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Abstract— The theory of ergodic partition of phase space in
discrete dynamical systems is extended to continuous dynamical
systems or flows. This makes it possible to identify invariant
sets of measure-preserving flows such as Hamiltonian flows. The
extended theory is applied to an analysis of transient stability
of multi-machine power systems.

I. INTRODUCTION

Ergodicity is a well-established subject with a long history

of research in dynamical systems [1], [2]. The notion of er-

godicity is that there are no invariant sets of positive measure

with measure less than that of (a compact manifold of) phase

space [3]. It originates from foundation of statistical physics

and, apart from the physical origin, has been extensively

studied in the theory of dynamical systems. The so-called

ergodic theory of dynamical systems is applied to control

engineering, for example, control of mixing of fluid flows

[4] and nonlinear control [5], [6].

A method for visualization of invariant sets of discrete

dynamical systems possessing a smooth invariant measure

is developed in [7]. This is based on the so-called ergodic

partition or ergodic decomposition [8]. This method parti-

tions a compact metric phase space M with the level sets

of time averages of a set of functions defined on M and

identify invariant sets in M on which dynamics are ergodic.

In an ergodic invariant set, all points are accessible in the

sense that the initial conditions in this set thoroughly sample

the set. The method provides an effective tool for analyz-

ing complex dynamics described by discrete-time nonlinear

models. The theory is being developed in [9], [10], [11].

This paper is concerned with the existing theory of ergodic

partition and its application to an engineering problem. The

purpose of this paper is twofold.

One is to extend the theory of ergodic partition de-

veloped in [7] to continuous dynamical systems or flows.

The extended theory is applicable to analysis of dynamics

described by continuous-time nonlinear models. Examples

of the application include dynamics of oscillators excited by

multiple frequencies [12], which case is studied in this paper,

and fluid dynamics with time-dependent velocity profiles. In

the farmer part of this paper (Sec. III), we develop the theory
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of ergodic partition for measure-preserving flows that is a

natural extension of [7].

The other is to apply the obtained theory to an analysis of

transient stability of multi-machine power systems. In [13],

[14], we uncovered a novel instability of short-term (0 to

10 seconds) swing dynamics that we termed the Coherent

Swing Instability (CSI). CSI is an undesirable and emergent

phenomenon of synchronous machines in a power system,

in which most of the machines in the system coherently

lose synchronism with the rest of the system after being

subjected to a finite disturbance. This phenomenon does not

happen upon an infinitesimally small perturbation around

an equilibrium of nonlinear swing equations. However, it

encompasses the situation when the system escapes a pre-

defined set around the equilibrium. In this way, the notion

of instability that we address here is non-local. In [13], [14],

we derived a reduced-order, planar dynamical system that

described averaged dynamics of machines in a simple loop

power system and characterized the non-local instability. The

planar system has quasi-periodically external excitations (so

it is non-autonomous), and its solutions define a measure-

preserving flow. In the later part of this paper (Sec. IV),

by applying the theory developed in Sec. III to this flow,

we numerically identify invariant sets on two-dimensional

plane of initial conditions at one initial time. These sets are

bounded on the initial conditions’ plane and represent safe

operating conditions of the loop power system in which all

synchronous machines show bounded swings. Furthermore,

we theoretically show that the invariant sets are uniformly

bounded in the sense that the boundedness property does

not depend on initial time. This implies that CSI for the loop

power system occurs when an initial condition of the planar

system is placed outside a family of uniformly-bounded in-

variant sets. Thus we suggest that such an invariant structure

could be related to the mechanism of CSI occurring for

multi-machine power systems.

II. MEASURE-PRESERVING FLOW AND PARTITIONS OF

PHASE SPACE

We consider a measure-preserving flow of a probability

space. A probability space is the tuple (M,BM , µ) where X
is a compact metric space, BM is the Borel σ-algebra of M ,

and µ is a probability measure. A measure-preserving flow

of the probability space is a 1-parameter group of measure-

preserving diffeomorphisms {φt : t ∈ R} such that each φt

is measure-preserving1, and φ0 : M → M the identity and

φt+s = φt ◦ φs.

1µ(φ
−t(B)) = µ(B) for all B ∈ BM
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The important notion that we address here is the partition

of phase space. The definitions of partition and measurable

partition are as follows (we denote by Bc the complementary

set to a subset B of M ):

Definition 1 (Partition and Measurable Partition [7]): A

family ζ of disjoint sets whose union is identically M is

called a partition of M . Let Aα be an element of ζ where

α is an element of some indexing set A. The partition ζ is

called measurable if there exists a countable family ∆ of

measurable sets {Bi} such that (i) every Bi is a union of

elements of ζ, and (ii) for every pair Aα, Aβ of elements of

ζ, there exists B ∈ ∆ such that Aα ⊂ B and Aβ ⊂ Bc.

In Sec. III we use a product operation on many different

measurable partitions of M . The product operation is defined

as follows:

Definition 2 (Product of Partitions [7]): Let ζ1 and ζ2 be

two measurable partitions of M , let A1 and A2 be elements

of ζ1 and ζ2, respectively, and let ζ be the family of all sets

of the form A = A1∩A2. The partition ζ is also measurable

and is called a product of partitions ζ1 and ζ2, denoted by

ζ = ζ1 ∨ ζ2.

For a finite or countable product, we denote it by ζ =

n
∨

i=1

ζi

for finite n or ∞.

III. ERGODIC PARTITION UNDER MEASURE-PRESERVING

FLOW

We extend the theory of ergodic partition in [7] to

measure-preserving flows. This section consists of a few

lemma and theorem. Their proofs almost coincide with the

existing proofs in [7] and are omitted in this paper. In

what follows, we denote by L1(M) the space of all real-

valued, µ-integrable functions on M , by C(M) the set of all

real-valued, continuous functions on M , and by S a dense

countable subset of C(M).

The so-called ergodic partition is the heart of our devel-

oping theory: roughly speaking, partition of the phase space

M into (invariant) sets on which φt is ergodic. The precise

definition is as follows:

Definition 3 (Ergodic Partition): For a measurable parti-

tion ζ of M , let Aα be an element of ζ where α is an element

of some indexing set A as a measure space (A,BA, P ). The

partition ζ is called ergodic under φ if (i) for almost every

(with respect to µ) element Aα, it is invariant for φ and there

exists an invariant probability measure µAα
on it such that

for every f ∈ L1(M),

lim
T→∞

1

T

∫ T

0

(f ◦ φt)(x)dt =

∫

Aα

fdµAα
,

for almost everywhere (a.e.) with respect to µAα
on Aα, and

(ii) for every f ∈ L1(M),

∫

M

fdµ =

∫

A

[∫

Aα

fdµAα

]

dP (α). (1)

Here we call the function f∗ the time average of a function

f under φ if

f∗(x) = lim
T→∞

1

T

∫ T

0

(f ◦ φt)(x)dt,

a.e. on M . Birkhoff’s pointwise ergodic theorem [15], [1]

shows that for every f ∈ L1(M), (i) f∗ exists; (ii) f∗◦φτ =
f∗ for a.e. on M and every τ ∈ R; and (iii)

∫

M
fdµ =

∫

M
f∗dµ. We denote by Σ the set of all x ∈ M such that

f∗(x) exists for every f ∈ C(M), and by Σ (f) the set of

all x ∈ M such that f∗(x) exists for a particular f ∈ C(M).
The following lemma is standard.

Lemma 1 (Mezić and Wiggins [7]):

Σ =
⋂

f∈S

Σ (f).

Now consider the set Σ on which the time averages of

all continuous functions on M are well-defined on Σ . The

complimentary set Σ c is of measure zero. This is because

by the ergodic theorem (i) each Σ (f)c is of measure zero,

and thus Σ c :=
⋃

f∈S

Σ (f )
c

is the countable union of measure

zero sets, which is again of measure zero. The next lemma

shows that the time average of a measurable and bounded

function induces a measurable partition on Σ .

Lemma 2: Let f be a continuous function on M . The

family of sets {Aα}α∈R, where Aα := (f∗)−1(α), is a

measurable partition of Σ .

We denote this partition by ζf and call it the partition induced

by f .

We are in a position to state the first main theorem in this

paper. The theorem says that ζf induces an ergodic partition

of M .

Theorem 1: Let ζe be the product of measurable partitions

of Σ induced by every f ∈ S,

ζe =
∨

f∈S

ζf .

The partition ζe together with Σ c is ergodic under φ.

Now the sets Aα = {x ∈ X : x ∈ Σ , f∗(x) = α} for

every α ∈ R are invariant under φ on which the dynamics

are ergodic. Mezić and Wiggins [7] used the level sets

Aα based on the time average of f to identify invariant

sets in discrete dynamical systems. In this paper we apply

the developed theory of ergodic partition to investigate an

instability phenomenon occurring for multi-machine power

systems.

IV. APPLICATION TO POWER SYSTEM ANALYSIS

We apply the theory of ergodic partition in Sec. III to an

analysis of short-term swing dynamics, which we term the

Coherent Swing Instability (CSI), in a multi-machine power

system.

A. The Mathematical Model

Consider short-term swing dynamics in a simple loss-

less power system with strong loop transmission network

in Fig. 1. The blue circle stands for synchronous generator.
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generators bus
infiniteidenticalN

Fig. 1. Simple loop power system [13]

The loop power system consists of N small, identical gen-

erators, encompassed by the dotted box, which operate in

the loop network and are connected to the infinite bus2. The

transmission lines joining the infinite bus and a generator

are much longer than those joining two generators in the

loop network. The lengths of transmission lines between

generators are identical. In the preceding papers [13], [14],

we demonstrated the CSI phenomenon for the loop power

system and developed the following planar dynamical system

that characterized the phenomenon:

dδ

dt
= ω,

dω

dt
= pm −

b

N

N
∑

i=1

sin





∑

j∈J

eijcj cosΩjt + δ



,



















(2)

where

eij =

√

2

N
cos

(

2πij

N
+

π

4

)

,

Ωj = 2
√

|bint|

∣

∣

∣

∣

sin
πj

N

∣

∣

∣

∣

.

The planar system (2) represents averaged dynamics of the

N generators in the loop network. The variable δ ∈ T
1

is the average of angular positions of rotors with respect

to the infinite bus of the N generators, and ω ∈ R the

average of deviations of rotor speed in N generators relative

to the system angular frequency. The parameter pm is the

mechanical input power to a generator, b the maximum

transmission power between the infinite bus and a generator,

and bint the maximum transmission power between two

generators in the loop network. The constant eij is the

eigenfunction of mode oscillations occurring in the loop

network, Ωj its eigenfrequency, and cj the strength of mode

oscillations. The finite index set J determines which modes

are excited in the loop network.

Solutions of (2) define a measure-preserving flow on phase

space T
1×R. The system (2) is formulated as the following

Hamilton’s canonical equations:

dδ

dt
=

∂

∂ω
H(δ, ω, t),

dω

dt
= −

∂

∂δ
H(δ, ω, t),

2A voltage source of constant voltage and constant frequency

with the time-dependent Hamiltonian H(δ, ω, t), given by

H :=
1

2
ω2 − pmδ

−
b

N

N
∑

i=1

cos





∑

j∈J

eijcj cosΩjt + δ



 . (3)

Because the flow defined here is divergence-free, i.e.,

(∂H/∂δ)(dδ/dt) + (∂H/∂ω)(dω/dt) = 0, it is measure-

preserving with respect to the Liouville measure dδdω.

Note that it does not conserve the Hamiltonian H , that is,

dH/dt 6= 0 if cj 6= 0.

B. Identification of Invariant Sets

This section applies the technique of ergodic partition to

identification of invariant sets in which all the generators

show bounded swings. We show in [13], [14] that the

divergence motion in the planar system (2) corresponds to the

CSI phenomenon. Thus it is important to examine bounded

motions of the planar system to understand a dynamical

origin of CSI.

Numerical simulations are performed for identification of

invariant sets using the ergodic partition. To do so, it needs

to fix (i) the set of (infinitely) countable functions, {fn}n∈N,

(ii) the subset of phase space on which we find invariant sets,

and (iii) the exit time to obtain a good approximation of each

time average f∗
n. This paper uses one function f(δ) = sin 2δ

according to the investigation in [7], [9], [10] and the grid

of 201× 201 of initial conditions (δ, ω) at t = 0 on [0, π]×
[−0.02, 0.02] or [0, π] × [−0.04, 0.04], and adopts the exit

time tex below. Numerical integration of the planar system

is performed with the 4th explicit symplectic integrator [16]

with time step h: see Appendix I for its detail. The parameter

settings are as follows:

pm = 0.009, b = 0.01, N = 20, bint = 1,

h =
2π

Ω1

1

28
, tex = h × 28 × 15.

The settings of parameters (pm, b,N, bint) are the same as

in [13].

Figure 2 shows numerical results of ergodic partition for

the flow. The color bar attached to each figure denotes the

value of time average f∗(δ). The colored region of each

figure corresponds to the two-dimensional cross section of

invariant sets under t = 0. All trajectories from the same

colored region take a common value of f∗(δ). That is, the

same colored region corresponds to one invariant set on

which the dynamics are ergodic. Especially, all trajectories

from the colored region are bounded until the final time

tex. On the other hand, any trajectory from non-colored

(white) regions increases unboundedly as time runs. The

boundedness of trajectories implies no occurrence of CSI

in the loop power system.

Let us summarize several features of Fig. 2. There exists

a family of closed curves with common time averages. The

family of closed curves, that is, the colored region is bounded
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Fig. 2. Ergodic partition of phase space in the measure-preserving flow defined by (2). Non-colored (white) regions imply that each trajectory from them
diverges as time passes.

in each figure. For the same number of modes in Figs. 2(a)–

(d), the colored regions shrink as the strength cj increases.

This suggests that the strong excitation easily induces the CSI

phenomenon for the loop power system. The solid circle (◦)

on ω = 0 represents the condition of normal operation at

cj = 0 for all j ∈ J , namely, under no external excitation.

At cj = 2.5 in Fig. 2(c) the circle (◦) is on the boundary

of the colored region, and at cj = 2.6 in Fig. 2(d) it is

outside the colored region. This implies that in Fig. 2(d) we

observe the CSI for the initial condition that corresponds to

the normal operating condition under no external excitation.

This result is consistent with the numerical simulations in

[13]. For the same strength cj in Figs. 2(a), (e), and (f),

the colored regions also shrink as the number of modes, k,

increases. This suggests that the excitation based on multiple

modes easily induces the CSI phenomenon.

C. Uniform Boundedness of Invariant Sets

Section IV-B showed one bounded cross-section of in-

variant sets under the measure-preserving flow. We confirm

that cross-sections of invariant sets are also bounded for

other initial time. Thus it is expected that the invariant sets

are uniformly bounded in the sense that the boundedness

property does not depend on initial time. In this section we

prove the uniform boundedness of invariant sets.

Consider the autonomous system obtained by augmenting

(2) in the same way as [12]:

dδ

dt
= ω,

dω

dt
= pm −

b

N

N
∑

i=1

sin





∑

j∈J

eijcj cos θj + δ



,

dθj

dt
= Ωj ,



































(4)

where (δ, ω) ∈ T
1 × R =: M and θj ∈ T

1 for each

j ∈ J . The finite cardinality of J is denoted by k. Solutions

of (4) define a measure-preserving flow φ, {φt : t ∈
R}. We assume that the k excitation frequencies {Ωj}j∈J

are rationally independent. The augmented phase space X
becomes M ×T

k. Let O(x0) be the orbit through the point

x0, namely, O(x0) := {x ∈ X : x = φt(x0), t ∈ R}. We

will write O(x0)|Tk := {θ ∈ T
k : θ = φt|Tk(θ0), t ∈ R},

where x0 = (m0, θ0) ∈ M × T
k and φt|Tk is the restriction

of φt to T
k. Since the k excitation frequencies are rationally

independent, we have the following fact:

Fact 1: For any x ∈ X , O(x)|Tk is dense in T
k.

Now we characterize invariant sets in the augmented

system (4). Let I be an invariant set under φ. By Fact 1

we have the following decomposition of I:

I =
⋃

θ∈Tk

Aθ × {θ}, (5)

where Aθ is a subset of M . Thus we can take a two-
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dimensional cross-section to I for arbitrary θ ∈ T
k, that

is, initial time. Recall that since the numerical results in

Sec. IV-B were given for initial conditions (δ, ω) at t = 0, we

identified several cross-sections of invariant sets for θj = 0
for all j ∈ J . Now define a cross-section to I by fixing the

variable θ at θ0:

Iθ0
:= {(m, θ) ∈ I : θ = θ0 ∈ T

k}. (6)

According to (5), we denote by Iθ0
the product set Aθ0

×
{θ0}, where Aθ0

is a subset of M , and by O(Iθ0
) the set of

all orbits from Iθ0
, {O(x) : x ∈ Iθ0

}. Thus we obtain the

following theorem that characterizes uniform boundedness

of I by means of one sample of it:

Theorem 2: Suppose that Aθ0
is bounded in M . Then I

is bounded in X .

Proof: see Appendix II.

Now let us summarize the relationship between uniformly-

bounded invariant sets and the CSI phenomenon. The in-

stability occurs when the initial condition of (4) (namely

(2)) is placed outside a family of invariant sets that are

uniformly bounded and represent safe operating conditions

of all the machines in the loop power system. The existence

of uniformly-bounded invariant sets implies that the CSI can

occur in the loop power system.

V. CONCLUSIONS

We studied the ergodic partition for continuous dynamical

systems. The first contribution is to provide a theory of

ergodic partition of phase space in measure-preserving flows

that is a natural extension of [7]. The theory is applicable

to measure-preserving flows arising in various physical and

engineering systems. Examples of the flows include dynam-

ical systems induced by time-dependent Hamiltonians and

incompressible fluid flows with time-dependent velocity pro-

files. The second contribution is to provide a dynamical de-

scription of the non-local instability of multi-machine power

systems, which we term the Coherent Swing Instability in

[13], [14]. The instability occurs when the initial condition

of (2) or (4) is placed outside a family of uniformly-bounded

invariant sets. Future work is to explore why the uniformly-

bounded invariant sets change due to the parameter change

of quasi-periodic excitation as shown in Fig. 2.
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APPENDIX I

SYMPLECTIC INTEGRATION OF TIME-DEPENDENT

HAMILTONIAN SYSTEMS

This paper needs to do numerical solutions of the Hamil-

tonian system (3) with the time-dependent Hamiltonian

H(δ, ω, t). Symplectic integrator [16] is normally formulated

in the case of time-independent Hamiltonians. In this paper

we exploit such an integrator by augmenting the original

Hamiltonian system. Consider the following Hamiltonian

system:

dq

dt
=

∂

∂p
H(q, p, t),

dp

dt
= −

∂

∂q
H(q, p, t), (7)

where q ∈ R
N , p ∈ R

N , and t ∈ R. Now, by replacing t with

one new variable q′ and defining the other new variable p′ =
−∂H/∂t, we have the augmented Hamiltonian H̄(q, p, q′, p′)
as follows:

H̄(q, p, q′, p′) := p′ + H(q, p, q′).

Thus we have the augmented Hamiltonian system of the

time-independent Hamiltonian system H̄ as

dq

dt
=

∂H̄

∂p
,

dp

dt
= −

∂H̄

∂q
,

dq′

dt
=

∂H̄

∂p′
,

dp′

dt
= −

∂H̄

∂q′
.

The flow induced by solutions of this system is divergence-

free and conserves the Hamiltonian H̄ . Thus we can use

the integrator for the augmented system and do numerical

solutions of the original system. Note that we can check the

accuracy of integration by estimating the value of H̄ . This

idea is applicable to the case of non-periodic time-dependent

Hamiltonians.

APPENDIX II

PROOF OF THEOREM 2

The proof is based on the following two lemmas:

Lemma 3: cl(Aθ0
) × T

k is uniformly homeomorphic to

cl(O(Iθ0
)).

Proof: This proof is the direct application of the

following corollary:

Corollay 1 (Corollary 3.46 in [17]): Let X and Y be

complete metric space, and let A and B be dense subspaces

of X and Y , respectively. If G : A → B is a uniform

homeomorphism of A onto B, then there exists a unique

uniform homeomorphism Ḡ : X → Y of X onto Y that

extends G over X (i.e., Ḡ|A = G).

By definition, there exists a uniform homeomorphism of

Aθ0
× T

k onto O(Iθ0
). Then, by Corollary 1, we see that

the two closures cl(Aθ0
)×T

k and cl(O(Iθ0
)) are uniformly

homeomorphic.

Lemma 4: I = cl(O(Iθ0
)).

Proof: By construction we see O(Iθ0
) ⊂ I . Let D

be the difference set I \ O(Iθ0
). Note that the interior

of D, int(D), is empty. To prove this, we assume that

int(D) is non-empty. Then, for some x ∈ D there exists

an open neighborhood U such that x ∈ U and U ⊂ D.

From Fact 1, for x = (m, θ) ∈ D there exists a sequence

of points, {θn}
∞
n=1, such that each θn is an element of

O(Iθ0
)|Tk and it approaches to θ. This is contradictory to

the existence of open neighborhood of U ⊂ D. Hence we

have int(D) = ∅. Using the relation (int(D))c = cl(Dc),
we obtain I = cl(O(Iθ0

)).
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We are now back to the proof of Theorem 2. If Aθ0
is

bounded in M , then cl(Aθ0
) × T

k is bounded in X . By

Lemma 3, cl (O(Iθ0
)) is bounded in X . By Lemma 4, we

conclude that I is bounded in X .
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