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Abstract— In this paper, a new particle filter (PF) which we
refer to as the decentralized PF (DPF) is proposed. By first
decomposing the state into two parts, the DPF splits the filtering
problem into two nested sub-problems and then handles the two
nested sub-problems using PFs. The DPF has an advantage over
the regular PF that the DPF can increase the level of parallelism
of the PF. In particular, part of the resampling in the DPF bears
a parallel structure and thus can be implemented in parallel.
The parallel structure of the DPF is created by decomposing
the state space, differing from the parallel structure of the
distributed PFs which is created by dividing the sample space.
This difference results in a couple of unique features of the
DPF in contrast with the existing distributed PFs. Simulation
results from a numerical example indicates that the DPF has
a potential to achieve the same level of performance as the
regular PF, in a shorter execution time.

I. I NTRODUCTION

In this paper, we study the filtering problem of the
following nonlinear discrete-time system

ξt+1 = ft(ξt, vt)

yt = ht(ξt, et)
(1)

where t is the discrete-time index,ξt ∈ R
nξ is the state

at time t, yt ∈ R
ny is the measurement output,vt ∈

R
nv and et ∈ R

ne are independent noises whose known
distributions are independent oft, ξt and yt, andft(·) and
ht(·) are known functions. The filtering problem consists
of recursively estimating the posterior densityp(ξt|y0:t)
where y0:t , {y0, ..., yt}. Analytic solutions to the filter-
ing problem are only available for a relatively small and
restricted class of systems, the most important being the
Kalman filter [17] which assumes that system (1) has a
linear-Gaussian structure. A class of powerful numerical
algorithms for the filtering problem are particle filters (PFs),
which are sequential Monte Carlo methods based on particle
representations of probability densities [2]. Since the seminal
work [14], PFs have become an important tool in handling
the nonlinear non-Gaussian filtering problem, and have found
many applications in statistical signal processing, economics
and engineering; see e.g., [2, 11, 13, 15] for recent surveysof
PFs.

In this paper, a new PF, which we refer to as the decentral-
ized PF (DPF), will be proposed. By first decomposing the
state into two parts, the DPF splits the filtering problem of
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system (1) into two nested sub-problems and then handles
the two nested sub-problems using PFs. The DPF has the
advantage over the regular PF that the DPF can increase the
level of parallelism of the PF in the sense that besides the
particle generation and the importance weights calculation,
part of the resampling in the DPF can also be implemented
in parallel. As will be seen from the DPF algorithm, there
are actually two resampling steps in the DPF. The first
resampling in the DPF, like the resampling in the regular PF,
cannot be implemented in parallel, but the second resampling
bears a parallel structure and can thus be implemented in
parallel. Hence, the parallel implementation of the DPF can
be used to shorten the execution time of the PF.

As pointed out in [5], the application of PFs in real-time
systems is limited due to its computational complexity which
is mainly caused by the resampling involved in the PF. The
resampling is essential in the implementation of the PF as
without resampling the variance of the importance weights
will increase over time [12]. The resampling however intro-
duces a practical problem. The resampling limits the oppor-
tunity to parallelize since all the particles must be combined,
although the particle generation and the importance weights
calculation of the PF can still be realized in parallel [12].
Therefore, the resampling becomes a bottleneck to shorten
the execution time of the PF. Recently, some distributed
resampling algorithms for parallel implementation of PFs
have been proposed in [5, 19]. The idea of the distributed
resampling is to divide the sample space into several strata
or groups such that the resampling can be performed in-
dependently for each stratum or group and can thus be
implemented in parallel. The effect of different distributed
resampling algorithms on the variance of the importance
weights has been analyzed in [19]. Based on the introduced
distributed resampling algorithms, a couple of distributed PFs
have been further proposed in [5, 19], such as the distributed
resampling with proportional allocation PF (DRPA-PF) and
the distributed resampling with nonproportional allocation
PF (DRNA-PF).

The underlying idea of the DPF is different from that
of the existing distributed PFs, while they all have parallel
structure. The parallel structure of the DPF is created by
decomposing the state space, differing from the parallel
structure of the distributed PFs which is created by dividing
the sample space. This difference results in a couple of
unique features of the DPF in contrast with the existing
distributed PFs. First, compared to the DRPA-PF, the DPF al-
lows a simpler scheme for particle routing and actually treats
each processing element as a particle in the particle routing.
Second, the DPF does not suffer from the efficiency decrease



problem of the DRPA-PF. Given a PF with parallel structure,
it works most efficiently if each processing element handles
the same number of particles. However, the efficiency of the
DRPA-PF usually decreases, since the number of particles
produced by each processing element is not evenly, but
randomly distributed among the processing elements. Third,
it will be verified by a numerical example that, the DPF has
the potential to achieve the same level of performance as
the bootstrap PF, in a shorter execution time. In contrast,
the DRNA-PF actually trades the PF performance for the
speed improvement [5]. Moreover, the level of parallelism
of the DPF can be further increased in two ways so that the
execution time of the parallel implementation of the DPF
can be further shortened; the first one is to utilize any of
the distributed resampling algorithms proposed in [5, 19] to
perform the first resampling of the DPF, and the other is
based on an extension of the DPF. As a result, the DPF is
a new option for the application of PFs in real-time systems
and the parallel implementation of PFs.

II. PROBLEM FORMULATION

A. Intuitive preview

The formulas for particle filtering tend to look complex,
and it may be easy to get lost in indices and update
expressions. Let us therefore provide a simple and intuitive
preview to get the main ideas across.

Filtering is about determining the posterior densities of the
states. If the state is two-dimensional with componentsx and
z, say, the density is a surface over thex−z plane. See Fig.
1. One way to estimate the density is to fixM points in the
plane in a regular grid (Fig. 1.a) and update the values of
the density according to Bayesian formulas. This is known
as a point-mass filter [3, 6]. Another way is to throwM
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Fig. 1. Patterns for points where the posterior densities are com-
puted/estimated. a. A fixed regular grid using in point-massfilter. b.
Randomly allocated points following the regular PF equations. c. Points
randomly allocated to vertical parallel lines (which themselves are randomly
located).

points at the plane at random (Fig 1.b), and let them move
to important places in the plane, and update the values of
the densities at the chosen points, using Bayesian formulas.
This is a simplified view of what happens in the regular PF.
A third way is illustrated in Fig 1.c: Let the points move to
well chosen locations, but restrict them to be aligned parallel
to one of the axes (thez-axis in the plot). The parallel lines
can move freely, as can the points on the lines, but there
is a restriction of the pattern as depicted. The algorithm we
develop in this paper (DPF) gives both the movements of
the lines and the positions of the points on the lines, and
the density values at the chosen points, by application of
Bayesian formulas.

It is well known that the regular PF outperforms the point-
mass filter with the same number of points, since it can
concentrate them to important areas. One would thus expect
that the DPF would give worse accuracy than the regular PF
with the same number of points, since it is less “flexible”
in the allocation of points. On the other hand, the structure
might allow more efficient ways of calculating new point
locations and weights. That is what we will develop and
study in the following sections.

B. Problem statement

Consider system (1). Suppose that the stateξt can be
decomposed as

ξt =

[

xt

zt

]

(2)

and accordingly that system (1) can be decomposed as

xt+1 = fx
t (xt, zt, v

x
t )

zt+1 = fz
t (xt, zt, v

z
t )

yt = ht(xt, zt, et)

(3)

where xt ∈ R
nx , zt ∈ R

nz , and vt = [(vx
t )T (vz

t )T ]T

with vx
t ∈ R

nvx and vz
t ∈ R

nvz . In the following, it is
assumed for convenience that the probability densitiesp(x0),
p(z0|x0) and fort ≥ 0, p(xt+1|xt, zt), p(zt+1|xt:t+1, zt) and
p(yt|xt, zt) are known.

In this paper, we will study the filtering problem of
recursively estimating the posterior densityp(zt, x0:t|y0:t).
According to the following factorization

p(zt, x0:t|y0:t) = p(zt|x0:t, y0:t)p(x0:t|y0:t) (4)

wherex0:t , {x0, ..., xt}, the filtering problem (4) can be
split into two nested sub-problems:

1) recursively estimating the densityp(x0:t|y0:t);
2) recursively estimating the densityp(zt|x0:t, y0:t).

In writing down the conceptual solution to the filtering
problem (4), it is clear that the two sub-problems are nested.
Since there is in general no analytic solution to the filtering
problem (4), a numerical algorithm, i.e., the DPF is intro-
duced to recursively provide the empirical approximations
to p(x0:t|y0:t) andp(zt|x0:t, y0:t). The DPF actually handles
the two nested sub-problems using PFs. Roughly speaking,
the DPF solves the first sub-problem using a PF withNx



particles (x(i)
0:t, i = 1, ..., Nx) to estimatep(x0:t|y0:t). Then

the DPF handles the second sub-problem usingNx PFs with
Nz particles each to estimatep(zt|x

(i)
0:t, y0:t), i = 1, ..., Nx.

As a result of the nested nature of the two sub-problems, it
will be seen later that the steps of the PF used to estimate
p(x0:t|y0:t) is nested with that of theNx PFs used to estimate
p(zt|x

(i)
0:t, y0:t).

Remark 2.1:The idea of decomposing the state into two
parts and accordingly splitting the filtering problem into
two nested sub-problems is not new. Actually, it has been
used in the Rao-Blackwellized PF (RBPF); see, e.g, [1, 7, 8,
10, 12, 21]. However, the RBPF imposes a certaintractable
substructure assumption on the system considered and hence
solves one of the sub-problem with a number of optimal
filters, such as the Kalman filter [17] or the HMM filter
[20]. In particular, the filtering problem (4) has been pre-
viously studied in [21] where system (3) is assumed to be
conditionally (onxt) linear in zt and subject to Gaussian
noise. Due to these assumptions, the statezt of system
(3) is marginalized out using the Kalman filter. However,
since there is no tractable substructure assumption made on
system (3) in this paper, no part of the stateξt is analytically
tractable as was the case in [1, 7, 8, 10, 12, 21]. ♦

In the following, let x̃ ∼ p(x) denote that̃x is a sample
drawn from the densityp(x) of the random variablex,
let N (m, Σ) denote the (multivariate) Gaussian probability
density with mean vectorm and covariance matrixΣ and let
Pr(A) denote the probability of the eventA. For convenience,
for eachi = 1, ..., N , αi = βi/

∑N

j=1 βj is denoted by

αi ∝ βi;
N

∑

i=1

αi = 1 (5)

whereN is a natural number,αi, βi, i = 1, ..., N , are positive
real numbers, andαi ∝ βi denotes thatαi is proportional to
βi.

III. D ECENTRALIZED PARTICLE FILTER

A. Filtering algorithm

Due to the space limitation, we have to skip the derivation
and directly introduce the DPF algorithm as follows.
Initialization

Initialize the particlesx̃
(i)
0 ∼ p(x0), i = 1, ..., Nx,

and for eachx̃
(i)
0 , the particlesz̃(i,j)

0 ∼ p(z0|x̃
(i)
0 ), j =

1, ..., Nz. With a slight abuse of notation letp(x0) =
pNz

(x0|x0:−1, y0:−1) = π(x0|x0:−1, y0:−1) and p(z0|x0) =
p̃Nz

(z0|x0, y0:−1) = π(z0|x0, y0:−1).
At each time instant(t ≥ 0)

1) Measurement update ofx0:t based onyt

The importance weightsw(i)
t , i = 1, ..., Nx, are evalu-

ated according to

w
(i)
t ∝

pNz
(yt|x̃

(i)
0:t, y0:t−1)pNz

(x̃
(i)
t |x

(i)
0:t−1, y0:t−1)

π(x̃
(i)
t |x

(i)
0:t−1, y0:t−1)

;

Nx
∑

i=1

w
(i)
t = 1

(6)

where

pNz
(yt|x̃

(i)
0:t, y0:t−1)

=

Nz
∑

j=1

r̃
(i,j)
t p(yt|x̃

(i)
t , z̃

(i,j)
t )/

Nz
∑

l=1

r̃
(i,l)
t

(7)

r̃
(i,j)
t =

p̃Nz
(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1)

π(z̃
(i,j)
t |x̃

(i)
0:t, y0:t−1)

(8)

and for t ≥ 1,

pNz
(x̃

(i)
t |x

(i)
0:t−1, y0:t−1)

=

Nz
∑

j=1

q̄
(i,j)
t−1 p(x̃

(i)
t |x

(i)
t−1, z̄

(i,j)
t−1 )

(9)

p̃Nz
(zt|x̃

(i)
0:t, y0:t−1)

=
1

Nz

Nz
∑

l=1

p(zt|x̃
(i)
t−1:t, z

(i,l)
t−1 )

(10)

2) Resampling of {x̃(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t },

i = 1, ..., Nx

Resample {x̃
(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t },

i = 1, ..., Nx, to generate samples
{x

(i)
0:t, z̄

(i,1)
t , r

(i,1)
t ..., z̄

(i,Nz)
t , r

(i,Nz)
t }, i = 1, ..., Nx,

according to

Pr{{x(m)
0:t , z̄

(m,1)
t , r

(m,1)
t , ..., z̄

(m,Nz)
t , r

(m,Nz)
t } =

{x̃
(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }} = w

(i)
t

(11)

3) Measurement update ofzt based onyt

For i = 1, ..., Nx, the importance weights̄q(i,j)
t , j =

1, ..., Nz, are evaluated according to

q̄
(i,j)
t ∝ p(yt|x

(i)
t , z̄

(i,j)
t )r

(i,j)
t ;

Nz
∑

j=1

q̄
(i,j)
t = 1 (12)

4) Generation of particles̃x(i)
t+1, i = 1, ..., Nx

For eachi = 1, ..., Nx, x̃
(i)
t+1 is generated according to

the proposal functionπ(xt+1|x
(i)
0:t, y0:t).

5) Measurement update ofzt based onxt+1

For i = 1, ..., Nx, the importance weightsq(i,j)
t , j =

1, ..., Nz, are evaluated according to

q
(i,j)
t ∝ p(yt|x

(i)
t , z̄

(i,j)
t )p(x̃

(i)
t+1|x

(i)
t , z̄

(i,j)
t )r

(i,j)
t ;

Nz
∑

j=1

q
(i,j)
t = 1

(13)

6) Resampling of the particles̄z(i,j)
t , i = 1, ..., Nx, j =

1, ..., Nz

For eachi = 1, ..., Nx, resample the particles̄z(i,j)
t ,

j = 1, ..., Nz, to generate samplesz(i,j)
t , j = 1, ..., Nz,

according to

Pr{z(i,m)
t = z̄

(i,j)
t } = q

(i,j)
t

(14)



7) Generation of particlesz̃(i,j)
t+1 , i = 1, ..., Nx, j =

1, ..., Nz

For each i = 1, ..., Nx, the particles z̃
(i,j)
t+1 , j =

1, ..., Nz, are generated according to the proposal func-
tion π(zt+1|x̃

(i)
0:t+1, y0:t) wherex̃

(i)
0:t+1 , (x

(i)
0:t, x̃

(i)
t+1).

B. Implementation issues

1) Two resampling steps:Unlike most of PFs in the
literature, the DPF has two resampling steps, i.e., step 2) and
step 6). Furthermore, the second resampling bears a parallel
structure. This is because the particlesz̄

(i,j)
t , i = 1, ..., Nx,

j = 1, ..., Nz, can be divided intoNx independentgroups in
terms of the indexi. Therefore, the second resampling can
be implemented in parallel.

In the implementation of the first resampling, it
would be helpful to note the following points. For
i = 1, ..., Nx, {r̃

(i,1)
t , ..., r̃

(i,Nz)
t } is associated with

{x̃
(i)
0:t, z̃

(i,1)
t , ..., z̃

(i,Nz)
t }, according to the definitioñr(i,j)

t =

p̃Nz
(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1)/π(z̃

(i,j)
t |x̃

(i)
0:t, y0:t−1). Therefore, af-

ter resampling of{x̃(i)
0:t, z̃

(i,1)
t , ..., z̃

(i,Nz)
t }, i = 1, ..., Nx,

{r̃
(i,1)
t , ..., r̃

(i,Nz)
t }, i = 1, ..., Nx, should accordingly be

resampled to obtain{r(i,1)
t , ..., r

(i,Nz)
t }, i = 1, ..., Nx. Ac-

cording to the definition ofr̃(i,j)
t , r

(i,j)
t can be defined

as r
(i,j)
t = p̃Nz

(z̄
(i,j)
t |x

(i)
0:t, y0:t−1)/π(z̄

(i,j)
t |x

(i)
0:t, y0:t−1).

As a result, {x̃(i)
0:t, z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i =

1, ..., Nx, is resampled in step 2). Moreover, since the
particles x

(i)
0:t−1, i = 1, ..., Nx, will not be used in

the future, it is actually only necessary to resample
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r

(i,Nz)
t }, i = 1, ..., Nx, to gen-

erate{x(i)
t , z̄

(i,1)
t , r

(i,1)
t , ..., z̄

(i,Nz)
t , r

(i,Nz)
t }, i = 1, ..., Nx.

2) Construction of the proposal functions:Like [14]
where the “prior” is chosen as the proposal function, we
try to choose p(xt+1|x

(i)
0:t, y0:t) and p(zt+1|x̃

(i)
0:t+1, y0:t)

as the proposal functions π(xt+1|x
(i)
0:t, y0:t) and

π(zt+1|x̃
(i)
0:t+1, y0:t), respectively. Unlike [14], however,

p(xt+1|x
(i)
0:t, y0:t) and p(zt+1|x̃

(i)
0:t+1, y0:t) are usually

unknown. Therefore, we need to construct approximations
to p(xt+1|x

(i)
0:t, y0:t) and p(zt+1|x̃

(i)
0:t+1, y0:t) such that the

particles x̃
(i)
t+1 and z̃

(i,j)
t+1 , j = 1, ..., Nz, can be sampled

from the approximations, respectively.
A convenient way to construct those approximations is

given as follows. An approximation ofp(xt+1|x
(i)
0:t, y0:t) can

be obtained as

pNz
(xt+1|x

(i)
0:t, y0:t) =

Nz
∑

j=1

q̄
(i,j)
t p(xt+1|x

(i)
t , z̄

(i,j)
t ) (15)

In turn, a further approximation ofp(xt+1|x
(i)
0:t, y0:t) can be

obtained asN (x̄
(i)
t+1, Σ

(i)
t+1) with x̄

(i)
t+1 andΣ

(i)
t+1, respectively,

the mean and covariance of the discrete distribution over
{x̃

(i,j)
t+1 , j = 1, ..., Nz} with probability mass̄q(i,j)

t associated

with the element̃x(i,j)
t+1 ∼ p(xt+1|x

(i)
t , z̄

(i,j)
t ). Therefore, for

i = 1, ..., Nx, the particlex̃(i)
t+1 can be generated from

π(xt+1|x
(i)
0:t, y0:t) = N (x̄

(i)
t+1, Σ

(i)
t+1) (16)

On the other hand, an approximation
p̃Nz

(zt+1|x̃
(i)
0:t+1, y0:t) of p(zt+1|x̃

(i)
0:t+1, y0:t) has already

been given in (10). Then, it follows from (10) and the
assumption thatp(zt+1|xt:t+1, zt) is known that, for each
i = 1, ..., Nx, the particle z̃

(i,j)
t+1 , j = 1, ..., Nz can be

generated from

π(zt+1|x̃
(i)
0:t+1, y0:t) = p̃Nz

(zt+1|x̃
(i)
0:t+1, y0:t) (17)

3) Computation of the state estimate:A common applica-
tion of a PF is to compute the state estimate, i.e., the expected
mean of the state. For system (3), the state estimate ofxt

andzt are defined as

x̄t = Ep(xt|y0:t)(xt), z̄t = Ep(zt|y0:t)(zt) (18)

Then the approximation of̄xt and z̄t can be computed in
the following way for the DPF. Note thatp(xt|y0:t) has an
empirical approximationpNx

(xt|y0:t) =
∑Nx

i=1 w
(i)
t δ(xt −

x̃
(i)
t ). Then, an approximation̂xt of x̄t can be calculated in

the following way

x̂t = EpNx (xt|y0:t)(xt) =

Nx
∑

i=1

w
(i)
t x̃

(i)
t (19)

Analogously, note thatp(zt|y0:t) has an empirical approxi-
mationpNx,Nz

(zt|y0:t) = 1
Nx

∑Nx

i=1

∑Nz

j=1 q̄
(i,j)
t δ(zt−z̄

(i,j)
t ).

Then, an approximation̂zt of z̄t can be calculated as

ẑt = EpNx,Nz (zt|y0:t)(zt) =
1

Nx

Nx
∑

i=1

Nz
∑

j=1

q̄
(i,j)
t z̄

(i,j)
t (20)

IV. D ISCUSSION

A. Unique features of the DPF

The parallel structure of the DPF is created by decompos-
ing the state space, differing from the parallel structure of
the distributed PFs which is created by dividing the sample
space. In the following, we will show that this difference
results in a couple of unique features of the DPF.

In contrast to the DRPA-PF, the DPF allows a simpler
particle routing scheme. For the DRPA-PF, since after re-
sampling thekth processing element hasN (k) particles that
is a random number, a complicated scheme has to be used
for the DRPA-PF to make allK processing elements haveN
particles. For the DPF, however, since after the resampling
of {x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx, all

Nx processing elements still have the same number of
particles, the DPF allows a simpler particle routing scheme
and actually each processing element can be treated as a
single particle in the particle routing.

Given a PF with parallel structure, it works most efficiently
if each processing element handles the same number of
particles. The efficiency of the DRPA-PF usually decreases,
since the number of particles produced by each processing
element is not evenly, but randomly distributed among the
processing elements. To be specific, note that the time used
by the kth processing element to produceN (k) particles,
k = 1, ..., K, after resampling is usually not the same.
This observation implies that the time used by the DRPA



to produce the particles after resampling is determined by
thek∗th processing element that produces the largestN (k∗).
Clearly, the more unevenly the numbers of particles produced
by each processing element are distributed, the more time
the DRPA takes to produce the particles after resampling.
Especially, in the extreme case thatN (k∗) ≫ N (k) with
k = 1, ..., K, and k 6= k∗, the efficiency of the DRPA-PF
will be decreased significantly. However, for the DPF, theith
processing element that handles the resampling of particles
z̄
(i,j)
t , j = 1, ..., Nz, produces, after resampling, the same

number of particlesz(i,j)
t , j = 1, ..., Nz. Therefore, the DPF

does not suffer from the efficiency decrease problem of the
DRPA-PF.

Moreover, as will be verified by a numerical example
in the subsequent section, the DPF has the potential to
achieve the same level of performance as the bootstrap PF,
in a shorter execution time. However, the DRNA-PF actually
trades PF performance for speed improvement [5, 19].

B. Two ways to further increase the level of parallelism of
the DPF

The first resampling of the DPF, i.e., resampling of
{x̃

(i)
t , z̃

(i,1)
t , r̃

(i,1)
t , ..., z̃

(i,Nz)
t , r̃

(i,Nz)
t }, i = 1, ..., Nx, is the

major operation that cannot be implemented in parallel. If
Nx is large, then this resampling will cause a large delay. In
order to further increase the level of parallelism of the DPF
and shorten the execution time, it is valuable to find ways to
handle this problem.

Two possible ways will be given here. The first one is
straightforward and is to employ any one of the distributed
resampling algorithms proposed in [5, 19] to perform the first
resampling of the DPF and besides, the remaining parts of
the DPF stay unchanged. Nonetheless, we prefer the DRPA
to the other distributed resampling algorithms, since it can
produce the same result as the systematic resampling [18]
according to [4]. Compared to the first way, the second way
only applies to high dimensional system (1) and it is based
on an extension of the DPF. We have assumed that the state
ξt is decomposed into two parts according to (2). Actually,
the DPF can be extended to handle the case where the state
ξt is decomposed into more than two (at mostR

nξ ) parts.
Due to the space limitation, we refer the reader to [9] for
the details.

V. NUMERICAL EXAMPLE

In this section we will test how the DPF performs on
a numerical example. The simulations are performed using
Matlab under the Linux operating system. The platform is
a server consisting of eight Intel(R) Quad Xeon(R) CPUs
(2.53GHz).

A. Algorithms tested

The bootstrap PF is implemented in the standard fashion,
using different number of particles (M ). The DPF is im-
plemented for different combinations of “x andz particles”
(Nx and Nz). The DRPA-PF according to [5] is tested as
well, using different number of processing elements (K).

The formulas of [5] has been closely followed, but the
implementation is our own, and it is of course possible that it
can be further trimmed. In addition, as suggested in [16, 18]
systematic resampling is chosen as the resampling algorithm
for all algorithms tested.

B. Performance evaluation: Accuracy

In the tests, the performance of all algorithms are evaluated
by 20000 Monte Carlo simulations. Basically, the accuracy
of the state estimate is measured by the Root Mean Square
Error (RMSE) between the true state and the state estimate.
For example, the RMSE of̂x is defined as

RMSE of x̂ =

√

√

√

√

1

250

250
∑

t=1

1

20000

20000
∑

i=1

||xi
t − x̂i

t||
2 (21)

where with a slight abuse of notation,xi
t denotes the true

state at timet for the ith simulation andx̂i
t is the corre-

sponding state estimate.

C. Performance evaluation: Timing

One objective with the simulations is to assess the poten-
tial efficiency of a parallel implementation of the DPF. For
that purpose, we record the following times

• Tsi: This is the average execution time of the sequential
implementation of a PF.

• Tcp: This is the average time used by the operations that
cannot be implemented in parallel in a PF.

• Tpi: This is the potential execution time of a parallel
implementation of a PF. For the bootstrap PF with
centralized resampling and the DPF, it is calculated
according toTpi = Tcp + (Tsi − Tcp)/NPE whereNPE

is the number of processing elements. For the DPF, let
NPE = Nx. For the bootstrap PF with centralized resam-
pling, let NPE be the maximalNx in the simulation of
the corresponding example. Here, the bootstrap PF with
centralized resampling means that besides the resam-
pling, the remaining particle generation and importance
weights calculation of the bootstrap PF are implemented
in parallel. For the DRPA-PF,Tpi is calculated according
to Tpi = Tcp + Tmir + (Tsi − Tcp − Tmir)/NPE where
NPE = K and Tmir is the average maximal intra-
resampling time for the DRPA-PF.

D. Performance evaluation: Divergence failures

The raterd is used to reveal how often a PF diverges in
the 20000 Monte Carlo simulations. The bootstrap PF and
the DRPA-PF are said to diverge if their importance weights
are all equal to zero in the computer simulation. The DPF
is said to diverge ifw(i)

t , i = 1, ..., Nx, are all equal to zero
in the computer simulation. Once the divergence of a PF is
detected, the PF will be rerun.

E. Sketch of the simulation

For the example, the bootstrap PF usingM particles is
first implemented and its accuracy measured by the RMSE
will be regarded as the reference level. Then it is shown that



TABLE I

SIMULATION RESULT FOR SYSTEM(22) WITH (23) – “SEE SECTIONSV-B - V-D FOR EXPLANATIONS OF THE NUMBERS”

Case RMSE of[x̂t, ẑt] Tsi (Sec) Tcp (Sec) Tpi (Sec) rd

Bootstrap PF,M = 1000 [2.0173, 2.3322] 0.1891 0.0313 0.0326 0.0155
DPF,Nx = 100, Nz = 19 [2.0104, 2.3497] 0.3545 0.0168 0.0202 0.0133
DPF,Nx = 120, Nz = 19 [1.9914, 2.3045] 0.3901 0.0176 0.0207 0.0175
DPF,Nx = 110, Nz = 24 [1.9907, 2.3154] 0.4127 0.0175 0.0211 0.0113
DPF,Nx = 120, Nz = 24 [1.9906, 2.3259] 0.4338 0.0179 0.0214 0.0076

DRPA-PF,M = 1000, K = 40 [2.0222, 2.3557] 0.6324 0.0671 0.0878 0.0124
DRPA-PF,M = 1000, K = 25 [2.0332, 2.4049] 0.4769 0.0565 0.0799 0.0124

Bootstrap PF,M = 2000 [1.9714, 2.2664] 0.2579 0.0510 0.0528 0.0059

the DPF using suitableNx andNz “x andz particles” can
achieve the same level of accuracy. In turn, the DRPA-PF
using M particles, but with different number of processing
elements is also implemented. Finally, the bootstrap PF using
2M particles is implemented.

F. Two dimensional example

Consider the following two dimensional nonlinear system

xt+1 = xt +
zt

1 + z2
t

+ vx
t

zt+1 = xt + 0.5zt +
25zt

1 + z2
t

+ 8 cos(1.2(t − 1)) + vz
t

yt = atan(xt) +
z2

t

20
+ et

(22)

where [x0 z0]
T is assumed Gaussian distributed with

[x0 z0]
T ∼ N (0, I2×2), vt = [vx

t vz
t ]T and et are assumed

white and Gaussian distributed with

vt ∼ N

(

0,

[

1 0.1
0.1 10

])

, andet ∼ N (0, 1) (23)

The simulation result for system (22) with (23) is shown
in Table I, from which it can be seen that the DPF has
the potential to achieve the same level of accuracy as the
bootstrap PF in a shorter execution time.

G. Summary

Regarding the accuracy, comparison of the first part of the
RMSE column in Tables I shows that with suitably chosen
Nx andNz, the DPF achieves the same level of accuracy as
the bootstrap PF. On the other hand, with comparable number
of particles (it is fair to compareM with Nx(Nz + 1)) the
accuracy is not much worse for the DPF than for the PF.

Regarding timing, comparison of theTsi and Tpi column
in Tables I shows that the execution time of the DPF can
be shortened significantly if the DPF can be implemented
in parallel. Moreover, the DPF has a potential to offer better
accuracy in shorter execution time. As a result, it is fair tosay
that the parallel implementation of the DPF has the potential
to shorten the execution time of the PF.
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