Decentralization of Particle Filters Using Arbitrary State Decomposition

Tianshi Chen, Thomas B. Schon, Henrik Ohlsson and Lenrjarg-

Abstract— In this paper, a new particle filter (PF) which we  system (1) into two nested sub-problems and then handles
refer to as the decentralized PF (DPF) is proposed. By first the two nested sub-problems using PFs. The DPF has the
decomposing the state into two parts, the DPF splits the filttng 54y antage over the regular PF that the DPF can increase the

problem into two nested sub-problems and then handles the tav . . .
nested sub-problems using PFs. The DPF has an advantage overlevel of parallelism of the PF in the sense that besides the

the regular PF that the DPF can increase the level of paralligm  particle generation and the importance weights calcuiatio
of the PF. In particular, part of the resampling in the DPF bears  part of the resampling in the DPF can also be implemented
a parallel structure and thus can be implemented in parallel in parallel. As will be seen from the DPF algorithm, there
The parallel structure of the DPF is created by decomposing 5. actually two resampling steps in the DPF. The first

the state space, differing from the parallel structure of the e . L
distributed PFs which is created by dividing the sample spae. resampling in the DPF, like the resampling in the regular PF,

This difference results in a couple of unique features of the Ccannotbe implemented in parallel, but the second resamplin
DPF in contrast with the existing distributed PFs. Simulaton  bears a parallel structure and can thus be implemented in
results from a numerical example indicates that the DPF has parallel. Hence, the parallel implementation of the DPF can
a potential to achieve the same level of performance as the |5 ;sed to shorten the execution time of the PF.
regular PF, in a shorter execution time. . . . . .
As pointed out in [5], the application of PFs in real-time
|. INTRODUCTION systems is limited due to its computational complexity viahic
is mainly caused by the resampling involved in the PF. The
resampling is essential in the implementation of the PF as
without resampling the variance of the importance weights
&p1 = fi(&,ve) will increase over time [12]. The resampling however intro-
yr = he(&rer) @) duc_es a practicgl prqblem. The resa_lmpling limits the oppor-
tunity to parallelize since all the particles must be coreldin
wheret is the discrete-time index;; € R is the state gajthough the particle generation and the importance weight
at time ¢, y, € R"v is the measurement output; € calculation of the PF can still be realized in parallel [12].
R"™ ande; € R" are independent noises whose knowmrherefore, the resampling becomes a bottleneck to shorten
distributions are independent 6f {; andy;, and f¢(-) and  the execution time of the PF. Recently, some distributed
hi(-) are known functions. The filtering problem consistsesampling algorithms for parallel implementation of PFs
of recursively estimating the posterior densityé:[yo:) have been proposed in [5,19]. The idea of the distributed
where yo.: = {yo,...,y:}. Analytic solutions to the filter- resampling is to divide the sample space into several strata
ing prOblem are Only available for a I’elatively small an(br groups such that the resamp"ng can be performed in-
restricted class of Systems, the most important being ﬂ&pendent'y for each stratum or group and can thus be
Kalman filter [17] which assumes that system (1) has gnplemented in parallel. The effect of different distriedt
linear-Gaussian structure. A class of powerful numericq:bsamp"ng a|gorithms on the variance of the importance
algorithms for the filtering problem are particle filters §fF \veights has been analyzed in [19]. Based on the introduced
which are sequential Monte Carlo methods based on particigstributed resampling algorithms, a couple of distril®éEs
representations of probability densities [2]. Since thmeisal  have been further proposed in [5, 19], such as the distidbute
work [14], PFs have become an important tool in handlingesampling with proportional allocation PF (DRPA-PF) and
the nonlinear non-Gaussian filtering problem, and havedounhe distributed resampling with nonproportional allooati
many applications in statistical signal processing, eatio®  pF (DRNA-PF).
and engineering; see e.g., [2, 11,13, 15] for recent surokys  The underlying idea of the DPF is different from that
PFs. of the existing distributed PFs, while they all have patalle
In this paper, a new PF, which we refer to as the decentradtrycture. The parallel structure of the DPF is created by
ized PF (DPF), will be proposed. By first decomposing th@ecomposing the state space, differing from the parallel
state into two parts, the DPF splits the filtering problem o&tructure of the distributed PFs which is created by didin
. _ the sample space. This difference results in a couple of
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In this paper, we study the filtering problem of the
following nonlinear discrete-time system



problem of the DRPA-PF. Given a PF with parallel structurepoints at the plane at random (Fig 1.b), and let them move
it works most efficiently if each processing element handle® important places in the plane, and update the values of
the same number of particles. However, the efficiency of thiae densities at the chosen points, using Bayesian formulas
DRPA-PF usually decreases, since the number of particl&is is a simplified view of what happens in the regular PF.
produced by each processing element is not evenly, bAtthird way is illustrated in Fig 1.c: Let the points move to
randomly distributed among the processing elements. Thirdrell chosen locations, but restrict them to be aligned pelral

it will be verified by a numerical example that, the DPF haso one of the axes (the-axis in the plot). The parallel lines
the potential to achieve the same level of performance asn move freely, as can the points on the lines, but there
the bootstrap PF, in a shorter execution time. In contrass a restriction of the pattern as depicted. The algorithm we
the DRNA-PF actually trades the PF performance for thdevelop in this paper (DPF) gives both the movements of
speed improvement [5]. Moreover, the level of parallelisnthe lines and the positions of the points on the lines, and
of the DPF can be further increased in two ways so that thbe density values at the chosen points, by application of
execution time of the parallel implementation of the DPMBayesian formulas.

can be further shortened; the first one is to utilize any of Itis well known that the regular PF outperforms the point-
the distributed resampling algorithms proposed in [5, 39] tmass filter with the same number of points, since it can
perform the first resampling of the DPF, and the other isoncentrate them to important areas. One would thus expect
based on an extension of the DPF. As a result, the DPF tisat the DPF would give worse accuracy than the regular PF
a new option for the application of PFs in real-time systemwith the same number of points, since it is less “flexible”

and the parallel implementation of PFs. in the allocation of points. On the other hand, the structure
might allow more efficient ways of calculating new point
Il. PROBLEM FORMULATION locations and weights. That is what we will develop and
A. Intuitive preview study in the following sections.

The formulas for particle filtering tend to look complex,B. Problem statement
and it may be easy to get lost in indices and update Consider system (1). Suppose that the statean be
expressions. Let us therefore provide a simple and i”mitivdecomposed as
preview to get the main ideas across.

Filtering is about determining the posterior densitieshef t ¢ = [ Tt ] )
states. If the state is two-dimensional with componerdsd Zt

z, say, the density is a surface over the > plane. See Fig. and accordingly that system (1) can be decomposed as
1. One way to estimate the density is to fix points in the

plane in a regular grid (Fig. 1.a) and update the values of T = fi (@, 20, 0F)
the density according to Bayesian formulas. This is known ze41 = [ (@, 2, 07) 3
as a point-mass filter [3,6]. Another way is to throw yr = helzy, 20, e1)

wherez; € R", 2, € R", andv, = [(vf)T (vi)T]"

with vf € R™* andv; € R™*. In the following, it is
assumed for convenience that the probability densitfes),
p(zo]zo) and fort > 0, p(xe41|2e, 2¢), p(2e41|Te:t41, 2¢) and
p(yt|zt, z¢) are known.

In this paper, we will study the filtering problem of
recursively estimating the posterior densjtyz:, zo.¢|yo:t)-
According to the following factorization

(2, To:t|yo:t) = p(2¢| @0t Your)p(To:t|Yo:t) (4)

wherez.; = {xo,...,x;}, the filtering problem (4) can be
split into two nested sub-problems:

1) recursively estimating the densityzo.:|yo.¢);
2) recursively estimating the densityz;|zo.t, yo:t)-

4 - In writing down the conceptual solution to the filtering
R R S S problem (4), it is clear that the two sub-problems are nested
: ’ ¢ Since there is in general no analytic solution to the filtgrin
problem (4), a numerical algorithm, i.e., the DPF is intro-
Fig. 1.  Patterns for points where the posterior densities @@m- duced to recursively provide the empirical approximations

puted/estimated. a. A fixed regular grid using in point-méiiter. b.
Randomly allocated points following the regular PF equeioc. Points to p(wo:¢|yo:+) @ndp(zt|zo:¢, yo:+). The DPF actually handles

randomly allocated to vertical parallel lines (which theiwes are randomly the two nested sub-problems using PFs. Roughly speaking,
located). the DPF solves the first sub-problem using a PF with




particles (rOt, i=1,.

N, particles each to est|matf(zt|:c0t,yo t)y i =1,..., Ny.

N,) to estimatep(zo.+|yo.t). Then
the DPF handles the second sub- problem udipdPFs with

As a result of the nested nature of the two sub-problems, it
will be seen later that the steps of the PF used to estimate

p(:co;t|yo;t) is nested with that of théV,, PFs used to estimate

(2|, Your).

Remark 2.1:The idea of decomposing the state into two
parts and accordingly splitting the filtering problem into

two nested sub-problems is not new. Actually, it has been
used in the Rao-Blackwellized PF (RBPF); see, e.g, [1,7,8,

10,12, 21]. However, the RBPF imposes a certaattable
substructure assumption on the system considered and hence
solves one of the sub-problem with a number of optimal
filters, such as the Kalman filter [17] or the HMM filter
[20]. In particular, the filtering problem (4) has been pre-
viously studied in [21] where system (3) is assumed to be
conditionally (onz;) linear in z; and subject to Gaussian
noise. Due to these assumptions, the stateof system

(3) is marginalized out using the Kalman filter. However,

since there is no tractable substructure assumption made on

system (3) in this paper, no part of the stgtés analytically

tractable as was the case in [1,7,8,10, 12, 21]. %

In the following, letz ~ p(z) denote thatr is a sample

drawn from the densityp(z) of the random variabler,

let A(m,Y) denote the (multivariate) Gaussian probability
density with mean vectarn and covariance matriX and let
Pr(A) denote the probability of the eveAt For convenience,

for eachi =1,..., N, a; = 3;/ >.1_, ; is denoted by
N
a; o< By; Z%‘Zl )
=1

whereN is a natural numbewy;, 5;,7 =1, ...,

Bi-
IIl. DECENTRALIZED PARTICLE FILTER
A. Filtering algorithm

Due to the space limitation, we have to skip the derivation

and directly introduce the DPF algorithm as follows.
Initialization

Initialize the part|cles~(l ~ pgxo) i = 1,..,Ng,
and for each:c0 , the partcheSz( ~ p(z0|:i:((f)), j =

., N.. With a slight abuse of notation lep(zy) =
PNZ ($0|$0:—1,y0;—1) = m(xo|®o:—1,Y0:—1) and p(zo|zo) =
PN. (20|10, Yo:—1) = (20|70, Yo:—1)-
At each time instanft > 0)

1) Measurement update af.; based oy,
The importance Weighta)gz), 1=1,..,
ated according to

(4) pNz(yt|i(()Z:1’y0:tfl)pN( )|170t 1, Y0:t—1)
w X

t ~ (i i
ﬂ-(xt(f )|‘T8:?‘,—11 yO:t—l)

N,
Zwtz) =1
i=1

7

N, are positive
real numbers, and; « 3; denotes thaty; is proportional to

N, are evalu-

(6)

2)

3)

4)

5)

6)

where

N. (%|5761)t,y0 —1)

N.
1, z - ~(7 (7)
—Zr” (wel(” 2

=1
Fid) PN, (2‘51‘71)&&’ Yo:t—1) ®)
7 (27135, Yoi—1)
and fort > 1,

PN, <:e§“|:cff’1 L Yo1)

— Zq(m)

5(4.9) ©)

l)|xt 1:2-1)

DN, (Zt|£5((f35, Yo:t—1)

3

=1

(i,0) (10)
Zt"Tt 149 %-1)

~(2,1) fgi’l)...

Resampling of {z), ! N2 Ny

i=1,..,N, . ‘
Resample {:coli, 201 ~(Z b ~§Z’NZ),F§”NZ)},
1 = 1, Ny, tQ generate samples

811721511)’T‘t(1“’1)-"’2t(1“’NZ)’T‘t(l.’NZ)}’ i = 1,..,N,,
according to
L s S

i i,1) ~(i,1 ~(i,N.) ~(i,N. i

A, O, D)) — ol
Measurement update of based ony,;
Fori = 1,..., N,, the importance Welght‘(”) j =

1,...,N,, are evaluated according to

(i.9) ) 5000y (i), Z A 21 (12)

@ o plylat? 2

Generation of partlcle$t+1, i=1,...,Ng

For eachi =1, ..., N,, :cfpzl is generated according to
the proposal functionr (x|, yo.t)-

Measurement update ef based onr;,, N

Fori = 1,..., N,, the importance weightelf“”, j =
1,..., N, are evaluated according to

(Z}J)

" ecplulet” 2R 2
b (13)
Zq§ D —q
j=1
Resampling of the particles"”, i = 1,..,N,, j =

1,...N,

For eachi = 1,. (i)

., Ny, resample the particles;

j=1,..,N,, to generate sampleé”) j=1,. NZ,
accordmg to
P = 59} = ) 0



7) Generation of particlesét(i{), i = 1,..,Ng, j = On the other hand, an approximation

L., N; ﬁNz(Zt+1|~’EE)2+1vyo:t) of P(Zt+1|jéﬁ+1,y0;t) has already

For eachi: = 1,...,N,, the particIeSthﬂl), j = been given in (10). Then, it follows from (10) and the
., N, are generated according to the proposal fun@assumption thap(zt+1|:ct 441, 2t) IS known that, for each

tron 7'r(zt+1|:170 10 Yoit) where:z:((ft+1 £ (a:gi,:igﬁzl) i = 1,..,N,, the particlez\}), j = 1,...,N, can be

o generated from
B. Implementation issues @ ) @

1) Two resampling stepsUnlike most of PFs in the (ze1|To 415 Yoir) = DN, (241 1T0:41, Yost) (17)
literature, the DPF has two resampling steps, i.e., stem@) a 3) Computation of the state estimat&:common applica-
step 6). Furthermore, the second resam?hng bears a paratien of a PF is to compute the state estimate, i.e., the eggdect
structure. This is because the particﬁé%ﬂ 1=1,..,N,, mean of the state. For system (3), the state estimate, of
j=1,..., N, can be divided intaV, independengroups in andz; are defined as
terms of the index. Therefore, the second resampling can _ _
be implemented in parallel. Ping Tt = Ep(aolyon) (@), 2t = Ep(aylyon) (2t) (18)

In the implementation of the first resampling, itThen the approximation of; and z; can be computed in
would be helpful to note the following points. Forthe following way for the DPF. Note that(:ct|y0t) has an

= 1,..,Ng, {rt”), lNZ)} is associated with empirical approximatiomy, (z¢|yo.t) = ZZ “ wy )5(50,5 —
{:c li,ét(z 1), oy BNy accordrng to the definitioni, ) =  7(9). Then, an approximation, of z, can be calculated in
. (2 (1’7)|x01,y0t 1)/7r( ’7)|x0:t,yo;t_1). Therefore, af- the following way
ter resampling of{xo)t,zf D EENNY = 1N,

(FD L FEN = 1N, should accordingly be = Epp. (elyon) (1) Zwt” 70 (19)
resampled to obtair{rgi’l), ...,rt_(ijNZ)} Ny Ac- ’

cording to the definition ofr,EZ’J), ri! ) can be defined Analogously, note thap(z|yo ) has an empirical approxi-
as 7"15 W= DN ( ’7)|17 0:t— 1)/7"( ,7)|I0t7y0t 1)- matlonpN,,Nz(Z”yO;t):NLz Z;Vzl —tm)(;( (w)).
As a result, {th,ét“ , 5 , ,ft(Z’NZ)}, i = Then, an approximatios, of z; can be calculated as
1,...,N,, is resampled in step 2) Moreover, since the N, N.

particles :céfifl,z‘ = 1,..,N, wil not be used in 2= Epy_ . (zelyour) (2 ZZ (i,9) (w) (20)
the future, it is actually only necessary to resample B ==

{jgl)’ i N(Z o 5(17NZ) (Z NZ)} Z_ 1, No, t0 gen- V. DIscussIiON

erate{xtz), Et(z 2 rgi"l) 2,5(Z . ), },2 =1,..,N,.

2) Construction of the proposal functiond-ike [14] A. Unique features of the DPF
where the “prior” is chosen as the proposa' funct|on We The parallel StrUCtUre. of the DPF is created by decompOS-
try to ChOOSGp(ItHIIO't,yOt) and p(2t+1|560 t+17y0t) ing the state space, drfferrng from the paraltel structufe o
as the proposal functions 7 (x |I (4) o) and the distributed PFs vyhrch is created by d|V|d|ng the sample

t+11L0.¢y YO:t

(= |j@ .), respectively. Unlike [14], however space. .In the following, we will show that this difference
as 01:§+1’y0't ’ 20 ’ " results in a couple of unique features of the DPF.
p@esilze, yor) and p(zei1l#G)41,900) are usually |p contrast to the DRPA- PF, the DPF allows a simpler
unknown. Therefore we need to construct apprOX|matrorb'adrtlde routing scheme. For the DRPA-PF, since after re-

0 p(wisa|2(, you) aNd p(2141|7)41,v0:) Such that the sampling thekth processing element haé(®) particles that
parthleSw,(ngl and ifi{) Jj = 1,..,N;, can be sampled is a random number, a complicated scheme has to be used

from the approximations, respectively for the DRPA-PF to make alk processing elements haé

A convenient way to construct those apprOX|mat|ons iparticles. For the DPF, however, since after the resampling
given as follows. An approximation offz:s 1|}, yo::) can  of {7\, 340 700 0N GGNIy N, all
be obtained as N, processing elements still have the same number of

N. particles, the DPF allows a simpler particle routing scheme
o (@ |25 you) = Z(jgi"j)p(xt_’_ﬂxgi)’Egi’j)) (15) and actually each processing element can be treated as a
single particle in the particle routing.
Given a PF with parallel structure, it works most efficiently
In turn, a further approxrmatron Qf xt+1|xgt’y0t ) can be if each processing element handles the same number of
obtained ag\/(:th,E&)l) with :th andEtH, respectively, particles. The efficiency of the DRPA-PF usually decreases,
the mean and covariance of the discrete distribution ov@ince the number of particles produced by each processing
{xtﬁ),J =1,..,N.} with probab|I|ty mass, "’ associated element is not evenly, but randomly distributed among the
with the elementcgil) ~ p(a:t+1|x (”)) Therefore for processing elements. To be specific, note that the time used
i=1,..,N,, the particlez\"), can be generated from by the kth processing element to producé') particles,
k = 1,.., K, after resampling is usually not the same.
m(@e |25, your) = J\/(:cgle, ngzl) (16) This observation implies that the time used by the DRPA



to produce the particles after resampling is determined byhe formulas of [5] has been closely followed, but the
the k*th processing element that produces the larg&ét).  implementation is our own, and it is of course possible that i
Clearly, the more unevenly the numbers of particles producean be further trimmed. In addition, as suggested in [16, 18]
by each processing element are distributed, the more tinsgstematic resampling is chosen as the resampling algorith
the DRPA takes to produce the particles after resamplinfpr all algorithms tested.

Especially, in the extreme case that*") > N®) with _

k=1,..K, andk # k*, the efficiency of the DRPA-PF B- Performance evaluation: Accuracy

will be decreased significantly. However, for the DPF, itte In the tests, the performance of all algorithms are evatliate
processing element that handles the resampling of pagticley 20000 Monte Carlo simulations. Basically, the accuracy
gt(”), j = 1,...,N., produces, after resampling, the samef the state estimate is measured by the Root Mean Square
number of particlegii’j)' j =1,...,N,. Therefore, the DPF Error (RMSE) between the true state and the state estimate.

does not suffer from the efficiency decrease problem of tHeor example, the RMSE of is defined as
DRPA-PF.

250 20000
Moreover, as will be verified by a numerical example RvsE of 4 — | 1 i a2 (21
in the subsequent section, the DPF has the potential to ’ 250; 20000 ; lei — a4 (21)

achieve the same level of performance as the bootstrap PF, _ _ o
in a shorter execution time. However, the DRNA-PF actuallyvhere with a slight abuse of notatiom; denotes the true
trades PF performance for speed improvement [5,19].  state at timet for the ith simulation andz} is the corre-

) ) sponding state estimate.
B. Two ways to further increase the level of parallelism of

the DPF C. Performance evaluation: Timing
The first resampling of the DPF, i.e., resampling of One objective with the simulations is to assess the poten-
0 0D D SN SNy N, is the  tial efficiency of a parallel implementation of the DPF. For

major operation that cannot be implemented in parallel. that purpose, we record the following times

N, is large, then this resampling will cause a large delay. In « Ty This is the average execution time of the sequential
order to further increase the level of parallelism of the DPF  implementation of a PF.

and shorten the execution time, it is valuable to find ways to « T¢p: This is the average time used by the operations that
handle this problem. cannot be implemented in parallel in a PF.

Two possible ways will be given here. The first one is « Tpi: This is the potential execution time of a parallel
straightforward and is to employ any one of the distributed implementation of a PF. For the bootstrap PF with
resampling algorithms proposed in [5, 19] to perform the firs centralized resampling and the DPF, it is calculated
resampling of the DPF and besides, the remaining parts of according toTp = T¢p + (Tsi — Tcp)/Nee Where Npg
the DPF stay unchanged. Nonetheless, we prefer the DRPA is the number of processing elements. For the DPF, let
to the other distributed resampling algorithms, since it ca Npe = N,.. For the bootstrap PF with centralized resam-
produce the same result as the systematic resampling [18] pling, let Npg be the maximalV,. in the simulation of
according to [4]. Compared to the first way, the second way the corresponding example. Here, the bootstrap PF with
only applies to high dimensional system (1) and it is based centralized resampling means that besides the resam-
on an extension of the DPF. We have assumed that the state pling, the remaining particle generation and importance
& is decomposed into two parts according to (2). Actually,  weights calculation of the bootstrap PF are implemented
the DPF can be extended to handle the case where the state in parallel. For the DRPA-PH,;; is calculated according

& is decomposed into more than two (at m&t) parts. to Tpi = Tep + Tmir + (Tsi — Tep — Tmir)/Npe Where
Due to the space limitation, we refer the reader to [9] for Npg = K and Ty is the average maximal intra-
the details. resampling time for the DRPA-PF.

V. NUMERICAL EXAMPLE D. Performance evaluation: Divergence failures

In this section we will test how the DPF performs on The rater, is used to reveal how often a PF diverges in
a numerical example. The simulations are performed usirige 20000 Monte Carlo simulations. The bootstrap PF and
Matlab under the Linux operating system. The platform ishe DRPA-PF are said to diverge if their importance weights
a server consisting of eight Intel(R) Quad Xeon(R) CPUsre all equal to zero in the computer simulation. The DPF
(2.53GHz). is said to diverge ifwgl), 1=1,...,N,, are all equal to zero
) in the computer simulation. Once the divergence of a PF is
A. Algorithms tested detected, the PF will be rerun.

The bootstrap PF is implemented in the standard fashion, ] ]
using different number of particles\{). The DPF is im- E. Sketch of the simulation
plemented for different combinations of “and z particles” For the example, the bootstrap PF usihf particles is
(V. and N,). The DRPA-PF according to [5] is tested asfirst implemented and its accuracy measured by the RMSE
well, using different number of processing elemenis).( will be regarded as the reference level. Then it is shown that



TABLE |
SIMULATION RESULT FOR SYSTEM(22) WITH (23) — “SEE SECTIONSV-B - V-D FOR EXPLANATIONS OF THE NUMBERS

Case RMSE ofz¢, 2] Ts (Sec) Tep (Sec) Tpi (Sec) Tq
Bootstrap PFM = 1000 [2.0173, 2.3322] 0.1891 0.0313 0.0326 0.0155
DPF, N = 100, N, = 19 [2.0104, 2.3497] 0.3545 0.0168 0.0202 0.0133
DPF, N, = 120, N, = 19 [1.9914, 2.3045] 0.3901 0.0176 0.0207 0.0175
DPF, N, = 110, N, = 24 [1.9907, 2.3154] 0.4127 0.0175 0.0211 0.0113
DPF, N, = 120, N, = 24 [1.9906, 2.3259] 0.4338 0.0179 0.0214 0.0076
DRPA-PF,M = 1000, K = 40 [2.0222, 2.3557] 0.6324 0.0671 0.0878 0.0124
DRPA-PF,M = 1000, K = 25 2.0332, 2.4049] 0.4769 0.0565 0.0799 0.0124
Bootstrap PFM = 2000 1.9714 2.2664 0.2579 0.0510 0.0528 0.0059

the DPF using suitablé&v,, and N, “2 and z particles” can

2

achieve the same level of accuracy. In turn, the DRPA-PF
using M particles, but with different number of processing 3]

elements is also implemented. Finally, the bootstrap Pfgusi

2M particles is implemented.

F. Two dimensional example

[4

]

[l

Consider the following two dimensional nonlinear system[5]

t T
Ti41 = T + TZ? + vy
25Zt 2
Zep1 = 24 + 0.5z + —— + 8cos(1.2(t — 1)) +vf (22)
14 2;
z
Yy = atar(:ct) + = +e

20

where [zg z]T is assumed Gaussian distributed with

[zo 20"
white and Gaussian distributed with

1 01
vt NN(O’ [ 0.1

10 D , ande, ~ N(0,1)  (23)

in Table I, from which it can be seen that the DPF ha

~ N(0, Izx2), v+ = [vf vf]T ande; are assumed

[6
[7

8

[9

]
]
]

]

[10]

[11]
The simulation result for system (22) with (23) is shown

the potential to achieve the same level of accuracy as the
[13]

bootstrap PF in a shorter execution time.

G. Summary
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