time 1td processes. The advantage of such models is the

is assumed that the signals, which are modeled a generalolt fact that th t | d d - in th
processes, are coupled across sensors, but that their onsietes ac a €y Can capture complex dependencies In the

may differ from sensor to sensor. The objective is the optimia observations. For exgmple, an aUtOl’?greSSiVe process i_S a
detection of the first time at which any sensor in the system special case of the discrete-time equivalent of an Ornstein

receives a signal. The problem is formulated as a stochastic Uhlenbeck process, which in turn, is a special case of an 1td
optimization problem in which an extended average Kullback — ,5cess. Other special cases of this model include Markovia

Leibler divergence criterion is used as a measure of detectn del d i tat t | di
delay, with a constraint on the mean time between false alarm models, and finear state-space systems commonly used in

The case in which the sensors employ cumulative sum (CUSUM) Vibration-based structural analysis and health monigprin
strategies is considered, and it is proved that the minimumbN  problems [1]-[3], [5], [7], [8], [15]. It is important to séss

CUSUMs is asymptotically optimal as the mean time between that the fact that the system of sensors is coupled makes
false alarms increases without bound. the probabilistic treatment of the problem equivalent to
the one in which all observations become available in one
location. The reason is that one integrated information flow
is sufficient for describing such a system.

I. INTRODUCTION Our objective is to detect the first onset of a signal in such

We are interested in the problem of quickest detectiof system. So far in the literature of this type of problem
of the onset of a signal in a system of sensors. We (see [12], [19]-[22]) it has been assumed that the change
consider the situation in which, although the observatiorigoints are the same across sensors. Recently the case was
in one sensor can affect the observations in another, tiis0 considered of change points that propagate in a sensor
onset of a signal can occur at different times (i.e., chang¥ray [17]. However, in this configuration the propagation
points) in each of theV sensors; that is, the change point®f the change points depends on the unknadentity of
differ from sensor to sensor. As an example in which thiéhe first sensor affected and considers a restricted Maakovi
situation arises consider a system of sensors monitoriag tAflechanism of propagation of the change.
health of a physical structure in which fault conditions are In this paper we consider the case in which the change
manifested by vibrations in the structure. Before a chang®ints can be different and do not propagate in any specific
affects a given sensor, we have only noise in that sens@pnfiguration. The objective is to detect the minimum (i.e.,
Then, after a change, the system is vibrating and thus thee first) of the change points. We demonstrate that, in the
signal received in any location reflects a vibrating systengituation described above, at least asymptotically, thei-mi
Thus, observations at any given sensor are coupled witRum of N CUSUMs is asymptotically optimal in detecting
those received in other locations. The change points obdenthe minimum of theN different change points, as the mean
at different sensors can occur at different times becau§ge between false alarms tends do, with respect to an
the source of the vibrations (i.e., the excitation) mayvarri appropriately extended Kullback-Leibler divergenceesidn
at different structural elements at different times. Ratgv criterion [11] that incorporates the possibility 8f different
literature related to such models includes, for examplg; [1 change points.

[31, [5], [7], [8], [15]. In the next section we formulate the problem, discuss

We assume that the probability law of the observations gPecial cases of our Itd models and demonstrate asymptotic

the same across sensors. This assumption although segmir@itimality (as the mean time between false alarms tends to

00), in an extended min-max Kullback-Leibler sense, of the
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The processes{Zt(i);t > 0} forali=1,...,N are Our objective is to find a stopping rul€ that balances

assumed to have the following dynamics: the trade-off between a small detection delay subject to a
@) lower bound on the mean-time between false alarms and will
1) a7 — dl(lz’z)s " t< T ultimately detectmin{r,...,7y}. In what follows we will
a dt +dwy’ >, use7 to denotemin{ry,..., 7y}

) ) ~ To this effect we propose a generalization of they of
where {«o; ;¢ > 0} is a process on the same probablllty[ll]’ namely

space adapted to the filtratiofyF,} and {w,@;t > 0} are
independent standard Brownian motion. The case considered
in this paper that in whicmgl) is the same for al. This J}]\Q (T) =
can be described as a signal symmetry across sensors. 1/{1 /X
We notice that{F;} is the filtration generated by the sup essup E, . - {5 (ﬁ/ Z(agx))ws) |}';},
observations received by all sensors. Thus by requiring th& ™ =1

agi) be F;-measurable for all , we have managed to capture (2)
::r:secoilrjlp\ll(va:i:hatusf OIEIt)h(isystem].Vln ;(%rtl(&;agelgctgse?zmwhere the supremum ovet, ..., 7y is taken over the set
csayey = T i 2y in which min{r,..., 78} < co. That is, we consider the

process which displays an autoregressive (or its contisiuou . : o
: ), _ ) . worst detection delay over all possible realizations ohpat
equivalent [13]) behavior ifZ;’;t > 0}, while still being

. . - of the N-tuple of stochastic processég', ...z u
coupled with the observations received by the other sensofs . P P . €8, oo 2 ) P
min{7,...,7n} and then consider the worst detection

More spec(ifi)cally, the magnitl_Jde of gach increment of th((njelay over all possibléV-tuples{r,...,7x} over a set in
process{Z, *;¢ > 0} at each instant is not only affected which at least one of them is forced to take a finite value.

by Z{") but also byZ_(”, @ = 2,...,N the observations s is becausd’ is a stopping rule meant to detect the
at sensor2,..., N. This couples the observations receivedninimum of theN change points and therefore if one of the
in sensorl with thoseT received in Sensos. . ., N ateach processes undergoes a regime change, any unit of time by
instantz and results in a system of interdependent sensors:-p, 7 delays in reacting, should be counted towards the

We notice that the special case described above can also ection delay. This gives rise to the following stochasti
written in the form of a linear state-space model as fOHOW%ptimization problem:

(1) 1
Zi Lo Zi inf J%VL)(T), subject to
dl ... = —-r| ... ... .. dt (3) T T o
7 o1 ) g B 5 I 5 S ()25} > .
th(l) The criterion in [[2) can be similarly motivated by consid-
+ I ... . ering the average over all sensors of the Kullback-Leibler
aw ™) divergence:
Autoregressive models and, more generally, linear stateesp 1 APy, ..oy
models have been used to capture seismic signals, navigatio Ery . rn N log dpi Fr
systems, vibrating mechanical systems, etc. (see, efy-, [4 N oS 1T
Another special case dfl(1) is 1 Y1, 4
@) =E.. .. NZ/ L (o)ar
o %)) - ( o )dt+ dw,V =L
Z% -1 0 aw® |’ where the last equality follows as long as
a model that describes sinusoidal waves driven by noise. ¢ ()2
Such a model could also be used to capture vibratin@) By rn {/ (") dr f?} <00 a.s.

mechanical systems. The generality[d6f 1 however is much _

greater than the special cases described above. This is sé&nall i =1,..., N and allt < .

in the fact thataff at each instant can depend on the Using an argument similar to the randomization argument
totality of the observed paths of each of the signals receivéf [6], it is also possible to show that the optimal stopping
up to timet. rule T* must be an equalizer rule in that it would react at

On the spacé), we have the following family of probabil- exactly the same time regardless of which change takes place
...tn b, WhereP,, .. corresponds to the first. In order to demonstrate this fact we begin by noting tha

measure generated &h by the processe&fl), B Zt(N)) minimization of [2) is equivalent to minimizing

yeeey

*

when the change in th&-tuple process occurs at time point 1 TN
7i, 4 = 1,..., N. Notice that the measurg,, . ., corre- sup essup Er, o {_ ( _Z(agi))zdb> | ﬁ}
sponds to the measure generated(by N independent 717~ 2\/z N i=1

standard Brownian motions. (6)



Now define

J(T) =

1 71
- = (4))2
sup essufs. . E ag”)%ds || Fe o
TiSTj:E.)j;éi ‘Eh ’N{<2~/n Nizl( ) )‘ t}

fori=1,...,N. That is,Ji(N) (T) is the detection delay of g

the stopping ruleél’ whenr; < min;.;{7;}. Then
I ) = max {7 (@), SV (1), IGO0 (1) )
(7

The optimal solution to[{3)7™*, satisfies

® SV(T7) = ST = = TR

To see this, let us consider the case whén= 2. Let T’
be a stopping rule such tha(>(T) < J{*(T). Consider
another stopping rul§, which stops ag" does, but observes
7 in place of Z") and Z{*) in place of Z. It follows
that

12(8) = J2(T) and  JP(S) = LT,
We trivially also have that
Ew.0co{S} = FEoo,{T}.

Now let us use a binary random variabtee {0, 1}, which

In the case thatV = 1, in which the drift denoted by, is
measurable with respect to the filtration generated by only
one process, sayZ;;t > 0} the CUSUM stopping rule
(I0) is optimal in minimizing the Kullback-Leibler diver-
gence criterion of [11] subject to the false alarm constrain
E{% fOT” o?dt} > ~. The v in (@0) is chosen so that

LI azdt} = f(v) = 7, with f(r) = e —v 1
(see [11]) and

T,
13) JU (1) :EO{%/O afdt} = f(~v).

The fact that the worst detection delay is the same as that
incurred in the case in which the change point is exatily

a consequence of the non-negativity of the CUSUM process,
from which it follows that the worst detection delay occurs
when the CUSUM process at the time of the change & at
[11].

The CUSUM stopping ruld_(10) is an optimal solution to
one-dimensional problem of detecting one change-point in
the one-dimensional equivalent dfl (3). The details can be
found in [11] and [16]. It is important however to point out
that a vital assumption necessary for the optimality of the
CUSUM (I0) in [11] is

P, (/ aslds = oo> = Py </ aslds = oo)
0 0

is independent of 7}, to construct a randomized stopplng(l4) - 1

rule adapted toF, = F V o(X),
9) T = XT+(1-X)S.
It is easy to observe that

EwoolT} = Ewxo{T},
and
@) = BNE) = 5 [I@) 4@ < S,
which implies

JOT) < JO(D),

This assumption ensures the a.s. finiteness of the CUSUM
stopping time (see [9]), whose physical interpretation is
that the signal received after the change point has sufficien
energy. We will thus assume that conditions| (14) are safisfie
for all processegal”}.

We remark here that if th&/ change points were the same
then the problem[{3) is equivalent to observing only one
stochastic process which is noW-dimensional. Thus, in
this case, the detection delay and mean time between false
alarms are given by the formulas in the above paragraph.

Returning to problem(3), it is easily seen that in seeking
solutions to this problem, we can restrict our attention to

by (7). Therefore the optimal solution tb](3) must satisfystopping times that achieve the false alarm constraint with

equality [10]. The optimality of the CUSUM stopping rule

For a fixedi, and the dynamics ofl[1) the CUSUM in the presence of only one observation process suggests

stopping rule is

(10) T, = inf{t>0;y!") =0},
where

(11) v = P —m, i=1,...,N
with mgi) = infs<; ugi), i1=1,...,N and

i L ) 1 [/t
(12) ug ) = / oWz — —/ (a)2ds.
0 2Jo

that a CUSUM type of stopping rule might display similar
optimality properties in the case of multiple observation
processes. In particular, an intuitively appealing rulbew
the detection ofmin{r,...,7n} is of interest, isT), =
TYA...ATY, whereT; is the CUSUM stopping rule for
the process{Zt(”;t >0} fori=1,...,N. That is, we use
what is known as a multi-chart CUSUM stopping time [18],
which can be written as

(15) 7, = inf {t > O;max{ygl), ... ,yt(N)} > h} ,

1Although 7° of equation [[D) is measurable with respect to the enlargetivhere

filtration § 7 ¢, the optimal solution td{3) must be adapted to the original y(i)
t

filtration {F%}.

| dP;,
= sup lo
0<np<t & dPy



and theP;, are the restrictions of the measuRe,, . ., to to satisfy

C0, 00). T,
It is easy to see thal (IL5) is an equalizer rule. That is, {0) E. {l/ afdt} = .
satisfies [(B). This follows from the assumption tl{a:tgz)} 2 Jo
are the same for all. We will demonstrate that the difference between the upper
Moreover, and lower bounds
1 Th 1 Th
JMNT) = Eoeo...0 {5/ (a§1>)2dt} Eoco....00 {5/ (a§1>)2dt} > TN (1)
0 0
1T 1T
= Eoo,O,oo,...,oo _/ (041(51))2(% > Eo - afdt R
2 Jo 2 Jo
1 Ty (1) 9 ) . i i
(16) = Eu0013 / (o 7)7dt o is bounded by a constant as— oo, with 2 andv satisfying
0 (I8) and [2D), respectively.

This is because the worst detection delay occurs when atLemma 1:Suppose tha{aiz)} are the same for atl. We
least one of theV processes does not change regime. Thubave
the worst detection delay will occur when none of the other 1 [T
processes changes regime and due to the non-negativityfaf ..., {5/ (ai”)th} = [logy+1log N — 1+ 0o(1)],
the CUSUM process the worst detection delay will occur 0
when the remaining one processes is exactl§. at (22)

Notice that the threshold is used for the multi-chart asy — oo

CUSUM stopping rule[(T5) in order to distinguish it from  proot. please refer to the Appendix for a sketch of the proof.
the threshold used for the one sided CUSUM stopping rul§oreover. it is easily seen frori{1L3) that

(Z0).
In what follows we will demonstrate asymptotic opti-(23) E 1 T o2dt
mality of (I8) asy — oo. In view of the constraint Y2/,

in (3), the assumption tha{af)} are the same for all .
¢ and [I6), in order to assess the optimality properThus we have the following r%S)UIt‘
Theorem 1:Suppose thaf«,’} are the same for all.

ties of the multi-chart CUSUM rule[(15), we will need ) ) ) )
to begin by evaluatingFo ... . {% OTh (agl))th} and Thgn the dlffe_rence in ijetectlon deld)@z_ of the unknown

optimal stopping rulel™ and the detection delay df, of
Beo, o {% o (a§1>)2dt}. (I3) with h satisfying [I8) is bounded above by

In order to demonstrate asymptotic optimality of1(15) we loe N

bound the detection delay%\g of the unknown optimal &
stopping ruleT™ by asy — oo.

Proof: The proof follows from Lemma&]1l and (R3).

= [logy—1+0(1)].

L7 mye (N) (o
(A7) Boo...c0 {2/0 ()%t o > Trep (T7), Remark:Since J\\)(T;,) increases without bound as—
oo, Theorentll asserts the asymptotic optimalityZif

I1l. CONCLUSIONS AND FUTURE WORKS

whereh is chosen so that

Th
(18) Ex... {l/ (agl))th} = 7. In this paper we have demonstrated the asymptotic op-
2 Jo timality of the minimum of N CUSUMs for detecting the
N) minimum of N different change points in a coupled system

. . ( K\
IL'S(;’“SO qbwczjusl, that]{Kﬁ (77) IS&:EJOSULTSIed ;rom r?elovy by Iof N sensors which receive sequential observations from
the ebtec'uon_ elay of t € one t th ;N enht €re IS 0Nfre environment. We have allowed for a general dependence
one observation process, in view of the fact that structure in the observations and we have shown that the

sup essUlE,. . {l f?(a(l))thlf;} > N-CUSUM stopping rule is asymptotically optimal, as the
T TN PV 27 AT - mean time to the first false alarm increases without bound,
(19) > sup,, €SSUPE;, {%fTTI afdﬂ}‘g)}, in detecting the minimum ofN different change-points

in the sense that it minimizes a worst average Kullback-
wherea; is measurable w.r.t. the filtration generated by theeibler divergence criterion. This has been seen by the fact
1-dimensional procesgZ. "'}, denoted by{ 7"}, and is the  that the difference in detection delay of the propogéd
projection of{a!"} on the filtration{F"}. CUSUM stopping rule and the unknown optimal stopping
The stopping time that minimizes the right hand side isule is bounded above by the constésy N. An interesting
the CUSUM stopping ruld, of (@), with v chosen so as extension of this work would incorporate the fact that the



distributions of the signals received in different sensoegy
be different. In this case the fact that the optimal stopping
rule has to be an equalizer rule (i.e. satisfy (8)) would
determine the optimal selection of thresholds in each senso

[22] A. G. Tartakovsky and V. V. Veeravalli, Asymptoticallgptimum
quickest change detection in distributed sensor syst&eguential
Analysis Vol.27, No. 4, 2008, pp. 441-475.

V. APPENDIX

which in the general case should be different.
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satisfied by the functions
o $@.9) = EGD {4 ) @fV)at},
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with the Dirichlet boundary conditions For this approximation it is simple to find the inverse Laglac
transform to obtain

(30) T(2,y)lo=1 = T(2,y)ly=1 = 0 .
. . (38) G1(0,t) ~ exp (——el/et) .
and the Neumann boundary conditions|(27). By lettiig= €
T, we now obtain Using this formula for bottG4 (0,¢) andG2(0,t) we obtain
(31) immediately for7'(0,0) in 31) the asymptotic formula
Tow+ ey — T, =T, = -1, (x,y) € D=[0,1]% (39) T(0,0) ~ %e et/e

with 7' satisfying the Dirichlet boundary conditions &f {30)fom which it follows that 7(0,0) ~ Llel/c. Setting
and the Neumann condition gf{27). We are interested in t 1 >

X ) I'D%(O,O) = «, and usingh = =<, we further obtain that as
asymptotics off’(0, 0) for small values ok (or equivalently — 00, h &~ logy + log 2. €

large values ofh). T'(0,0) can be interpreted as the mean For the asymptotic formula 0f(0,0) of (28), we also
exit time of a particle that is placed initially at the origin let S — ¢ and use the same char;ge of variable as in the

with reflecting boundaries along the axes and absorbinge, o s case. The only difference is that we have to solve
boundaries on the top and the right side of the rectangulfad'r G, the different problem

domainD. In order to solve the above problem, we note,

that we can write the solutiof’ as (40) sG—1=€eGl + G
(32) T(z,y) = / Gla, y, t) dt In this case, the approximate solution takes the form
0 ~ 1—e"%

where G denotes the probability that the particle, initially(41) Gr(0,5) ~ —ee(14s).

placed at a pointz, y) in D leaves the domaif® at a time  From here we obtain after inverse Laplace transform
T > t. The evolution ofG is then governed by the backward

Fokker-Planck equation: (42)  Gi(0,t) = H(L—1) —e (3(t=1) +0'(t = 1)),
oG G oG where’H denotes the Heaviside function addienotes the
(33) o = eAG — 9 oy Dirac delta distribution. Combining the formul&s42) fey

and [38) forG, we find as approximation o (0, 0) for the
Boundary conditions folG correspond to boundary condi- problem [28)

tions of I" and the initial condition of7 is given by the fact oo
that, att = 0, G has the valud in D. (43) S(0,0) = / G1(0,8)G2(0,t) dt = 1 — ¢,
In the case of the particular geometry under consideration, 0
we can find an approximate solution {0(33) and use this ®om which we obtainS (0, 0) ~ % —1=h—1, from which
find 7. This is due to the fact that, for a rectangular domaif follows that S(0,0) ~ logy + log2 — 1 as~y — .
under the assumptions given, the solution [of] (33) can be ysing the same derivational steps it is possible to gener-
found by simple separation of variables, hence we Gihds  ajize to N sensors. In particular, in this case the integrand

a product of the form for T'(zy,...,zy) in (B32) becomes the product (sdel(34))
of N functions, G1(x1,t),...,Gn(xN,t) each of which
(34) Glz,y,t) = Gi(z, )Ga(y, 1), satisfies equatiorﬂEBS) v)vith the éame boundary conditions
whereG, satisfies the equation with respect to their respective variables. Their respecti
Laplace transforms satisf{/_(36). This leads to
(35) oGy 6826‘1 _0G, 1
ot 9z Oz (44) T(0,...,0) ~ N6e1/€.

on [0, 1] with reflecting boundary_aﬁ and absorbing bo_und— Similarly, S(0, .. .,0) takes the form[{d3), with integrand
ary atl. The same holds fofr; with respect to the variable ¢onsisting of the product oW functions, the Laplace trans-
Y. form of the first of which satisfied (#0) and the Laplace

In order to solve[(35), we apply a Laplace transform ifransforms of the others satisfif {36). Following the same
t and obtain forG; = Gi(s,z) the ordinary differential steps as before, this leads to the asymptotic formula

equation
(45) S00,...,0)~1—¢

Using [43) and[{45), we deriv&(0,0) ~ log~y +log N — 1
Making use of the fact that is small, we find as leading as~y — oc. This completes the proof of Lemrha 1.
order approximation to the solution ¢f {36):

(36) sG1 —1= eé/{ - é’l

~ Eel/E
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