
CONCURRENT LEARNING FOR CONVERGENCE IN
ADAPTIVE CONTROL WITHOUT PERSISTENCY OF

EXCITATION

A Thesis
Presented to

The Academic Faculty

by

Girish V. Chowdhary

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology
December 2010

CONCURRENT LEARNING FOR CONVERGENCE IN
ADAPTIVE CONTROL WITHOUT PERSISTENCY OF

EXCITATION

Approved by:

Eric N. Johnson, Committee Chair
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Professor Wassim M. Haddad
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Assoc. Professor Eric N. Johnson,
Advisor
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Professor Magnus Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Anthony Calise
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Asst. Professor Patricio Antonio Vela
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Panagiotis Tsiotras
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Date Approved: November 2010

ACKNOWLEDGEMENTS

It is my pleasure to take this opportunity to thank some of the people who directly

or indirectly supported me through this effort. I owe my deepest gratitude to my

advisor and mentor Dr. Eric Johnson for his unfailing support and guidance through

my time at Georgia Tech. His leadership skills and his ability to find innovative

solutions above and beyond the convention will always inspire me. I would also like

to thank Dr. Anthony Calise for the many interesting discussions we have had. He

has inspired several insights about adaptive control and research in general. I want

to thank Dr. Magnus Egerstedt for taking time out to advise me on my research

in networked control. I am indebted to Dr. Wassim Haddad and Dr. Panagiotis

Tsiotras for teaching me to appreciate the elegance of mathematical theory in control

research. Dr. Haddad’s exhaustive book on nonlinear control and my lecture notes

from his class account for much of my understanding of this subject. Dr. Tsiotras’

treatment of optimal, nonlinear, and robust control theory have inspired rigor and

critical thought in my research. It is a pleasure having Dr. Patricio Vela on my

committee, and I am thankful for the efforts he puts in his adaptive control class. I

am also indebted to Dr. Eric Feron for his continued support and encouragement.

He has taught me to appreciate the value of intuition and insight in controls theory

research. I want to thank Dr. Ravindra Jategaonkar for teaching me to appreciate

the subtleties and the art of system identification. Finally, I would like to thank all

my teachers, including those at Tech, R.M.I.T., and J.P.P., I have learned a lot from

them.

My time here at Tech has been made pleasurable by all my friends and colleagues.

iii

I am specially grateful to my current and past lab-mates, peers, and friends, in-

cluding Suresh Kannan, Allen Wu, Nimrod Rooz, Claus Christmann, Jeong Hur,

M. Scott Kimbrell, Ep Pravitra, Chester Ong, Seung-Min Oh, Yoko Watanabe, Jin-

cheol Ha, Hiroyuki Hashimoto, Tansel Yucelen, Rajeev Chandramohan, Kilsoo Kim,

Raghavendra Cowlagi, Maxime Gariel, Ramachandra Sattegiri, Suraj Unnikrisnan,

Ramachandra Rallabandi, Efstathios Bakolas, Timothy Wang, So-Young Kim, Erwan

Salaün, Maximillian Mühlegg and many others. I also want to thank my colleagues

and friends from Germany, who helped me prepare for this endeavor, Preeti Sankhe,

Joerg and Kirsten Dittrich, Andreas and Jaga Koch, Florian, Lucas, Jzolt, Olaf, Dr.

Frank Thielecke, and others.

I want to specially thank my very close friends Abhijit, Amol, Mughdha, and

Mrunal, for encouraging me right from the beginning. I am grateful to my mother

and father for teaching me to be strong in presence of adversities. I have probably

gotten my love for the Sciences from my grandfather, Appa, who is a retired Professor

of physics. I am proud to follow in his footsteps. My grandmother, Aai, has been

an immense source of comfort, without which I would be lost. I am grateful to all

my family, friends, and extended family for their support through my studies here.

My wife, Rakshita, has stood by me through this entire time. She has helped me

cope with the stress and always welcomed me with a smile on her face no matter how

tough the times. For that, I am forever indebted to her; with her, I am always home.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Model Reference Adaptive Control 4

1.2 Contributions of This Work . 9

1.3 Outline of the Thesis . 13

1.3.1 Some Comments on Notation 14

II MODEL REFERENCE ADAPTIVE CONTROL 16

2.1 Adaptive Laws for Online Parameter Estimation 16

2.2 Model Reference Adaptive Control 17

2.2.1 Tracking Error Dynamics 18

2.2.2 Case I: Structured Uncertainty 19

2.2.3 Case II: Unstructured Uncertainty 20

III CONCURRENT LEARNING ADAPTIVE CONTROL 24

3.1 Persistency of Excitation . 24

3.2 Concurrent Learning for Convergence without Persistence of Excitation 26

3.2.1 A Condition on Recorded Data for Guaranteed Parameter
Convergence . 26

3.3 Guaranteed Convergence in Online Parameter Estimation without
Persistency of Excitation . 28

3.3.1 Numerical Simulation: Adaptive Parameter Estimation . . . 30

3.4 Guaranteed Convergence in Adaptive Control without Persistency
of Excitation . 32

3.4.1 Guaranteed Exponential Tracking Error and Parameter Error
Convergence without Persistency of Excitation 34

3.4.2 Concurrent Learning with Training Prioritization 36

v

3.4.3 Numerical Simulations: Adaptive Control 40

3.5 Notes on Implementation . 41

IV CONCURRENT LEARNING NEURO-ADAPTIVE CONTROL 46

4.1 Concurrent Learning Neuro-Adaptive Control with RBF NN 47

V EXTENSION TO APPROXIMATE MODEL INVERSION BASED MODEL
REFERENCE ADAPTIVE CONTROL OF MULTI-INPUT SYSTEMS 51

5.1 Approximate Model Inversion based Model Reference Adaptive Con-
trol for Multi Input Multi State Systems 51

5.1.1 Tracking Error Dynamics 53

5.1.2 Case I: Structured Uncertainty 54

5.1.3 Case II: Unstructured Uncertainty 54

5.2 Guaranteed Convergence in AMI-MRAC without Persistency of Ex-
citation . 56

5.3 Guaranteed Boudedness Around Optimal Weights in Neuro-Adaptive
AMI-MRAC Control with RBF-NN 61

5.4 Guaranteed Boundedness in Neuro-Adaptive
AMI-MRAC Control with SHL NN 62

5.5 Illustrative Example . 70

VI METHODS FOR RECORDING DATA FOR CONCURRENT LEARNING 76

6.1 A Simple Method for Recording Sufficiently Different Points 77

6.2 A Singular Value Maximizing Approach 78

6.3 Evaluation of Data Point Selection Methods Through Simulation . 79

6.3.1 Weight Evolution without Concurrent Learning 81

6.3.2 Weight Evolution with Concurrent Learning using a Static
history-stack . 81

6.3.3 Weight Evolution with Concurrent Learning using a Cyclic
history-stack . 82

6.3.4 Weight Evolution with Concurrent Learning using Singular
Value Maximizing Approach 83

VII LEAST SQUARES BASED CONCURRENT LEARNING ADAPTIVE CON-
TROL . 87

vi

7.1 Least Squares Regression . 87

7.1.1 Least Squares Based Modification Term 90

7.2 Simulation results for Least Squares Modification 95

7.2.1 Case 1: Structured Uncertainty 95

7.2.2 Case 2: Unstructured Uncertainty handled through RBF NN 97

7.3 A Recursive approach to Least Squares Modification 98

7.3.1 Recursive Least Squares Regression 99

7.3.2 Recursive Least Squares Based Modification 100

7.4 Simulation results . 106

VIII FLIGHT IMPLEMENTATION OF CONCURRENT LEARNING NEURO-
ADAPTIVE CONTROL ON A ROTORCRAFT UAS 114

8.1 Motivation . 114

8.2 Flight Test Vehicle . 115

8.3 Implementation of concurrent Learning NN controllers on a High
Fidelity Simulation . 116

8.4 Implementation of Concurrent Learning Adaptive Controller on a
VTOL UAV . 119

8.4.1 Repeated Forward Step Maneuvers 119

8.4.2 Aggressive Trajectory Tracking Maneuvers 122

IX FLIGHT IMPLEMENTATION OF CONCURRENT LEARNING NEURO-
ADAPTIVE CONTROLLER ON A FIXED WING UAS 129

9.1 Flight Test Vehicle: The GT Twinstar 129

9.2 Flight Test Results . 130

X APPLICATION OF CONCURRENT GRADIENT DESCENT TO THE
PROBLEM OF NETWORK DISCOVERY 134

10.1 MOTIVATION . 134

10.2 The Network Discovery Problem 137

10.3 Posing Network Discovery as an Estimation Problem 139

10.4 Instantaneous Gradient Descent Based Approach 144

10.5 Concurrent Gradient Descent Based Approach 147

vii

XI CONCLUSIONS AND SUGGESTED FUTURE RESEARCH 150

11.1 Suggested Research Directions . 151

11.1.1 Guidance algorithms to ensure that the rank-condition is met 151

11.1.2 Extension to Dynamic Recurrent Neural Networks 152

11.1.3 Algorithm Optimization and Further Flight Testing 153

11.1.4 Quantifying the Benefits of Weight Convergence 153

11.1.5 Extension to Other Adaptive Control Architectures 154

11.1.6 Extension to Output Feedback Adaptive Control 154

11.1.7 Extension to Fault Tolerant Control and Control of
Hybrid/Switched Dynamical Systems 155

11.1.8 Extension of Concurrent Learning Gradient Descent beyond
Adaptive Control . 156

APPENDIX A OPTIMAL FIXED POINT SMOOTHING 157

REFERENCES . 159

VITA . 167

viii

LIST OF FIGURES

3.1 Two dimensional persistently exciting signals plotted as function of time 25

3.2 Two dimensional signals that are exciting over an interval, but not
persistently exciting . 25

3.3 Comparison of performance of online estimators with and without con-
current learning, note that the concurrent learning algorithm exhibits
a better match than the baseline gradient descent. The improved per-
formance is due to weight convergence. 31

3.4 Comparison of weight trajectories with and without concurrent learn-
ing, note that the concurrent learning algorithm combines two linearly
independent directions to arrive at the true weights, while the weights
updated by the baseline algorithm do not converge. 32

3.5 Comparison of tracking performance of concurrent learning and base-
line adaptive controllers, note that the concurrent learning adaptive
controllers outperform the baseline adaptive controller which uses only
instantaneous data. 42

3.6 Comparison of evolution of adaptive weights when using concurrent
learning and baseline adaptive controllers. Note that the weight esti-
mates updated by the concurrent learning algorithms converge to the
true weights without requiring persistently exciting exogenous input. 43

3.7 Schematic of implementation of the concurrent learning adaptive con-
troller of Theorem 3.2. Note that the history-stack contains Φ(xj),
which are the data points selected for recording as well as the associ-
ated model error formed as described in remark 3.3. The adaptation
error εj for a stored data point is found by subtracting the instanta-
neous output of the adaptive element from the estimate of the uncer-
tainty. The adaptive law concurrently trains on recorded as well as
current data. 45

5.1 Phase Portrait Showing the Unstable Dynamics of the System 71

5.2 Inverted Pendulum, comparison of states vs reference model 73

5.3 Inverted Pendulum, evolution of tracking error 73

5.4 Inverted Pendulum, evolution of NN weights 74

5.5 Inverted Pendulum, comparison of model error residual rbi = νad(x̄i −
∆(zi) for each stored point in the history-stack. 74

5.6 Inverted pendulum, NN post adaptation approximation of the un-
known model error ∆ as a function of x 75

ix

6.1 Comparison of reference model tracing performance for the control of
wing rock dynamics with and without concurrent learning. 81

6.2 Evolution of weight when using the baseline MRAC controller without
concurrent learning. Note that the weights do not converge, in fact,
once the states arrive at the origin weights remain constant. 82

6.3 Evolution of weight with concurrent learning adaptive controller using
a static history-stack. Note that the weights are approaching their
true values, however are not close to the ideal value by the end of the
simulation (40 seconds). 83

6.4 Evolution of weight with concurrent learning adaptive controller using
a cyclic history-stack. Note that the weights are approaching their true
values, and they are closer to their true values than when using a static
history-stack within the first 20 seconds of the simulation. 84

6.5 Evolution of weight with concurrent learning adaptive controller using
the singular value maximizing algorithm (algorithm 6.1). Note that
the weights approach their true values by the end of the simulation
(40 seconds). 85

6.6 Plot of the minimum singular value σmin(Ω) at every time step for
the three data point selection criteria discussed. Note that in case
of the static history-stack, σmin(Ω) stays constant once the history-
stack is full, in case of the cyclic history-stack, σmin(Ω) changes with
time as new data replace old data, occasionally dropping below that
of the σmin(Ω) for the static history-stack. When the singular value
maximizing algorithm (algorithm 6.1) is used, data points are only
selected such that σmin(Ω) increases with time. This results in faster
weight convergence. 86

7.1 Schematics of adaptive controller with least squares Modification . . . 94

7.2 Phase portrait of system states with only baseline adaptive control . . 96

7.3 Phase portrait of system states with least squares modification 97

7.4 Evolution of adaptive weights with only baseline adaptive control . . 98

7.5 Evolution of adaptive weights with least squares modification 99

7.6 Performance of adaptive controller with only baseline adaptive law . . 100

7.7 Performance of adaptive controller with least squares modification . . 101

7.8 Evolution of tracking error with least squares modification 102

7.9 Phase portrait of system states with only baseline adaptive control
while using RBF NN . 103

x

7.10 Phase portrait of system states with least squares modification while
using RBF NN . 104

7.11 RBF NN model uncertainty approximation with weights frozen post
adaptation . 105

7.12 Phase portrait of system states with only baseline adaptive control . . 108

7.13 Phase portrait of system states with recursive least squares modifica-
tion of equation 7.30 . 109

7.14 Evolution of adaptive weights with only baseline adaptive control . . 110

7.15 Evolution of adaptive weights with recursive least squares modification
of equation 7.30 . 111

7.16 Performance of adaptive controller with only baseline adaptive law . . 112

7.17 Tracking performance of the recursive least squares modification based
adaptive law of equation 7.30 . 113

8.1 The Georgia Tech GTMax UAV in Flight 116

8.2 GTMax Simulation Results for Successive Forward Step Inputs with
and without concurrent learning . 118

8.3 Recorded Body Frame States for Repeated Forward Steps 121

8.4 GTMax Recorded Tracking Errors for Successive Forward Step Inputs
with concurrent Learning . 121

8.5 Comparison of Weight Convergence on GTMax with and without con-
current Learning . 122

8.6 Recorded Body Frame States for Repeated Oval Maneuvers 124

8.7 GTMax Recorded Tracking Errors for Aggressive Maneuvers with Sat-
uration in Collective Channels with concurrent Learning 124

8.8 Plot of the norm of the error at each time step for aggressive trajectory
tracking with collective saturation . 125

8.9 GTMax Recorded Tracking Errors for Aggressive Maneuvers with con-
current Learning . 126

8.10 Comparison of norm of GTMax Recorded Tracking Errors for Aggres-
sive Maneuvers . 126

8.11 Comparison of Weight Convergence as GTMax tracks aggressive tra-
jectory with and without concurrent Learning 128

9.1 The Georgia Tech Twinstar UAS. The GT Twinstar is a fixed wing
foam-built UAS designed for fault tolerant control work. 130

xi

9.2 Comparison of ground track for baseline adaptive controller with con-
current learning adaptive controller. Note that the concurrent learn-
ing controller has better cross-tracking performance than the baseline
adaptive controller . 132

9.3 Comparison of altitude tracking for baseline adaptive controller with
concurrent learning adaptive controller. 132

9.4 Comparison of inner loop tracking errors. Although the transient per-
formance is similar, the concurrent learning adaptive controller was
found to have better trim estimation 133

9.5 Comparison of actuator inputs. The concurrent learning adaptive con-
troller was found to have better trim estimation. Note that the aileron,
rudder, and elevator inputs are normalized between −1 and 1, while
the throttle input is given as percentage. 133

10.1 A depiction of the network discovery problem, where the estimating
agent uses available measurements to estimate the neighbors and de-
gree of the target agent. Note that the estimating agent can sense the
states of the target agent and all of its neighbors, however, one agent
in the target agent’s network is out of the estimating agent’s sensing
range. 139

10.2 Consensus estimation problem with gradient descent 146

10.3 Consensus estimation problem with concurrent gradient descent . . . 149

xii

SUMMARY

Model Reference Adaptive Control (MRAC) is a widely studied adaptive

control methodology that aims to ensure that a nonlinear plant with significant mod-

eling uncertainty behaves like a chosen reference model. MRAC methods attempt to

achieve this by representing the modeling uncertainty as a weighted combination of

known nonlinear functions, and using a weight update law that ensures weights take

on values such that the effect of the uncertainty is mitigated. If the adaptive weights

do arrive at an ideal value that best represent the uncertainty, significant performance

and robustness gains can be realized. However, most MRAC adaptive laws use only

instantaneous data for adaptation and can only guarantee that the weights arrive

at these ideal values if and only if the plant states are Persistently Exciting (PE).

The condition on PE reference input is restrictive and often infeasible to implement

or monitor online. Consequently, parameter convergence cannot be guaranteed in

practice for many adaptive control applications. Hence it is often observed that tra-

ditional adaptive controllers do not exhibit long-term-learning and global uncertainty

parametrization. That is, they exhibit little performance gain even when the system

tracks a repeated command.

This thesis presents a novel approach to adaptive control that relies on using

current and recorded data concurrently for adaptation. The thesis shows that for a

concurrent learning adaptive controller, a verifiable condition on the linear indepen-

dence of the recorded data is sufficient to guarantee that weights arrive at their ideal

values even when the system states are not PE. The thesis also shows that the same

condition can guarantee exponential tracking error and weight error convergence to

zero, thereby allowing the adaptive controller to recover the desired transient response

xiii

and robustness properties of the chosen reference models and to exhibit long-term-

learning. This condition is found to be less restrictive and easier to verify online than

the condition on persistently exciting exogenous input required by traditional adap-

tive laws that use only instantaneous data for adaptation. The concept is explored for

several adaptive control architectures, including neuro-adaptive flight control, where

a neural network is used as the adaptive element. The performance gains are justi-

fied theoretically using Lyapunov based arguments, and demonstrated experimentally

through flight-testing on Unmanned Aerial Systems.

xiv

CHAPTER I

INTRODUCTION

Control technologies are enabling a multitude of capabilities in modern systems. In

fact, for modern systems such as unmanned aircraft and space vehicles, control sys-

tems are often critical to the system’s safety and functionality. Hence, the design of ef-

ficient and robust control systems has been heavily researched. Most well-understood

methods of control design rely on developing a mathematical models of systems and

their physical interconnections. However, it is not realistic to expect that a perfect

mathematical model of a physical system will always be available. Therefore, “real-

world” controllers must account for modeling uncertainties to ensure safe operation

in uncertain environments. Adaptive control is framework that allow the design of

control systems for plants with significant modeling uncertainties without having to

first obtain a detailed dynamical model. Most adaptive controllers achieve this by

adjusting online a set of controller parameters using available information.

In flight control applications, having an accurate model for aircraft for exam-

ple, means significant effort must be spent on modeling from first principles, system

identification using flight test data and wind tunnel data, and model verification. Fur-

thermore, a single model that describes aircraft dynamics accurately over its entire

operating envelop often ends up being nonlinear and coupled. Hence, a single linear

controller often cannot be used over the entire flight envelop. Robust control is one

approach that has been extensively studied for systems with uncertainties. In these

methods, an estimate of the structure and the magnitude of the uncertainty is used to

design static linear controllers that function effectively in presence of the uncertain-

ties (see for example [100], [24], [6] and the references therein). One benefit of robust

1

control methods is that the linear models used for design need not be extremely ac-

curate. By their nature however, robust controllers are conservative, and can result

in poor performance. Nonlinear model based methods have also been studied for

aircraft control. These include backstepping, sliding mode control, state dependent

Riccati equations, and Lyapunov design. These methods rely on a nonlinear model of

the aircraft, and their performance can be affected the model’s fidelity. Furthermore,

well understood linear stability metrics such as gain margin and phase margin do not

translate easily to nonlinear designs, thus providing the control designer with no met-

rics to characterize stability and performance. Hence, there are not many industrial

implementations of these methods.

One prevailing trend in aerospace applications has been to identify several linear

models around different trim points, design linear controllers for each of these linear

models, and devise a switching or scheduling scheme to switch between the different

controllers. Some authors consider such switching controllers as some of the first

adaptive controllers devised [3]. Subsequent adaptive control designs followed heuris-

tic rules that varied controller parameters to achieve desired performance. These

designs suffered from lack of rigorous stability proofs, and important lessons about

the effects of deviating from the rigor of control theory were learned at great expense.

The most well known example is that of the NASA X-15 flight tests, in which it is

believed that a heuristic adaptive controller resulted in loss of aircraft when operat-

ing in off-nominal condition [8]. More modern methods of adaptive control however,

use Lyapunov based techniques to form a framework for adaptive control theory in

which the stability of different adaptive laws can be ascertained rigorously. In fact,

Dydek, Annaswamy, and Lavretsky have argued that modern Lyapunov based meth-

ods could have prevented the X-15 crash [26]. The two main differences between the

modern methods of adaptive control and the older scheduling methods are that the

modern methods employ a single control law that varies the controller parameters to

2

accommodate modeling uncertainty over the plant operating domain, and that mod-

ern adaptive controllers are motivated through nonlinear stability analysis, and have

associated stability proofs.

Modern adaptive controllers can be roughly classified as “direct adaptive con-

trollers” and “indirect adaptive controllers”. Direct adaptive controllers traditionally

use the instantaneous tracking error to directly modify the parameters of the con-

troller. Direct adaptive controllers are characterized by fast control response and ef-

ficient tracking error mitigation. However, direct adaptive controllers are not focused

on estimating the uncertainty itself, and hence often suffer from “Short Term Learn-

ing”, that is, their tracking performance does not necessarily improve over time, even

when the same command is repeatedly tracked. On the other hand, indirect adaptive

controllers use the available information to form an estimate of the plan dynamics and

use this information to control the plant. Therefore, as the estimate of the plant dy-

namics becomes increasingly accurate, the tracking performance of indirect adaptive

controllers improves. However, the reliance on estimating plant dynamics can often

lead to poor transient performance in indirect adaptive control if the initial estimates

are not accurate. This fact makes it hard to provide guarantees of performance and

stability for indirect adaptive control methods.

The most widely studied class of direct adaptive control methods is known as

Model Reference Adaptive Control (MRAC) (see for example [70, 3, 43, 93, 40] and

the references therein). In MRAC the aim is to design a control law that ensures

that the states of the plant track the states of an appropriately chosen reference

model which characterizes the desired transient response and stability properties of

the plant. Other notable recent adaptive control methods include adaptive back-

stepping and tuning function based methods (see for example [56]). Adaptive back-

stepping is a powerful approach with many emerging applications. However, it relies

3

on the knowledge of higher order plant state derivatives which are not easy to esti-

mate. Furthermore, complex instructions must be implemented in software for this

approach, which makes it susceptible to numerical issues. Perhaps due to these rea-

sons, limited success has been obtained with this method in real-world applications,

for example the results of Ishihara et al. suggest that adaptive autopilots developed

with adaptive backstepping could be highly sensitive to time-delays [44]. In this thesis

we will not pursue adaptive backstepping further, rather we will be concerned with

extending MRAC with a novel Concurrent Learning adaptive control framework that

combines the benefits of direct and indirect adaptive control.

1.1 Model Reference Adaptive Control

MRAC has been widely studied for a class of nonlinear systems with modeling un-

certainties and full state feedback (see [70],[3],[43],[93] and the references therein).

Many physical systems can be controlled using MRAC approaches, and wide ranging

applications can be found, including control of robotics arms (see for example [55],

[77]), flight vehicle control, (see for example [48], [50], [90]), and control of medi-

cal processes (see for example [33], [95], [96]). MRAC architectures are designed to

guarantee that the controlled plant states x track the states xrm of an appropriately

chosen reference model which characterizes the desired transient response and robust-

ness properties. Most MRAC methods achieve this by using a parameterized model of

the uncertainty, often referred to as the adaptive element and its parameters referred

to as adaptive weights. Adaptive elements in MRAC can be classified as those that

are designed to cancel structured uncertainties, and those designed to cancel unstruc-

tured uncertainties. In problems where the structure of the modeling uncertainty is

known, that is, where it is known that the uncertainty can be linearly parameterized

using a set of known nonlinear basis functions, the adaptive element is formed by

using a weighted combination of the known basis (see for example [69, 70, 40]). In

4

this thesis we refer to this case as the case of structured uncertainty. For this case it is

known that if the adaptive weights arrive at the ideal (true) weights then the uncer-

tainty can be uniform canceled. In problems where the structure of the uncertainty

is not known but it is known that the uncertainty is continuous and defined over

a compact domain, Neural Networks have been used by many authors as adaptive

elements [61, 48, 59, 54, 53, 47]. In this case the universal approximation property of

neural networks guarantees that a set of ideal weights exists that guarantees optimal

approximation of the uncertainty with a bounded error that is valid over a compact

domain. In this thesis we refer to this case as the case of unstructured uncertainty.

The key point to note about the MRAC architecture is that it is designed to

augment a baseline linear control architecture with an adaptive element, whose pa-

rameters are updated to cancel the uncertainties in the plant. Even when these

uncertainties are linear, the adaptive law itself becomes nonlinear. This is a result of

multiplications between the real system states and the adaptive weights, which can

be thought of as augmented system states. However, the tracking error dynamics

in MRAC are formed through a combination of an exponentially stable linear term

in the error e with a nonlinear disturbance term equal to the difference between the

adaptive element’s estimate of the uncertainty and the true uncertainty. Hence, if

the adaptive weights arrive at the ideal weights, the linear tracking error dynamics

of MRAC can be made to dominate.

Traditionally in MRAC, the adaptive law is designed to update the parameters

in the direction of maximum reduction of the instantaneous tracking error cost (e.g.

V (t) = eT (t)e(t)). Such minimization results in a weight update law that is at

most rank-1 [20, 22]. This approach aids in ensuring that the parameters take on

values such that the tracking error is instantaneously suppressed, it does not however

guarantee the convergence of the parameters to their ideal values unless the system

states are Persistently Exciting (PE) [70, 43, 93, 3] (one exception that is not pursued

5

further here is the special case of uncertainties with periodic regressor functions [4]).

A mathematical definition of what constitutes a persistently exciting signal is given

in definition 3.2. In essence, the PE condition requires that over all predefined time

intervals, the plant states span the complete spectrum of the state space. Boyd and

Sastry have shown that the condition on PE system states can be related to a PE

exogenous reference input by noting the following: If the exogenous reference input

r(t) contains as many spectral lines as the number of unknown parameters, then

the plant states are PE, and the parameter error converges exponentially to zero

[9]. However, the condition on PE reference input is restrictive and often infeasible to

implement or monitor online. For example, in adaptive flight control applications, PE

reference inputs may be operationally unacceptable, waste fuel, and may cause undue

stress on the aircraft. Furthermore, since the exogenous reference inputs for many

online applications are event-based and not known a-priori, it is often impossible to

verify online whether a signal is PE. Consequently, parameter convergence cannot be

guaranteed in practice for many adaptive control applications.

Various methods have been developed to guarantee robustness and efficient un-

certainty suppression without PE reference inputs. These include the classic σ mod-

ification of Ionnou [43] and the e modification of Narendra [69] which guarantee that

the adaptive weights do not diverge even when the system states are not PE. Further

modifications include projection based modifications in which the weights are con-

strained to a compact set through the use of a weight projection operator [93, 40].

These modifications however, are aimed at ensuring boundedness of weight rather

than uncertainty cancelation. The motivation being that if the weights stay bounded

then an application of the Barbalat’s lemma results in asymptotic tracking error con-

vergence. However, this approach suffers from the issue that transient response of the

tracking error cannot be guaranteed. Furthermore, most implementations of σ and

e modification as well as projection operator based modifications bound the weights

6

around a neighborhood of a preselected value, usually set to zero. This can slowdown

or even prevent the adaptive element from estimating constants that are far away

from zero, such as trims or input biases.

Recently Volyanksyy et al. have introduced the Q modification approach [94, 96,

95]. In Q modification, an integral of the tracking error is used to drive the weights

to a hypersurface that contains the ideal weights. The rationale in Q modification is

that weight convergence is not necessary as long as the uncertainty is instantaneously

canceled. Weight convergence does occur however, if states are PE. In the recent L1

control approaches Cao, Hovakimyan, and others have used a low pass filter on the

output of the adaptive element to ensures that high adaptive gains can be used to

instantaneously dominate the uncertainty [15, 13]. Nguyen has developed an “opti-

mal control modification” to adaptive control which also allows high adaptation gains

to be used to efficiently suppress the uncertainty [71]. The main focus in many such

methods however has been on instantaneously dominating the uncertainty rather than

guaranteeing weight convergence. In fact, many authors have argued that guaran-

teed weight convergence is not required in MRAC schemes if the only concern is to

guarantee e(t) → 0 as t → ∞. However, asymptotic convergence of tracking error

does not guarantee transient performance, and further modifications, such as those

introduced in L1 adaptive control must be used. On the other hand, if the adaptive

weights do converge to their ideal values, then the uncertainty is uniformly canceled

over an operating domain of the plant. This allows the linear (in e), exponentially

stable, tracking error dynamics of MRAC to dominate, guaranteeing that the tracking

error vanishes exponentially, thus recovering the desired transient performance and

robustness properties of the chosen reference model.

Furthermore, we also agree with the authors in [9], and [1] that exponential weight

convergence is needed to meaningfully discuss robustness of adaptive controllers using

linear metrics, with the authors in [86] that exponential weight convergence leads to

7

exponential tracking error convergence, and with the authors in [14] that weight con-

vergence is needed to handle a class of adaptive control problems where the reference

input is dependent on the unknown parameters.

In summary, weight convergence results in the following benifits:

• Exponential error convergence

• Guaranteed exponentially bounded transient performance

• Uniform approximation of plant uncertainty, effectively making the tracking

error dynamics linear

• If plant uncertainty is uniformly canceled, the plant tracks the reference model

exponentially. For an appropriately chosen reference model the plant states will

become exponentially indistinguishable from the reference model states. This

allows us to meaningfully speak about recovering the phase and gain margin

and the transient performance characteristics of the reference model, and thus

meaningfully evaluate the performance of the controller through well understood

linear stability metrics.

We note that the requirement on PE system states is common for guaranteeing

parameter convergence in adaptive control methods other than MRAC, including

adaptive backstepping [56]. Therefore the methods presented in this thesis should be

of interest beyond MRAC.

To realize the benefits of weight convergence, other authors have sought to com-

bine direct and indirect adaptive control to guarantee efficient tracking error reduction

and uniform uncertainty cancelation through weight convergence. Duarte and Naren-

dra introduced the concept of combined direct-indirect adaptive control [25]. Among

others, Yu et al. explored combined direct and indirect adaptive control for control

of constrained robots [98], Dimtris et al. combined direct and indirect adaptive con-

trol for control using artificial neural networks [79]. Slotine and Li introduced the

8

Composite MRAC method for combining direct and indirect adaptive control [88],

which has been further studied by Lavretsky [58]. Nguyen studied the use of recur-

sive least squares to augment a direct adaptive law [72]. In these efforts, the aim

is to develop an adaptive law that trains on a signal other than the instantaneous

tracking error to arrive at an accurate estimate of the plant uncertainty. That is, to

ensure that the parameter error converges to zero, thereby ensuring that the weights

converge to their ideal values. However, these methods require that the plant states

be persistently exciting for the weights to converge.

1.2 Contributions of This Work

The main contribution of this thesis is to show that if recorded data are used con-

currently with current data for adaptation, a simple condition on the richness of the

recorded data is sufficient to guarantee exponential tracking error and parameter error

convergence in MRAC; without requiring PE exogenous reference input. Adaptive

control laws making such concurrent use of recorded and current data are defined

here as “Concurrent Learning” adaptive laws. The concurrent use of recorded and

current data is motivated by the intuitive argument that if the recorded data is made

sufficiently rich and used concurrently for adaptation, then weight convergence can

occur without the system states being persistently exciting. In this thesis, this in-

tuitive argument is formalized and it is shown that if the following condition on the

recorded data is met, then exponential tracking error and parameter convergence can

be achieved:

The recorded data have as many linearly independent elements as the

dimension of the basis of the uncertainty.

This condition relates weight convergence to the spectral properties of the recorded

data, and in this way differs from the classical PE condition, which relates the conver-

gence of weights to the spectral properties of future system signals (see for example

9

Boyd and Sastry 1986 [9]). Furthermore, the condition stated in this thesis is less

restrictive than a condition on PE reference input, and is conducive to online verifi-

cation. The following is a summary of the main contributions of this work.

A method that guarantees exponential convergence in adaptive control:

Currently in order to guarantee exponential tracking error convergence in adap-

tive control, the states need to be PE. This thesis presents a method that

concurrently uses current and recorded data to guarantee exponential tracking

error convergence in adaptive control subject to an easily verifiable condition

on linear independence of the recorded data.

Guaranteed transient performance:

The concurrent learning adaptive laws presented in this thesis guarantee that

the tracking performance of the adaptive controller is exponentially bounded

once the stated condition on the recorded data is met. Furthermore, since

a-priori recorded data can be used, the method provides a way to guarantee

exponential transient performance bounds even before it has been turned on.

Guaranteed uncertainty Characterization:

The concurrent learning adaptive laws presented in this thesis guarantee that

the adaptive weights will converge to their ideal values if the stated verifiable

condition on the recorded data is met. This allows for a mechanism that can be

used to monitor whether the uncertainty has been approximated. Furthermore,

the approximated uncertainty can be used to improve control and guidance

performance.

Pathway to Stability Metrics for Adaptive Controllers:

If plant uncertainty is uniformly canceled, the plant tracks the reference model

exponentially. Hence, for an appropriately chosen reference model the plant

states will become exponentially indistinguishable from the reference model

10

states. For aerospace applications particularly, guaranteed weight convergence

is of utmost importance. Because if the weights converge, the performance and

robustness measures associated with the baseline linear control design will be re-

covered, and hence handling specifications such as those in reference [89] can be

used [82],[50], enabling a pathway to flight certification of adaptive controllers.

A concurrent gradient descent law that converges without PE signals:

Gradient descent bases methods have been widely used to solve parameter iden-

tification problems which are linearly parameterized. In these methods, the pa-

rameters are updated in the direction of maximum reduction of a quadratic cost

on the estimation error. Such gradient based parameter update laws have been

used for NN training [36], in system identification, and in decentralized control

of networked robots [27]. It is well known that gradient based adaptive laws

are subject to being stuck at local minima and do not have guaranteed rate of

convergence. Many different methods have been tried to remedy this situation.

Among others, Jankt has tried adaptive learning rate schemes to improve per-

formance of gradient based NN training algorithms [45], Ochai has tried to use

kickout algorithms for reducing the possibility of weights being stuck at local

minima [73]. However, the fact remains that the only way to guarantee the

convergence of gradient based adaptive laws that only use instantaneous data is

to require that the system signals are PE [3, 93]. In this thesis we show that if

recorded data is used concurrently with current data for gradient based training,

then a verifiable condition on linear independence of the recorded data is suf-

ficient to guarantee global exponential weight convergence for these problems.

This result has wide ranging implications beyond adaptive control.

11

In a broader sense, this thesis represents one of the first rigorous attempts to

evaluate the impact of memory on adaptive control and parameter identification al-

gorithms. Many previously studied methods that use memory in order to improve

performance of adaptive algorithms have been heuristic. For example, one commonly

used approach is to add a “momentum term” to standard gradient based weight up-

date laws [92, 36, 78]. The momentum term scales the most recent weight update in

the direction of the last weight update. This speeds up the convergence of weights

when in the vicinity of local minima, and slows the divergence. This heuristic mod-

ification cannot guarantee the convergence of weights, and results only in a modest

improvement. Another common approach is the use of a forgetting factor which can

be tuned to indicate the degree of reliance on past data [42]. This approach is also

heuristic, and suffers from the drawbacks that the forgetting factor is difficult to tune,

and an improper value can adversely affect the performance of the adaptive controller.

Particularly, a smaller value of the forgetting factor indicates higher reliance on re-

cent data, which could lead to local parameterizations, while a larger value of the

forgetting factor indicates higher reliance on past data, which could lead to sluggish

adaptation performance. Patiño et al. suggested the use of a bank of NNs trained

around different operating conditions as a basis for the space of all operating condi-

tions [77]. The required model error was then calculated by using a linear combination

of the outputs of these different NNs. In order to overcome the shortcomings of online

training algorithms, Patiño et al. also suggested that the bank of NNs be adapted

off-line using recorded data. The reliance on off-line training makes this approach

inappropriate for adaptive flight applications. All of these methods represent impor-

tant heuristic “tweaks” that can improve controller performance, however, they lack

rigorous justification and are not guaranteed to work on all problems. In this thesis

however, we introduce a method that uses memory along with the associated theory

that characterizes the impact and benefit of including memory. In that sense, another

12

contribution of this thesis is to rigorously show that recorded data can indeed be used

to significantly improve the performance of control algorithms. These findings are in

excellent agreement with those of Bernstein et al., who have used recorded data to

design retrospective cost optimizing adaptive controllers (see for example [84], [85],

[37]). The fact that memory can be used to improve adaptive control performance

has interesting implications, especially when one considers that modern embedded

computers can easily handle control algorithms that go beyond simple instantaneous

calculations.

1.3 Outline of the Thesis

We begin by discussing MRAC in Chapter 2. In that chapter, the classical parameter

adaptation laws, and MRAC adaptive laws for both cases of structured and unstruc-

tured uncertainties are presented. In Chapter 3 concurrent learning adaptive laws

that use instantaneous and recorded data concurrently for adaptation are presented.

Theorem 3.1 shows that a concurrent learning gradient based parameter update law

guarantees exponential parameter convergence in parameter identification problems

without PE states subjects to a verifiable condition on linear independence of the

recorded data (Condition 3.1), referred to here as the rank-condition. In Theorem 3.2

it is shown that a concurrent learning adaptive law guarantees exponential parameter

error and tracking error convergence in adaptive control problems with structured

uncertainty subject to the rank-condition, without requiring PE exogenous inputs.

In Theorem 3.3 it is shown that a concurrent learning adaptive law that prioritizes

learning on current data over that of learning on recorded data guarantees asymptotic

tracking error and parameter error convergence subject to the rank-condition.

Concurrent learning adaptive control is extended to neuro-adaptive control in

Chapter 4 for a class of nonlinear systems with unstructured uncertainties. For this

class of systems Theorem 4.1 shows that the rank-condition is sufficient to guarantee

13

that the adaptive weights of a radial basis function NN stay bounded within a compact

neighborhood of the ideal weights when using concurrent learning adaptive laws. In

Chapter 5 the results are extend to approximate model inversion based MRAC for

adaptive control of a class of multi- input-multi-state nonlinear systems. and show

that the rank-condition is once again sufficient to guarantee exponential parameter

and tracking error convergence.

In Section 6 we discuss methods for selecting data points in order to maximize

convergence rate. In Chapter 7 we show that least squares based methods can also

be used for concurrent learning adaptive control. We show that a modified adaptive

law that drives the weights to an online least squares estimate of the ideal weights

can guarantee exponential convergence subject again to the rank-condition.

In Chapters 8 and 9 the developed methods are implemented on real flight hard-

ware, and flight test results that characterize the improvement in performance are

presented. In Chapter 10 the problem of network discovery for a decentralized net-

work of mobile robots is discussed, and it is shown that under two key assumptions

the problem can be posed as that of parameter estimation. Simulation results using

the concurrent gradient descent law for solving the network discovery problem are

presented.

The thesis is concluded in Chapter 11 and future research directions are suggested

in Section 11.1.

1.3.1 Some Comments on Notation

In this thesis, f(t) represents a function of time t. Often we will drop the argument

t consistently over an entire equation for ease of exposition. Indices are denoted

only by subscripts. The operator ‖.‖ denotes the Euclidian norm unless otherwise

stated. For a vector ξ and a positive real constant a we define the compact ball Ba

as Ba = {ξ : ‖ξ‖ ≤ a}. We let ∂D denote the boundary of the set D. If a vector

14

function ξ(t) is equivalently equal to zero for all time t ≥ T, T ∈ <+ then we say

that ξ ≡ 0.

15

CHAPTER II

MODEL REFERENCE ADAPTIVE CONTROL

2.1 Adaptive Laws for Online Parameter Estimation

Parameter estimation is concerned with using available information to form an online

estimate of unknown system parameters and has been widely studied (see for exam-

ple [3], [69], [86], [93], [46] and the references therein). In parameter estimation for

flight system identification for example, the parameters to be estimated are directly

related to meaningful physical quantities such as aerodynamic derivatives. Hence, the

convergence of the unknown parameters to their true values is highly desirable. We

shall assume that the problem is posed such that the unknown system dynamics are

linearly parameterized. Hence letting y(t) : <m → < denote the measured output of

an unknown linearly parameterized model whose unknown parameters are contained

in the constant ideal weight vector W ∗ ∈ <m, whose basis function Φ(x) is continu-

ously differentiable, and the measurements Φ(x(t)) ∈ D where D ⊂ <m is a compact

set, we have

y(t) = W ∗TΦ(x(t)). (2.1)

Note that the regressor vector Φ(x) can be a nonlinear function that represents a

meaningful system signal, however the model 2.1 itself is linearly parameterized as it

represents an unknown linear combination of a known basis.

Let W (t) ∈ <m denote an online estimate of the ideal weights W ∗; then an online

estimate of y can be given by the mapping ν : <m → < in the following form:

ν(t) = W T (t)Φ(x(t)). (2.2)

16

This results in an approximation error ε(t) = ν(t)− y(t):

ε(t) = (W (t)−W ∗)TΦ(x(t)). (2.3)

Letting W̃ (t) = W (t)−W ∗ we have,

ε(t) = W̃ T (t)Φ(x(t)). (2.4)

In the above form it is clear that ε(t) → 0 uniformly as t → ∞ if the parameter

error W̃ (t)→ 0 as t→∞. Therefore, we wish to design a parameter adaptation law

Ẇ (t), which uses the measurements of x(t), y(t), and the knowledge of the mapping

Φ(.), to ensure W (t)→ W ∗ as t→∞. A well known choice for Ẇ (t) is the following

gradient based adaptive law which updates the adaptive weight in the direction of

maximum reduction of the instantaneous quadratic cost V (t) = εT (t)ε(t) [3], [69],

[43], [93],

Ẇ (t) = −ΓΦ(x(t))ε(t), (2.5)

where Γ > 0 contains the learning rate.

It is well known that when using the gradient descent based parameter adaptation

law of equation 2.5, W (t)→ W ∗ as t→∞ if and only if the vector signal Φ(x(t)) ∈

<m is Persistently Exciting (PE) [93], [3], [43], [1], [70].

2.2 Model Reference Adaptive Control

In this section, an introduction to Model Reference Adaptive Control (MRAC) is

presented. Let x(t) ∈ <n be the known state vector, let u(t) ∈ < denote the control

input, and consider the following system:

ẋ(t) = Ax(t) +B(u(t) + ∆(x(t))), (2.6)

where A ∈ <n×n, B = [0, 0, ..., 1]T ∈ <n, and ∆(x) is a continuous function represent-

ing the scalar uncertainty. The assumption on scalar input and the form of B matrix

17

is made for ease of exposition in this section, these assumptions are lifted in chapte

5. We assume that the pair (A,B) in equation 2.6 is controllable.

A reference model can be designed that characterizes the desired response of the

system

ẋrm(t) = Armxrm(t) +Brmr(t), (2.7)

where Arm ∈ <n×n is a Hurwitz matrix and r(t) denotes a bounded reference signal.

A tracking control law consisting of a linear feedback part upd(t) = K(xrm(t)− x(t)),

a linear feedforward part ucrm(t) = Kr[x
T
rm(t), r(t)]T , and an adaptive part uad(x)(t)

is chosen to have the following form

u = ucrm + upd − uad. (2.8)

Note that in the above equation, we assumed that the baseline linear design is at-

tempting to make the plant behave like the reference model, hence the linear feedback

controller operates on the tracking error e.

2.2.1 Tracking Error Dynamics

The tracking error e is the difference between the plant state and the state of the

reference model and is defined as:

e(t) = xrm(t)− x(t). (2.9)

Differentiating equation 2.9 we have

ė(t) = Armxrm(t) +Brmr(t)− (Ax(t) +B(u(t) + ∆(x(t)))), (2.10)

letting ∆A = Arm − A and using the control law in 2.8 the above equation can be

further simplified to

ė(t) = Ame(t) + ∆Axrm +Brmr(t)−Bucrm(t) +B(uad(t)−∆(t)), (2.11)

18

Assuming that an appropriate choice of ucrm exists such that the matching condition

Bucrm = (Arm−A)xrm+Brmr is satisfied, the tracking error dynamics can be written

as

ė = Ame+B(uad(x)−∆(x)), (2.12)

where the baseline full state feedback controller upd = Ke is chosen such that Am =

A − BK is a Hurwitz matrix. Hence for any positive definite matrix Q ∈ <n×n, a

positive definite solution P ∈ <n×n exists to the Lyapunov equation

ATmP + PAm +Q = 0. (2.13)

2.2.2 Case I: Structured Uncertainty

Consider the case where the structure of the uncertainty ∆(x) is known, that is, it is

known that the uncertainty can be represented as a linear combination of a known

continuously differentiable basis function. This case is captured by the following

assumption.

Assumption 2.1 The uncertainty ∆(x) can be linearly parameterized, that is,

there exist a unique constant vector W ∗ ∈ <m and a vector of known continu-

ously differentiable regressor functions Φ(x(t)) = [φ1(x(t)), φ2(x(t)),, φm(x(t))],

such that there exists an interval [t, t + ∆t], ∆t ∈ <+ over which the integral∫ t+∆t

t
Φ(x(t))ΦT (x(t))dt can be made positive definite for bounded Φ(x(t)), and ∆(x)

can be uniquely represented as

∆(x(t)) = W ∗TΦ(x(t)). (2.14)

A large class of nonlinear uncertainties can be written in the above form (see for ex-

ample the nonlinear wing-rock dynamics model [87], [66]). Note that the requirement

on unique W ∗ for a given basis of the uncertainty Φ(x(t)) ensures that the represen-

tation of equation 2.14 is minimal, that is functions such as ∆(x) = w∗1 sin(x(t)) +

w∗2 cos(x) + w∗3 sin(x) are represented as ∆(x) = [w∗1 + w∗3, w
∗
2]T [sin(x), cos(x)]. Since

19

the mapping Φ(x) is known, letting W (t) ∈ <m×n denote the estimate W ∗ the adap-

tive law can be written as

uad(x(t)) = W T (t)Φ(x(t)). (2.15)

For this case it is well known that the adaptive law

Ẇ = −ΓWΦ(x)eTPB (2.16)

where ΓW is a positive definite learning rate matrix results in e(t) → 0 as t →

∞; however 2.16 does not guarantee the convergence (or even the boundedness) of

W . [93]. Equation 2.16 will be referred to as the baseline adaptive law. For the

baseline adaptive law, it is also well known that a necessary and sufficient condition

for guaranteeing limt→∞W (t) = W ∗ is that Φ(t) be PE [70], [43], [93]. Furthermore,

Boyd and Sastry have shown that Φ(t) can be made PE if the exogenous reference

input has as many spectral lines as the unknown parameters [9].

2.2.3 Case II: Unstructured Uncertainty

In the more general case where it is only known that the uncertainty ∆(x) is contin-

uously differentiable and defined over a compact domain D ⊂ <n, the adaptive part

of the control law can be formed using Neural Networks (NNs). In the following we

will present two different types of NN for capturing unstructured uncertainty.

2.2.3.1 Radial Basis Function Neural Network

The output of a Radial Basis Function (RBF) NN [36] can be given as

uad(x) = W Tσ(x). (2.17)

where W ∈ <l×n and σ(x) = [1, σ2(x), σ3(x),, σl(x)] ∈ <l is a vector of known

radial basis functions. In this case, l denotes the number of radial basis function

nodes in the NN. For i = 2, 3..., l let ci denote the RBF centroid and µi denote the

20

RBF width then for each i The radial basis functions are given as

σi(x) = e−‖x−ci‖
2/µi (2.18)

Appealing to the universal approximation property of Radial Basis Function Neu-

ral Networks (see [76], [36], or [92]) we have that given a fixed number of radial basis

functions l there exists ideal weights W ∗ ∈ <l and ε̃(x) ∈ < such that the following

approximation holds for all x ∈ D ⊂ <m where D is compact

∆(x) = W ∗Tσ(x) + ε̃(x), (2.19)

and ε̄ = supx∈D ‖ε̃(x)‖ can be made arbitrarily small given sufficient number of radial

basis functions. For this case it is well known that the baseline adaptive law of equa-

tion 2.16 (with Φ(x(t)) replaced by σ(x(t))) guarantees uniform ultimate boundedness

of the tracking error, and guarantees that the adaptive weights stay bounded within

a neighborhood of the ideal weights if the system states are PE (see for example [61],

[55] and the references therein).

2.2.3.2 Single Hidden Layer Neural Network

A Single Hidden Layer (SHL) NN is a nonlinearly parameterized map that has also

been often used for capturing unstructured uncertainties that are known to be con-

tinuous. The output of a SHL NN can be given as

uad(x) = W Tσ(V T x̄). (2.20)

The terms W,V, x̄ are defined in the following. Let n3 denote the number of

output layer neurons, n2 denote the number of hidden layer neurons, and n1 denote

the number of input layer neurons. Note that for the uncertainty in equation 2.6,

n3 = 1. For SHL NN representation in equation 2.20 W ∈ <(n2+1)×n3 is the NN

synaptic weight matrix connecting the hidden layer with the output layer. Letting

21

Θwi denote the hidden layer bias for the ith hidden layer neuron, we have the following

form for W

W =

Θw,1 · · · Θw,n3

w1,1 · · · w1,n3

...
. . .

...

wn2,1 · · · wn2,n3

∈ <(n2+1)×n3 , (2.21)

The NN synaptic weight matrix connecting the input layer with the hidden layer is

given by V ∈ <(n1+1)×n2 . Letting Θvi denote the hidden layer bias for the ith input

layer neuron, we have the following form for V

V =

Θv,1 · · · Θv,n2

v1,1 · · · v1,n2

...
. . .

...

vn1,1 · · · wn1,n2

∈ <(n1+1)×n2 , (2.22)

The input to the NN is given by x̄ ∈ D ⊂ <n1+1, where D is a compact set, and

x̄ contains the states over which the uncertainty is to be parameterized xin and the

constant bias term bv usually set to 1

x̄ =

 bv

xin

 =

bv

xin1

xin2

...

xinn1

∈ <n1+1. (2.23)

For ease in notation, let z = V T x̄ ∈ <n2 , and bw denote the constant bias term

usually set to 1 for the hidden layer neuron. Then the vector function σ(z) ∈ <n2+1

22

is given by

σ(z) =

bw

σ1(z1)

...

σn2(zn2)

∈ <n2+1. (2.24)

The elements of σ consist of sigmoidal activation functions, which are given by

σj(zj) =
1

1 + e−ajzj
. (2.25)

Single Hidden Layer (SHL) perceptron NN are known to be universal approxima-

tors (see [38] or [92]). That is, given an ε̄ > 0, for all x̄ ∈ D, where D is a compact

set, there exists a number of hidden layer neurons n2, and an ideal set of weights

(W ∗, V ∗) that brings the NN output to within an ε neighborhood of the function

approximation error. The largest such ε is given by

ε̄ = sup
x̄∈D

∥∥∥W ∗Tσ(V ∗
T

x̄)−∆(x̄)
∥∥∥ . (2.26)

Hence in a similar fashion to RBF NN we have that the following approximation

holds for all x ∈ D ⊂ <n where D is compact

∆(x) = W ∗Tσ(V ∗
T

x̄) + ε̃(x), (2.27)

and ε̄ = supx̄∈D ‖ε̃(x)‖ can be made arbitrarily small given sufficient number of hidden

layer neurons.

For this case it has been shown that the following adaptive laws which contain an

e-modification term with κ > 0 (see [69]) guarantee uniform ultimate boundedness

of the tracking error, and guarantees that the adaptive weights stay bounded (see for

example [61], [55] and the references therein)

Ẇ = −(σ(V T x̄)− σ′(V T x̄)V T x̄)rTΓw − k‖e‖W (2.28)

V̇ = −ΓV x̄r
TW Tσ′(V T x̄)− k‖e‖V. (2.29)

23

CHAPTER III

CONCURRENT LEARNING ADAPTIVE CONTROL

3.1 Persistency of Excitation

It is well known that when using instantaneous gradient descent (see equation 2.5)

to solve the online parameter estimation problem described in Section 2.1, the on-

line weight estimates will arrive at their ideal values if and only if the vector signal

Φ(x(t)) ∈ <m is Persistently Exciting (PE) [93], [3], [43], [1], [70]. For the case of

adaptive control, Boyd and Sastry have shown that the condition on persistency of

excitation in the system states (Φ(x)) can be related to persistency of excitation in

the exogenous reference input r(t) by noting the following: If the exogenous reference

input r(t) contains as many spectral lines as the number of unknown parameters,

then the plant states are PE, and the parameter error converges exponentially to

zero [9]. Hence exponential parameter and tracking error convergence in Model Ref-

erence Adaptive Control (MRAC) that uses only instantaneous data for adaptation

(equation 2.16) is dependent on persistency of excitation in system states.

Various equivalent definitions of excitation and the persistence of excitation of a

bounded vector signal exist in the literature (see for example [3], [70]), we will use

the definitions proposed by Tao in [93]:

Definition 3.1 A bounded vector signal Φ(t) is exciting over an interval [t, t+T],

T > 0 and t ≥ t0 if there exists γ > 0 such that∫ t+T

t

Φ(τ)ΦT (τ)dτ ≥ γI. (3.1)

Definition 3.2 A bounded vector signal Φ(t) is persistently exciting if for all

24

t > t0 there exists T > 0 and γ > 0 such that∫ t+T

t

Φ(τ)ΦT (τ)dτ ≥ γI. (3.2)

Note that the above definition requires that the matrix
∫ t+T
t

Φ(τ)ΦT (τ)dτ ∈ <m×m

be positive definite over any finite interval. This is equivalent to requiring that over

any finite interval the signal φ(t) contain at least m spectral lines.

Let us consider the two dimensional case as an example. The vector signals

Φ1(t) = [2 sin(t) 0.5 cos(t)] (figure 2(a)) and Φ2(t) = [3 2(−0.5 + cos(t))] (figure 2(b))

are PE. The vector signal Φ3(t) = [2 − 0.5] (figure 2(a)) is not exciting over any

finite interval, whereas the vector signal Φ4(t) = [3 2e−t(−0.5 + cos(t))] (figure 2(b))

is exciting over a finite interval, but not PE.

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

φ 1,φ
2

(a) PE signal Φ1(t)

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

φ 1,φ
2

(b) PE signal Φ2(t)

Figure 3.1: Two dimensional persistently exciting signals plotted as function of time

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

φ 1,φ
2

(a) Non-PE signal Φ3(t)

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

φ 1,φ
2

(b) Non-PE signal Φ4(t)

Figure 3.2: Two dimensional signals that are exciting over an interval, but not

persistently exciting

However, the condition on PE reference input (or PE Φ(x)) is restrictive and often

infeasible to implement or monitor online. For example, in flight control applications,

25

PE reference inputs may be operationally unacceptable, waste fuel, and may cause

undue stress on the aircraft. Furthermore, since the exogenous reference inputs for

many online applications are event based and not known a-priori, it is often impossible

to monitor online whether a signal is PE. Consequently, parameter convergence often

can not be guaranteed in practice for many adaptive control applications.

3.2 Concurrent Learning for Convergence without Persis-
tence of Excitation

In this thesis we show that if carefully selected and recorded data is used concur-

rently with current data for adaptation, then the stored information could be used to

guarantee convergence without requiring persistency of excitation. Adaptive control

laws making such concurrent use of recorded and current data are termed as “Con-

current Learning” adaptive laws. The concurrent use of recorded and current data

is motivated by the intuitive argument that if the recorded data is made sufficiently

rich, perhaps by recording when the system states were exciting for a short period,

and used concurrently for adaptation, then weight convergence can occur without the

system states being persistently exciting. In the following we will present a rank-

condition for characterizing the sufficient richness of recorded data and show that

this condition is sufficient to guarantee global exponential convergence in adaptive

control and parameter estimation problems with structured uncertainties.

3.2.1 A Condition on Recorded Data for Guaranteed Parameter Conver-
gence

The recorded data used in concurrent learning contains carefully selected and stored

systems states Φ(xk) which are stored in a matrix referred to as the history-stack,

and the associated measured output yk of the system whose parameters are to be

estimated (see equation 2.1). The following condition characterizes the richness of

recorded data:

26

Condition 3.1 The history-stack in the recorded data contains as many linearly

independent elements Φ(xk) ∈ <m as the dimension of the basis of the uncertainty.

That is, if Z = [Φ(x1),,Φ(xp)] denotes the history-stack, then rank(Z) = m.

This condition requires that the recorded data contain sufficiently different el-

ements to form a basis for the linearly parameterized uncertainty. This condition

differs from the condition on PE Φ(t) in the following ways:

1. This condition applies to recorded data, whereas persistency of excitation ap-

plies to how Φ(t) should behave in the future.

2. In contrast with persistence of excitation, this condition applies only to a subset

of the set of all recorded data, particularly it applies only to data that has been

specifically selected and recorded.

3. Since it is fairly straight forward to determine the rank of a matrix online, this

condition is conducive to online monitoring.

4. It is straight forward to see that it is always possible to record data such that

Condition 3.1 is met when the system states are exciting over a finite time

interval.

5. It is also possible to meet this condition by selecting and recording data during

a normal course of operation over a longer period without requiring special

excitation.

In essence, this condition relates parameter convergence to the spectral properties

of the recorded data, and thus, is similar in spirit to Boyd and Sastry’s condition

which relates the convergence of weights to the spectral properties of future system

signals. However, this condition is less restrictive, and conducive to online monitoring.

In the next three sections we will use Lyapunov stability theory to show that

Condition 3.1 is sufficient to guarantee parameter convergence in adaptive control

27

problems without requiring persistence of excitation.

3.3 Guaranteed Convergence in Online Parameter Estima-
tion without Persistency of Excitation

We now present a concurrent learning algorithm for adaptive parameter identifi-

cation that builds on this intuitive concept, and show that exponential parameter

convergence can be guaranteed subject to an easily monitored condition on lin-

ear independence of the recorded data. Let j ∈ {1, 2, ...p} denote the index of a

recorded data point xj, let Φ(xj) denote the regressor vector evaluated at point xj,

let εj = ν(Φ(xj))− yj, let Γ > 0 denote a positive definite learning rate matrix, then

the concurrent learning gradient descent algorithm is given as

Ẇ (t) = −ΓΦ(x(t))ε(t)−
p∑
j=1

ΓΦ(xj)εj(t). (3.3)

The parameter error dynamics for the concurrent learning gradient descent algo-

rithm can be found by differentiating W̃ and using equation 3.3

˙̃W (t) = −ΓΦ(x(t))ε(t)− Γ

p∑
j=1

Φ(xj)εj(t)

= −ΓΦ(x(t))ΦT (x(t))W̃ (t)− Γ

p∑
j=1

Φ(xj)Φ
T (xj)W̃ (t)

= −Γ[Φ(x(t))ΦT (x(t)) +

p∑
j=1

Φ(xj)Φ
T (xj)]W̃ (t).

(3.4)

This is a linear time varying differential equation in W̃ . Furthermore, note that if

Condition 3.1 is satisfied, then W̃ ≡ 0 is the only equilibrium point for this system.

The following theorem shows that once Condition 3.1 on the recorded data is met then

the concurrent learning gradient descent law of equation 3.3 guarantees exponential

parameter convergence.

Theorem 3.1 Consider the system model given by equation 2.1, the online esti-

mation model given by equation 2.2, the concurrent learning gradient descent weight

28

update law of equation 3.3, and assume that the regressor function Φ(x) is contin-

uously differentiable and that the measurements Φ(x(t)) ∈ D where D ⊂ <m is a

compact set. If the recorded data points satisfy Condition 3.1, then the zero solution

of the weight error dynamics of equation 3.4 W̃ ≡ 0 is globally uniformly exponen-

tially stable.

Proof Consider the quadratic function given by V (W̃) = 1
2
W̃ (t)TΓ−1W̃ (t), and

note that V (0) = 0 and V (W̃) > 0 ∀ W̃ 6= 0, hence V (W̃) is a Lyapunov func-

tion candidate. Since V (W̃) is quadratic, letting λmin(.) and λmax(.) denote the op-

erators that return the minimum and maximum eigenvalue of a matrix, we have:

λmin(Γ−1)‖W̃‖2 ≤ V (W̃) ≤ λmax(Γ−1)‖W̃‖2. Differentiating with respect to time

along the trajectories of 3.4 we have

V̇ (W̃ (t)) = −W̃ (t)T [Φ(x(t))ΦT (x(t))

+

p∑
j=1

Φ(xj)Φ
T (xj)]W̃ (t).

(3.5)

Since Φ(x(t))ΦT (x(t)) ≥ 0 ∀Φ(x(t)), this results in

V̇ (W̃ (t)) ≤ −W̃ (t)T [

p∑
j=1

Φ(xj)Φ
T (xj)]W̃ (t) (3.6)

Let Ω =
p∑
j=1

Φ(xj)Φ
T (xj), and note that

p∑
j=1

Φ(xj)Φ
T (xj) > 0 due to Condition

3.1, therefore Ω > 0. Hence

V̇ (W̃) ≤ −λmin(Ω)‖W̃‖2. (3.7)

Hence, using Lyapunov stability theory (see Theorem 4.6 from [34]) uniform ex-

ponential stability of the zero solution W̃ ≡ 0 of the parameter error dynamics of

equation 3.4 is established. Furthermore, since the Lyapunov candidate is radially

unbounded, the result is global.

29

Remark 3.1 The above proof shows exponential convergence of parameter esti-

mation error to zero without requiring persistency of excitation in the signal Φ(x(t)).

The proof requires that
p∑
j=1

Φ(xj)Φ
T (xj) be positive definite, which is guaranteed if

Condition 3.1 is satisfied.

Remark 3.2 The rate of convergence is determined by the spectral properties of
p∑
j=1

Φ(xj)Φ
T (xj), which is dependent on the choice of the recorded states; particularly

on λmin(
p∑
j=1

Φ(xj)Φ
T (xj))

3.3.1 Numerical Simulation: Adaptive Parameter Estimation

In this section we present a simple two dimensional example to illustrate the effect

of Condition 3.1. Let t denote the time, dt denote a discrete time interval, and

for each t + dt let θ(t) take on incrementally increasing values from −π continuing

on to 2π with an increment step equal to dt. Let y = W ∗TΦ(θ) be the model of

the structured uncertainty that is to be estimated online with W ∗ = [0.1, 0.6] and

Φ(θ) = [1, e−|θ−π/2‖
2
]. We note that y is the output of a RBF Neural Network with

a single hidden node, and is assumed to be measured. Figure 3.3 compares the

model output y with the estimate ν for the concurrent learning parameter estimation

algorithm of Theorem 3.1 and the baseline gradient descent algorithm of equation 2.5.

The output of the concurrent learning algorithm is shown by dashed and dotted lines,

whereas the output of the baseline algorithm is shown by dotted lines. The concurrent

learning gradient descent algorithm outperforms the baseline gradient descent. Figure

3.4 compares the trajectories of the online estimate of the ideal weights in the weight

space. The dashed arrows show the scaled magnitude and direction of weight update

based only on current data at regular intervals, whereas the solid arrows show the

scaled magnitude and direction of weight updates based only on recorded data. It

can be seen that at the end of the simulation the concurrent learning gradient descent

30

algorithm of Theorem 3.1 arrives at the ideal weights (denoted by ∗) while the baseline

gradient algorithm does not. On observing the arrows, we see that the weight updates

based on both recorded and current data combine two linearly independent directions

to improve weight convergence. This illustrates the effect of using recorded data when

Condition 3.1 is met. For this simulation the learning rate was set to Γ = 5 for both

concurrent learning and baseline gradient descent case. The regressor vector Φ(x(t))

and the model output y(t) for data points satisfying W T (t)Φ(x(t))−y(t) > 0.05 were

selected for storage and were used by the concurrent learning algorithm.

−4 −2 0 2 4 6 8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

θ

y

y
nu with conc.
nu without conc.

Figure 3.3: Comparison of performance of online estimators with and without con-
current learning, note that the concurrent learning algorithm exhibits a better match
than the baseline gradient descent. The improved performance is due to weight con-
vergence.

31

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

W
1

W
2

update on current data
update on recorded data
weight trajectory
true weights

true weights

Weight trajectory in weight space when using the
baseline gradient descent algorithm

Weight trajectory in weight−space when
using the concurrent learning gradient descent algorithm

Direction of weight update based only on
current data

Direction of wieght update based only on
recorded data

Figure 3.4: Comparison of weight trajectories with and without concurrent learn-
ing, note that the concurrent learning algorithm combines two linearly independent
directions to arrive at the true weights, while the weights updated by the baseline
algorithm do not converge.

3.4 Guaranteed Convergence in Adaptive Control without
Persistency of Excitation

In this section, we consider the problem of tracking error and parameter error con-

vergence in the framework of Model Reference Adaptive Control (MRAC). We show

that Condition 3.1 is sufficient to guarantee exponential parameter error and track-

ing error convergence when using a concurrent learning adaptive algorithm without

requiring PE reference input. In this section we assume that the uncertainty is lin-

early parameterized and that its structure is known (Case I in Section 2.2.2, with

the uncertainty characterized by equation 2.14). The more general case of unstruc-

tured uncertainty (Case II in Section 2.2.3) is handled in the next chapter. Two key

theorems that guarantee global tracking error and parameter error convergence to

32

0 when using the concurrent learning adaptive control method in the framework of

MRAC are presented. The first theorem shows that global exponential stability of the

tracking error dynamics (equation 2.12) and exponential convergence of the adaptive

weights W to their ideal values W ∗ is guaranteed if Condition 3.1 is satisfied. The

second theorem considers the case when adaptation on recorded data is restricted to

the nullspace of the adaptation on current data and shows that global asymptotic

stability of the tracking error dynamics and asymptotic convergence of the adaptive

weights W to their ideal values W ∗ is guaranteed subject to Condition 3.1. The re-

striction of adaptation based on recorded data into the nullspace of the adaptation

based on current data allows one to prioritize the weight updates based on current

data.

Letting for each recorded data point j, εj(t) = W T (t)Φ(xj)−∆(xj), a concurrent

learning adaptive law that uses both recorded and current data concurrently for

adaptation is chosen to have the following form:

Ẇ (t) = −ΓWΦ(x(t))eT (t)PB −
p∑
j=1

ΓWΦ(xj)εj(t). (3.8)

Remark 3.3 For evaluating the adaptive law of equation 3.8 the term εj =

νad(xj) − ∆(xj) is required for the jth data point where j ∈ [1, 2, ..p]. The model

error ∆(xj) can be observed by noting that:

∆(xj) = BT [ẋj − Axj −Buj]. (3.9)

Since A,B, xj, uj are known, the problem of estimating system uncertainty can be

reduced to that of estimation of ẋ by using 3.9. In cases where an explicit measure-

ment for ẋ is not available, ẋj can be estimated using an implementation of a fixed

point smoother [31], we have discussed the details of this process and its implications

in [20] and in Appendix A. Note that using fixed point smoothing for estimating ẋj

will entail a finite time delay before εj can be calculated for that data point. How-

ever, since εj does not directly affect the tracking error at time t, this delay does

33

not adversely affect the instantaneous tracking performance of the controller. Other

methods, such as that suggested in [60] and [97] can also be used to estimate ẋj.

Remark 3.4 In equation 2.6 we assumed that B = [0, ..., 1] for ease of exposition,

alternatively, we can require that BTB is invertible, i.e. B has full column rank. With

this requirement, ∆(xj) = (BTB)−1BT [ẋj − Axj − Buj]. Note that B = [0, ..., 1]

satisfies this requirement trivially. This formulation allow extension to multi-input

systems. Extension to multi input systems is performed in Chapter 5.

The weight error dynamics can be found by differentiating W̃ (t) = W (t)−W ∗:

˙̃W (t) = −
p∑
j=1

Φ(xj)Φ
T (xj)W̃ (t)− ΓWΦ(x(t))eT (t)PB. (3.10)

The following theorem shows that Condition 3.1 is sufficient to guarantee expo-

nential parameter and tracking error convergence when using the concurrent learning

adaptive law of equation 3.8.

3.4.1 Guaranteed Exponential Tracking Error and Parameter Error Con-
vergence without Persistency of Excitation

Theorem 3.2 Consider the system in equation 2.6, the reference model in equa-

tion 2.7, the control law given by equation 2.8, the case of structured uncertainty

with the uncertainty given by ∆(x) = W ∗TΦ(x), the weight update law of equation

3.8, and assume that the recorded data points Φ(xj) satisfy Condition 3.1, then the

solution (e(t),W (t)) ≡ (0,W ∗) of the closed loop system given by equations 2.12 and

3.8 is globally exponentially stable.

Proof Consider the following positive definite and radially unbounded function

V (e, W̃) =
1

2
eTPe+

1

2
W̃ TΓW

−1W̃ , (3.11)

since V (0, 0) = 0 and V (e, W̃) > 0 ∀ (e, W̃) 6= 0, V (e, W̃) is a Lyapunov candidate.

Let ξ = [e, W̃], and let λmin(.) and λmax(.) denote operators that return the smallest

34

and the largest eigenvalue of a matrix, then we have

1

2
min(λmin(P), λmin(ΓW

−1))‖ξ‖2 ≤ V (e, W̃)

≤ 1

2
max(λmax(P), λmax(ΓW

−1))‖ξ‖2.

(3.12)

Differentiating 3.11 along the trajectory of 2.12, and equation 3.10, and using the

Lyapunov equation (equation 2.13) we have

V̇ (e, W̃) = −1

2
eTQe+ eTPB(uad −∆)

+ W̃ T (−
p∑
j=1

Φ(xj)Φ
T (xj)W̃ − Φ(x)eTPB).

(3.13)

Using equations 2.14 and 2.15 to note that uad(x)−∆(x) = W̃ TΦ(x), canceling like

terms, and simplifying we have

V̇ (e, W̃) = −1

2
eTQe− W̃ T (

p∑
j=1

Φ(xj)Φ
T (xj))W̃ . (3.14)

Let Ω =
p∑
j=1

Φ(xj)Φ
T (xj), then due to Condition 3.1 Ω > 0. Then, we have

V̇ (e, W̃) ≤ −1

2
λmin(Q)eT e− λmin(Ω)W̃ T W̃ . (3.15)

Hence,

V̇ (e, W̃) ≤ − min(λmin(Q), 2λmin(Ω))

max(λmax(P), λmax(ΓW
−1))

V (e, W̃), (3.16)

establishing the exponential stability of the zero solution (e(t),W (t)) ≡ (0,W ∗) of

the closed loop system given by equations 2.12 and equation 3.8 (using Lyapunov

stability theory, see Theorem 3.1 in [34]). Since V (e, W̃) is radially unbounded, the

result is global, hence x tracks xrm exponentially and W (t) → W ∗ exponentially as

t→∞.

Remark 3.5 The above proof shows exponential convergence of tracking error

e(t) and parameter estimation error W̃ (t) to 0 without requiring persistency of ex-

citation in the signal Φ(x(t)). The only condition required is Condition 3.1, which

35

guarantees that the matrix
p∑
j=1

Φ(xj)Φ
T (xj) is positive definite. This condition is eas-

ily verified online and is found to be less restrictive than a condition on PE reference

input.

Remark 3.6 The inclusion or removal of new data points in equation 3.8 does not

affect the Lyapunov candidate. Hence, the Lyapunov candidate serves as a common

Lyapunov function, therefore, using Theorem 1 in [62], global uniform exponential

stability of the zero solution of the tracking error dynamics e ≡ 0 and the weight

error dynamics W̃ ≡ 0 is guaranteed even when data points are removed or added

from the history-stack, as long as Condition 3.1 remains satisfied.

Remark 3.7 The rate of convergence is determined by the spectral properties of

Q, P , ΓW , and Ω, the first three are dependent on the choice of the linear gains Kp

and the learning rates, and the last one is dependent on the choice of the recorded

data.

3.4.2 Concurrent Learning with Training Prioritization

In Theorem 3.2 the adaptive law did not prioritize weight updates based on the

instantaneous tracking error over the weight updates based on recorded data. Such

prioritization can be achieved by enforcing separation in the training law by restricting

the weight updates based on recorded data to the nullspace of the weight updates

based on current data. Such prioritization may prove useful if some elements of the

recorded data have become corrupt or irrelevant. To achieve this, we let Ẇt(t) =

Φ(x(t))eT (t)PB, let I ∈ <m×m denote the identity matrix, and use the following

projection operator

Wc(t) =

 I − Ẇt(t)(Ẇt(t)
T
Ẇt(t))

−1Ẇt(t)
T

if Ẇt(t) 6= 0

I if Ẇt(t) = 0
(3.17)

For this case, the following theorem ascertains that global asymptotic stability

36

of the zero solution of the tracking error dynamics and the weight error dynamics

subject to Condition 3.1.

Theorem 3.3 Consider the system in equation 2.6, the reference model in equa-

tion 2.7, the control law given by equation 2.8, the case of structured uncertainty

with the uncertainty given by ∆(x(t)) = W ∗TΦ(x(t)), the definition of Wc(t) in equa-

tion 3.17, and let for each recorded data point j, εj(t) = W T (t)Φ(xj) − ∆(xj) with

∆(xj) = BT [ẋj − Axj − Buj]. Furthermore, let for each time t, NΦ(t) be the set

containing all Φ(xj) ⊥ Ẇt(t), that is NΦ(t) = {Φ(xj) : Wc(t)Φ(xj) = Φ(xj)}, and

consider the following weight update law

Ẇ (t) = −ΓWΦ(x(t))eT (t)PB − ΓWWc(t)
∑
j∈NΦ

Φ(xj)εj(t). (3.18)

If the recorded data points Φ(xj) satisfy Condition 3.1, then the zero solution

(e(t),W (t)) ≡ (0,W ∗) of the closed loop system given by equations 2.12 and 3.18 are

globally asymptotically stable.

Proof Consider the following positive definite and radially unbounded Lyapunov

candidate

V (e, W̃) =
1

2
eTPe+

1

2
W̃ TΓW

−1W̃ . (3.19)

Differentiating 3.19 along the trajectory of 2.12, noting that

˙̃W (t) = −ΓWWc(t)
∑
j∈NΦ

Φ(xj)Φ
T (xj)W̃ (t) − ΓWΦ(x(t))eT (t)PB, and using the Lya-

punov equation (equation 2.13), we have

V̇ (e, W̃) = −1

2
eTQe+ eTPB(uad −∆)

+ W̃ T (−Wc

∑
j∈NΦ

Φ(xj)Φ
T (xj)W̃ − ΓWΦ(x)eTPB).

(3.20)

Using equations 2.14 and 2.15 to note that uad(x)−∆(x) = W̃ TΦ(x), canceling like

37

terms, and simplifying we have

V̇ (e, W̃) = −1

2
eTQe

− W̃ T (Wc

∑
j∈NΦ

Φ(xj)Φ
T (xj))W̃ .

(3.21)

Note that W̃ ∈ <m can be written as W̃ (t) = (I −Wc(t))W̃ (t) + Wc(t)W̃ (t), where

Wc is the orthogonal projection operator given in equation 3.17, furthermore note

that W 2
c (t) = Wc(t) and (I −Wc(t))Wc(t) = 0. Hence we have

V̇ (e, W̃) = −1

2
eTQe

− W̃ TWc

∑
j∈NΦ

Φ(xj)Φ
T (xj)WcW̃

− W̃ TWc

∑
j∈NΦ

Φ(xj)Φ
T (xj)(I −Wc)W̃ .

(3.22)

However, since the sum in the last term of V̇ (e, W̃) is only performed on the elements

in NΦ we have that for all j Φ(xj) = Wc(t)Φ(xj), therefore it follows that

W̃ T (t)Wc(t)
p∑

j∈NΦ(t)

Wc(t)Φ(xj)Φ
T (xj)Wc(t)(I −Wc(t))W̃ (t) = 0, hence

V̇ (e, W̃) = −1

2
eTQe

− W̃ TWc

∑
j∈NΦ

Φ(xj)Φ
T (xj)WcW̃ ≤ 0.

(3.23)

This establishes Lyapunov stability of the zero solution e ≡ 0, W̃ ≡ 0 of the closed

loop system given by equation 2.12 and 3.18. To show asymptotic stability, we must

show that V̇ (e, W̃) = 0 only when e = 0 and W̃ = 0. Consider the case when

V̇ (e, W̃) = 0, since Q is positive definite, this means that e = 0. Let e = 0 and

suppose ad absurdum there exists a W̃ 6= 0 such that V̇ (e, W̃) = 0. Since e = 0

we have that Ẇt = 0, hence from the definition of Wc (equation 3.17) Wc = I.

Therefore it follows that the set NΦ contains all the recorded data points, therefore

we have that W̃ T
p∑
j=0

Φ(xj)Φ
T (xj)W̃ = 0. However, since the recorded data points

satisfy Condition 3.1, W̃ T
p∑
j=1

Φ(xj)Φ
T (xj)W̃ > 0 for all W̃ 6= 0, contradicting the

38

claim. Therefore, we have shown that V̇ (e, W̃) = 0 only when e = 0 and W̃ = 0.

Thus establishing asymptotic stability of the zero solution (e(t),W (t)) = (0,W ∗) of

the closed loop system given by equations 2.12 and 3.18. Guaranteeing x tracks xrm

asymptotically and W → W ∗ as t → ∞. Since the Lyapunov candidate is radially

unbounded, the result is global.

Remark 3.8 The above proof shows asymptotic convergence of tracking error

e(t) and parameter estimation error W̃ (t) without requiring persistency of excitation

in the signal Φ(x(t)). The only condition required is Condition 3.1, which guarantees

that the matrix
p∑
j=1

Φ(xj)Φ
T (xj) is positive definite.

Remark 3.9 The inclusion or removal of new data points in equation 3.18 or

the fact that the summation is performed only over the set NΦ(t) does not affect the

Lyapunov candidate. Hence, the Lyapunov candidate serves as a common Lyapunov

function for the switching adaptive law of equation 3.18, therefore, using Theorem 1

in [62], global asymptotic stability of the zero solution of the tracking error dynamics

e ≡ 0 and the weight error dynamics W̃ ≡ 0 is guaranteed even when data points are

removed or added from the history-stack, as long as Condition 3.1 remains satisfied.

Remark 3.10 V̇ (e, W̃) will remain negative even when NΦ is empty at time t if

e 6= 0, in this case an application of Barbalat’s lemma yields e(t) → 0 as t → ∞. If

e = 0, and Condition 3.1 is satisfied, NΦ cannot remain empty due to the definition

of Wc.

Remark 3.11 If e(t) = 0 or Φ(x(t)) = 0 and W̃ (t) 6= 0, we have that V̇ (e, W̃) =

W̃ T
p∑
j=0

Φ(xj)Φ
T (xj)W̃ < 0 due to Condition 3.1 and the definition of Wc(t) (equation

3.17). This indicates that parameters will converge to their true values even when

the tracking error or system states are not PE.

39

Remark 3.12 For practical applications the following approximations are useful:

• NΦ = {Φ(xj) : ‖Wc(t)Φ(xj)− Φ(xj)‖ < β}, where β is a small positive con-

stant,

• Wc(t) = I if |e(t)| < α where α is a small positive constant.

These approximations will reduce the asymptotic stability result to that of uniform

ultimate boundedness.

3.4.3 Numerical Simulations: Adaptive Control

In this section we present numerical simulation results of adaptive control of an in-

verted pendulum model. Let θ denote the angular position of the pendulum and δ

denote the control input, then the unstable pendulum dynamics under consideration

are given by:

θ̈ = δ + sin(θ)− |θ̇|θ̇ + 0.5eθθ̇. (3.24)

A second order reference model with natural frequency and damping ration of

1 is used, the linear control is given by K = [−1.5,−1.3], and the learning rate is

set to ΓW = 3.5. The initial conditions are set to x(0) = [θ(0), θ̇(0)] = [1, 1] and

W = 0. The model uncertainty is given by y = W ∗TΦ(x) with W ∗ = [−1, 1, 0.5]

and Φ(x) = [sin(θ), |θ̇|θ̇, eθθ̇]. A step in position (θc = 1) is commanded at t =

20 seconds. Figure 3.5 compares the reference model tracking performance of the

baseline adaptive control law of equation 2.16, the concurrent learning adaptive law

of Theorem 3.2 (Wc(t) = I), and the concurrent learning adaptive law Theorem

3.3 (Wc(t) as in 3.17). It can be seen that in both cases the concurrent learning

adaptive laws outperform the baseline adaptive law, especially when tracking the step

commanded at t = 20 seconds. The reason for this becomes clear when we examine the

evolution of weights, for both concurrent learning laws, the weights are very close to

their ideal values by this time, whereas for the baseline adaptive law, this is not true.

40

This difference in performance is indicative of the benefit of parameter convergence.

We note that in order to make a fair comparison the same learning rate (ΓW) was used,

with this caveat, we note that the concurrent learning adaptive law of Theorem 3.2

outperforms the other two laws. It should be noted that increasing ΓW for the baseline

case will result in an oscillatory response. Furthermore, note that approximately up

to 3 seconds the tracking performance of the concurrent learning adaptive law of

Theorem 3.3 is similar to that of the baseline adaptive law, indicating that until this

time the set NΦ is empty. As sufficient recorded data points become available such

that the set NΦ starts to become nonempty the performance of the concurrent learning

adaptive law of Theorem 3.3 approaches that of the concurrent learning adaptive law

of Theorem 3.2. In this simulation, the data points for concurrent adaptation were

selected for recording if at time t, x(t) satisfied ‖xp − x(t)‖/‖x(t)‖ > 0.1, where

xp denotes the last stored data point. This method is a computationally efficient

way of ensuring that sufficiently different points are recorded and 3.1 was found to

be met within the first 0.06 seconds of the simulation. We note in passing that

this MRAC implementation is equivalent to Approximate Model Inversion-MRAC

implementation (see Chapter 5) with the approximate inversion model ν = δ.

3.5 Notes on Implementation

An implementation of concurrent learning adaptive controllers will have the following

components:

1. A history-stack or memory bank which holds the recorded data. The recorded

data contains carefully selected and stored systems states Φ(xj) which are stored

in a matrix referred to as the history-stack (the criteria for selecting which Φ(xj)

to record is discussed in Chapter 6), and the associated measured or estimated

ẋk (see Appendix A for one method to estimate ẋj, other methods have been

suggested in [60] and [97]).

41

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

time (seconds)

pi
−

ra
d

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

time (seconds)

xD
ot

 (
pi

−
ra

d/
s)

ref model
conc. with Wc=I
conc. with Wc
online only

Figure 3.5: Comparison of tracking performance of concurrent learning and baseline
adaptive controllers, note that the concurrent learning adaptive controllers outper-
form the baseline adaptive controller which uses only instantaneous data.

2. An algorithm to select data for recording and an estimate the model error ∆(xj)

for selected data points (see remark 3.3 for further details),

3. A numeric implementation of the concurrent learning update law (for exam-

ple equation 3.8).

As an example, an algorithmic implementation of a concurrent learning adaptive

controller of Theorem 3.2 is given below. The implementation shown is similar to

one used to produce the results in Section 3.4.3. The algorithm begins with assuming

that a measurements of x(t) is available.

In the above algorithm, if a measurement of ẋ(t) is not available, an estimate

can be formed using an appropriate filter, including fixed point smoothers. Fixed

point smoothing uses a forward and backward Kalman filter to arrive at an accurate

estimate [31]. This means that the algorithm must wait for a small number of time

42

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

time (seconds)

w
ei

gh
ts

ideal
conc. with Wc=I
conc. with Wc
online only

Figure 3.6: Comparison of evolution of adaptive weights when using concurrent
learning and baseline adaptive controllers. Note that the weight estimates updated
by the concurrent learning algorithms converge to the true weights without requiring
persistently exciting exogenous input.

steps until sufficient information is available to use a fixed point smoothing approach.

Hence, the incorporation of a selected data point into the history-stack will be slightly

delayed. However, this delay does not adversely affect the tracking performance, as

the weights continue to be updated so as to minimize the instantaneous tracking error

cost (eT e). Figure 3.7 shows a schematic of an implementation of the concurrent

learning adaptive controller of Theorem 3.2. The figure serves to depict pictorially

algorithm 3.1.

43

Algorithm 3.1 An algorithmic implementation of concurrent learning adaptive con-
troller of Theorem 3.2

propagate ẋrm(t)
e(t) = x(t)− xrm(t)
propagate W (t) {Ẇ as in equation 3.8}
uad(t) = W T (t)Φ(x(t)) {output of the adaptive element}
u(t) = upd(t) + urm(t)− uad(t) {MRAC control law}
if ‖Φ(x(t))−Φp‖2

‖Φ(x(t))‖ ≥ ε then

use a selection criterion (e.g. equation 6.1 or algorithm 6.1) to determine whether
to record Φ(x(t)) in the history-stack
if data point is selected for recording then

if ẋ(t) is available then
∆(x(t)) = BT [ẋj − Axj −Buj]
∆̄(:, j) = ∆(x(t)) {store model error in history-stack}

else
initiate fixed point smoother to estimate ẋ(t) {use delayed estimate of ẋ(t)
to estimate ∆(x(t)), see Appendix A}

end if
end if

end if

44

Concurrent Adaptive Law

History Stack

+

Reference

model

Adaptation on recorded

data:

Adaptation on current

data:

+

 -

Selection

criterion

Measurement or

delayed estimate

of

-

Figure 3.7: Schematic of implementation of the concurrent learning adaptive con-
troller of Theorem 3.2. Note that the history-stack contains Φ(xj), which are the
data points selected for recording as well as the associated model error formed as
described in remark 3.3. The adaptation error εj for a stored data point is found by
subtracting the instantaneous output of the adaptive element from the estimate of
the uncertainty. The adaptive law concurrently trains on recorded as well as current
data.

45

CHAPTER IV

CONCURRENT LEARNING NEURO-ADAPTIVE

CONTROL

Neural Networks (NN) have been widely used in MRAC to capture the uncertainty

in equation 2.12 when the exact structure of the uncertainty ∆(x) is unknown (Case

II in Section 2.2.3, see for example [92], [55], [61], [78], [77], [50], [57], [96], and the

references therein). NNs are parameterized function approximators, and they enjoy

the desirable universal approximation property which guarantees that any continuous

function over a compact domain can be modeled to arbitrary accuracy using a NN

if sufficient number of NN nodes are available (see [76] for Radial Basis Function

(RBF) NN, and [38] for Single Hidden Layer (SHL) NN). The universal approximation

property guarantees a set of unknown ideal weights for a given number of neurons that

achieves the aforementioned parametrization. Adaptive laws that drive the adaptive

weights towards the ideal weights benefit from the universal approximation property.

However, traditional NN weight adaptation laws do not guarantee that the adap-

tive weights will approach and stay bounded within a compact neighborhood of the

ideal weights if the system signals are not Persistently Exciting (PE). In fact, if the

system signals are not PE, then the traditional adaptive laws do not even guarantee

boundedness of the adaptive weights. Hence an extra term (such as σ-modification

or e-modification) is needed to guarantee boundedness of the adaptive weights. How-

ever, both σ-modification or e-modification cause the weights to be restricted within

a neighborhood of a preselected value (usually set to 0) which may not necessar-

ily reflect the ideal weights. In this chapter we show that a rank-condition similar

to 3.1 is sufficient to guarantee that the adaptive weights stay bounded within a

46

compact neighborhood of the ideal weights when using concurrent learning adaptive

controllers.

Condition 4.1 The recorded data σ(xj) has l linearly independent elements,

where l is the dimension of the the RBF basis (equation 2.19). That is, if Z =

[σ(x1),, σ(xp)], then rank(Z) = l.

4.1 Concurrent Learning Neuro-Adaptive Control with RBF
NN

Let P be the positive definite solution to the Lyapunov equation 2.13 for a given

positive definite Q. Let ΓW be a positive definite matrix containing the learning

rates, let ζ(t) = (e(t), W̃ (t)) be a solution to the closed loop system of equations 2.12

and 4.1 for t ≥ 0. Let β =

√
eT (0)Pe(0)+W̃T (0)Γ−1

W W̃ (0)

min(λmin(P),λmin(Γ−1
W))

. The following theorem shows

that ζ(t) is uniformly ultimately bounded.

Theorem 4.1 Consider the system in equation 2.6 with the structure of the plant

uncertainty unknown and the uncertainty approximated over a compact domain D

using a Radial Basis Function NN as in equation 2.19 with ε̄ = supx∈D ‖ε̃(x)‖, the

control law of equation 2.8, with uad given by the output of a RBF NN as in equation

2.17. Let for each recorded data point j, εj(t) = W T (t)Φ(xj)−∆(xj), with ∆(xj) =

BT [ẋj − Axj −Buj], and consider the following weight update law

Ẇ (t) = −ΓWσ(x(t))eT (t)PB −
p∑
j=1

ΓWσ(xj)ε
T
j (t), (4.1)

and assume that the recorded data points σ(xj) satisfy Condition 4.1. Let Bα be the

largest compact ball in D, and assume ζ(0) ∈ Bα, define δ = max(β, 2‖PB‖ε̄
λmin(Q)

+ pε̄
√
l

λmin(Ω)
),

and assume that D is sufficiently large such that m = α − δ is a positive scalar. If

the exogenous input r(t) is such that the state xrm(t) of the bounded input bounded

output reference model of equation 2.7 remains bounded in the compact ball Bm =

47

{xrm : ‖xrm‖ ≤ m} for all t ≥ 0 then the solution of the closed loop system of

equations 2.12 and 4.1 ζ(t) is uniformly ultimately bounded.

Proof Consider the following positive definite and radially unbounded function

V (e, W̃) =
1

2
eTPe+

1

2
W̃ TΓW

−1W̃ . (4.2)

Note that V (0, 0) = 0 and V (e, W̃) ≥ 0 ∀(e, W̃) 6= 0 hence 4.2 is a Lyapunov like

candidate [34].

Note that since νad(xj)−∆(xj) = W̃ Tσ(xj) + ε̃(xj)

˙̃W (t) = −
p∑
j=1

σ(xj)σ
T (xj)W̃ (t)−

p∑
j=1

σ(xj)ε̃(xj)− ΓWσ(x(t))eT (t)PB (4.3)

Differentiating 4.2 along the trajectory of 2.12, 4.3, and using the Lyapunov equation

(equation 2.13), we have

V̇ (e, W̃) = −1

2
eTQe+ eTPB(uad −∆)

+ W̃ T (−
p∑
j=1

σ(xj)σ
T (xj))W̃ + W̃ T (−

p∑
j=1

σ(xj)ε̃
T (xj)− σ(x)eTPB)

(4.4)

Canceling like terms, noting that νad(x) − ∆(x) = W̃ Tσ(x) + ε̃(x), and simplifying

we have

V̇ (e, W̃) = −1

2
eTQe− W̃ T (

p∑
j=1

σ(xj)σ
T (xj)W̃ + eTPBε̃(x)−

p∑
j=1

σ(xj)ε̃(xj)). (4.5)

Let Ω =
p∑
j=1

σ(xj)σ
T (xj), then due to Condition 4.1 Ω > 0, using equation 2.19, we

have

V̇ (e, W̃) ≤ −1

2
λmin(Q)eT e− λmin(Ω)W̃ T W̃ (t) + eTPBε̄− W̃ T

p∑
j=1

σ(xj)ε̃(xj), (4.6)

where ε̄ denotes the supremum over all ε̃(x) for all x ∈ D. Simplifying further and

noting that for all x(t) ‖σ(x(t))‖ ≤
√
l due to the definition of RBF (equation 2.18)

we have

V̇ (e, W̃) ≤ −1

2
λmin(Q)‖e‖2 − λmin(Ω)‖W̃‖2 + ‖eTPB‖ε̄+ p‖W̃‖ε̄

√
l. (4.7)

48

Let c1 = ‖PB‖ε̄, c2 = pε̄
√
l then simplifying further we have

V̇ (e, W̃) ≤ ‖e‖(−1

2
λmin(Q)‖e‖+ c1) + ‖W̃‖(−λmin(Ω)‖W̃‖+ c2). (4.8)

Hence, if ‖e‖ > 2c1
λmin(Q)

and ‖W̃‖ > c2
λmin(Ω)

we have that V̇ (e, W̃) < 0. Therefore

the set Ωδ = {ζ : ‖e‖ + ‖W̃‖ ≤ 2c1
λmin(Q)

+ c2
λmin(Ω)

} is positively invariant, hence e

and W̃ are ultimately bounded. Let δ = max(β, 2c1
λmin(Q)

+ c2
λmin(Ω)

), and m = α − δ.

Hence, if the exogenous input r(t) is such that the state xrm(t) of the bounded input

bounded output reference model of equation 2.7 remains bounded in the compact

ball Bm = {xrm : ‖xrm‖ ≤ m} for all t ≥ 0, then x(t) ∈ D ∀t hence the NN

approximation holds and the solution of the closed loop system of equations 2.12 and

4.1 ζ(t) is uniformly ultimately bounded.

Corollary 4.2 If Theorem 4.1 holds, then the adaptive weights W (t) will ap-

proach and remain bounded in a compact neighborhood of the ideal weights W ∗.

Proof Since Theorem 4.1 holds the proof follows by noting that V̇ (e, W̃) ≤ 0 when

‖W̃ (t)‖ ≥
c2 +

√
(p2ε̄2 + 4λmin(Ω)(−1

2
λmin(Q)‖e‖2) + ‖e‖c1)

2λmin(Ω)
. (4.9)

Remark 4.1 Theorem 4.1 shows ultimate uniform boundedness of weights and

tracking error without requiring persistency of excitation or any other robustifying

term (such as e-mod, σ-mod or weight projection), subject only to Condition 4.1.

The tracking errors and weights are bounded outside of a compact neighborhood of

the origin, whose size is dependent on ε̄ which in turn is dependent on the number

of hidden layer nodes of the RBF NN used. Remarks 3.3 and 3.6 also apply to this

theorem.

49

Remark 4.2 In the proof of Theorem 4.1, we needed to ensure that the exogenous

reference input r(t) is such that the reference model remain bounded to ensure that the

largest level set remains in the compact domain D over which the NN approximation

of equation 2.19 holds. Another approach to arrive at a similar result is presented in

[99].

Remark 4.3 The uniform ultimate boundedness properties are dependent on the

choice of the linear gains (which determines λmin(Q)) and the quality of the recorded

data (which determines λmin(Ω)). Appealing to Micchelli’s theorem the satisfaction

of Condition 4.1 for RBF NN is reduced to selecting distinct points for storage [65],

[36]. However, it should be noted that a larger λmin(Ω) will result in restricting W (t)

to a smaller neighborhood of W ∗ due to Corollary 4.2. Hence recorded data points

should be selected to maximize λmin(Ω).

Remark 4.4 We note that in special cases by making certain assumptions about

the uncertainty (such as sector bounded uncertainty in [35]), asymptotic convergence

of tracking errors may be shown.

50

CHAPTER V

EXTENSION TO APPROXIMATE MODEL INVERSION

BASED MODEL REFERENCE ADAPTIVE CONTROL

OF MULTI-INPUT SYSTEMS

In this chapter we extend concurrent learning adaptive control to Approximate Model

Inversion based Adaptive Control (AMI-MRAC) with full state feedback and multi-

ple inputs. AMI-MRAC is an MRAC method that allows the design of adaptive

controllers for a general class of nonlinear plants for which an approximate inversion

model exists. The main benefits of AMI-MRAC are: 1) Wider class of nonlinear

systems (than equation 2.6) for which an approximate inversion model exists can be

handled, 2) Matching conditions are implicitly handled through the selection of ap-

proximate inversion model, 3) Desired states can be directly commanded through the

use of pseudo-control, 4) The estimation of model error (∆) for recorded data points

is simplified, 5)Extension to multi-input multi-output case is relatively simpler, and

is performed in this section.

5.1 Approximate Model Inversion based Model Reference
Adaptive Control for Multi Input Multi State Systems

Let x(t) ∈ <n be the known state vector, let δ(t) ∈ <l denote the control input, and

consider the following feedback stabilizable multiple-input system

ẋ = f(x(t), δ(t)), (5.1)

where the function f is assumed to be continuously differentiable in x, and control

input δ is assumed to be bounded and piecewise continuous. The conditions for the

existence and the uniqueness of the solution to 5.1 are assumed to be met.

51

In AMI-MRAC we are concerned with finding a pseudo-control input ν ∈ <n

which can be used to find the control input δ such that the plant states track the

output of a reference model. If the exact plant model (equation 5.1) is available

and invertible, for a given ν(t), δ(t) can be found by inverting the plant dynamics.

However, since the exact plant model is usually not available or not invertible, we

let ν be the output of an approximate inversion model f̂ which satisfies the following

assumption:

Assumption 5.1 The approximate inversion model ν = f̂(x, δ) : <n+l → <n

is continuous and the operator f̂−1 : <2n → <l exists and assigns for every unique

element of <2n a unique element of <l.

Assumption 5.1 is required to guarantee that given a desired pseudo-control input

ν ∈ <n a control command δ can be found by

δ = f̂−1(x, ν). (5.2)

This approximation results in a model error of the form

ẋ = ν + ∆(x, δ) (5.3)

where the model error ∆ is given by:

∆(x, δ) = f(x, δ)− f̂(x, δ). (5.4)

A reference model can be designed that characterizes the desired response of the

system

ẋrm(t) = frm(xrm(t), r(t)), (5.5)

Where frm(xrm(t), r(t)) denote the reference model dynamics which are assumed to

be continuously differentiable in x for all x ∈ Dx ⊂ <n. The exogenous command r(t)

is assumed to be bounded and piecewise continuous, furthermore, it is assumed that

52

all requirements for guaranteeing the existence of a unique and bounded solution to

2.7 are satisfied for bounded r(t).

The pseudo-control input ν consisting of a linear feedback part νpd = Ke with

K ∈ <n×n, a linear feedforward part νcrm = ẋrm, and an adaptive part νad(x, δ) is

chosen to have the following form

ν = νcrm + νpd − νad. (5.6)

5.1.1 Tracking Error Dynamics

Defining the tracking error e as e(t) = xrm(t) − x(t), and using equation 5.3 the

tracking error dynamics can be written as

ė = ẋrm − [ν + ∆(x, δ)]. (5.7)

Letting A = −K and using equation 5.6 we have the following tracking error

dynamics that are linear in e

ė = Ae+ [νad(x, δ)−∆(x, δ)]. (5.8)

Note that the above tracking error dynamics have the same form as the track-

ing error dynamics of MRAC (equation 2.12). This point of commonality between

traditional MRAC and AMI-MRAC allows same weight adaptation laws to be used.

The baseline full state feedback controller νpd is chosen such that A is a Hurwitz

matrix. Hence for any positive definite matrix Q ∈ <n×n, a positive definite solution

P ∈ <n×n exists to the Lyapunov equation

ATP + PA+Q = 0. (5.9)

As in the section on MRAC (Section 2.2) the following two cases for characterizing

the uncertainty ∆(x) are considered:

53

5.1.2 Case I: Structured Uncertainty

Consider the case where it is known that the uncertainty is linearly parameterized and

the mapping Φ(x) is known. This case is captured through the following assumption

Assumption 5.2 The uncertainty ∆(x, δ) can be linearly parameterized, that is

letting z = [xT , δT]T ∈ <n+l, there exist a unique matrix of constants W ∗ ∈ <m×n

and an m dimensional vector of continuously differentiable regressor functions Φ(z) =

[φ1(z), φ2(z),, φm(z)]T such that there exists an interval [t, t + ∆t], ∆t ∈ <+ over

which the integral
∫ t+∆t

t
Φ(x(t))ΦT (x(t))dt can be made positive definite for bounded

Φ(x(t)), and ∆(z) can be uniquely represented as

∆(z) = W ∗TΦ(z). (5.10)

In this case letting W ∈ <m×n denote the estimate of W ∗, the adaptive law can

be written as

νad(z) = W TΦ(z). (5.11)

For this case it is well known that for a positive definite learning rate ΓW , the

following baseline adaptive law guarantees exponential tracking error and weight con-

vergence if Φ(z) is PE.

Ẇ = −ΓWΦ(z)eTPB (5.12)

This case is similar to Case I in Section 2.2.

5.1.3 Case II: Unstructured Uncertainty

In the more general case where it is only known that the uncertainty ∆(z) is contin-

uous and defined over a compact domain D ⊂ <n+l, the adaptive part of the control

law (5.6) can be represented using a Radial Basis Function (RBF) or a Single Hidden

Layer (SHL) Neural Network(NN). This case is similar to Case II in Section 2.2.

54

5.1.3.1 Radial Basis Function Neural Network

The output of a RBF NN is given by

νad(z) = W Tσ(z), (5.13)

where W ∈ <q×n and σ(z) = [1, σ2(z), σ3(z),, σq(z)]T is a q dimensional vector

of known radial basis functions (equation 2.18). Appealing to the universal approx-

imation property of RBF NN [76] we have that given a fixed number of radial basis

functions q there exists ideal weights W ∗ ∈ <q×n and a vector ε̃ ∈ <n such that the

following approximation holds for all z ∈ D ⊂ <n+l where D is compact

∆(z) = W ∗Tσ(z) + ε̃(z), (5.14)

and ε̄ = supz∈D ‖ε̃(z)‖ can be made arbitrarily small given sufficient number of radial

basis functions.

5.1.3.2 Single Hidden Layer Neural Networks

A Single Hidden Layer (SHL) NN is a nonlinearly parameterized map that has also

been often used for capturing unstructured uncertainties that are known to be piece-

wise continuous and defined over a compact domain. Let x̄ = [bv, z
T]T denote the

input to the NN with z = [xT , δT]T ∈ <n+l and bv is a constant bias term, then the

output of a SHL NN can be given as

νad(z) = W Tσ(V T x̄) ∈ <n3 . (5.15)

Letting n2 denote the number of hidden layer nodes and n1 = n + l denote the

number of input layer nodes, W ∈ <(n2+1)×n3 , and V ∈ <(n1+1)×n2 are the NN synaptic

weight matrix connecting the hidden layer with the output layer. Note that x̄ ∈ D ⊂

<n1+1, where D is a compact set. The function σ(.) denotes the sigmoidal activation

function and was described in detail in Section 2.2.3.2.

55

SHL NN are universal function approximators [38], hence the following approxi-

mation holds for all x̄ ∈ D

∆(z) = W ∗Tσ(V ∗
T

x̄) + ε̃(x̄), (5.16)

and ε̄ = supx̄∈D ‖ε̃(x̄)‖ can be made arbitrarily small given sufficient number of hidden

layer neurons.

For this case it has been shown that the following adaptive laws guarantee guar-

antees uniform ultimate boundedness of the tracking error, and guarantees that the

adaptive weights stay bounded (see for example [61], [55] and the references therein)

Define r = eTPB, where P is the positive definite solution to the Lyapunov

equation as defined in 2.13

Ẇ = −(σ(x̄)− σ′(V T x̄)V T x̄)rTΓW , (5.17)

V̇ = −ΓV x̄r
TW Tσ′(V T x̄), (5.18)

where ΓW ,ΓV are positive definite matrices that define the learning rate of the NN.

This update law closely resembles the backpropagation method of tuning NN weights

[81, 92, 36, 55]. However, it is important to note that the training signal r is different

from that of the backpropagation based learning laws [55].

5.2 Guaranteed Convergence in AMI-MRAC without Per-
sistency of Excitation

The recorded data used in concurrent learning AMI-MRAC includes carefully selected

and stored systems states Φ(xk) which are stored in a matrix referred to as the history-

stack. This section shows that the following condition on linear independence of the

recorded data is sufficient to guarantee weight and tracking error convergence in

AMI-MRAC adaptive control problems.

56

Condition 5.1 The history-stack in the recorded data contains as many linearly

independent elements as the dimension of the basis of the uncertainty. That is, if

Z = [Φ(z1),,Φ(zp)] denotes the history-stack, then rank(Z) = n+ l.

Note that this condition is equivalent to Condition 3.1 with xk replaced by zk.

Letting for each recorded data point j, εj(t) = W T (t)Φ(zj)−∆(zj), a concurrent

learning adaptive law that uses both recorded and current data concurrently for

adaptation is chosen to have the following form

Ẇ (t) = −ΓWΦ(z(t))eT (t)PB −
p∑
j=1

ΓWΦ(zj)ε
T
j (t). (5.19)

Remark 5.1 For evaluating the adaptive law of equation 5.19 the term εj =

W T (t)Φ(zj)−∆(zj) is required for the jth data point where j ∈ [1, 2, ..p]. The model

error ∆(zj) needs to be recorded along with Φ(zk) in the history-stack, and can be

observed by using equation 5.4 noting that

∆(zj) = ẋj − ν(zj). (5.20)

Since ν(zj) is known, the problem of estimating system uncertainty can be reduced to

that of estimation of ẋ. In cases where an explicit measurement for ẋ is not available,

ẋj can be estimated using an implementation of a fixed point smoother [31]. The

details of this process are presented in Appendix A. Note that using fixed point

smoothing for estimating ẋj will entail a finite time delay before εj can be calculated

for that data point. However, since εj does not directly affect the tracking error at

time t, this delay does not adversely affect the instantaneous tracking performance

of the controller. Other methods, such as that suggested in [60] and [97] can also be

used to estimate ẋj.

Define the weight error as W̃ = W −W ∗, then the weight error dynamics for the case

of can be written as

˙̃W (t) = −ΓW

p∑
j=1

Φ(zj)Φ
T (zj)W̃ (t)− ΓWΦ(z(t))eT (t)PB. (5.21)

57

In the following, we will establish the stability of closed loop concurrent learning

AMI-MRAC. Due to the commonality between the error dynamics equation for AMI-

MRAC (5.8) and MRAC (2.12), the proofs are analogous to the proofs of theorems

in Section 2.2; with the key difference being the consideration of multiple inputs. We

begin with the following theorem that establishes the global exponential stability of

the closed loop concurrent learning AMI-MRAC for the case of structured uncertainty

(Case I).

Theorem 5.1 Consider the system in equation 5.1, the reference model in equa-

tion 5.5, the inverting controller of equation 5.2, assumption 5.1, the control law of

equation 5.6, the case of structured uncertainty with the uncertainty given by equa-

tion 5.10, the weight update law of equation 5.19, and assume that the recorded data

points Φ(zj) satisfy Condition 5.1, then the zero solution (e(t),W) ≡ (0,W ∗) of the

closed loop system given by equations 5.8 and 5.19 is globally exponentially stable.

Proof Let tr(.) denote the trace operator and consider the following quadratic func-

tional

V (e, W̃) =
1

2
eTPe+ tr(

1

2
W̃ TΓW

−1W̃). (5.22)

Note that V (0, 0) = 0 and V (e, W̃) > 0 ∀(e, W̃) 6= 0, therefore, V (e, W̃) is a Lyapunov

candidate. Let ξ = [e, vec(W̃)] where vec(.) is the operator that stacks the columns

of a matrix into a vector, and let λmin(.) and λmax(.) denote operators that return the

smallest and the largest eigenvalue of a matrix, then we have

1

2
min(λmin(P), λmin(ΓW

−1))‖ξ‖2 ≤ V (e, W̃)

≤ 1

2
max(λmax(P), λmax(ΓW

−1))‖ξ‖2.

(5.23)

58

Differentiating 5.22 along the trajectory of 5.8 and the weight error dynamics of

equation 5.21, and using the Lyapunov equation (equation 5.9), we have

V̇ (e, W̃) = −1

2
eTQe+ eTPB(uad −∆)

+ tr(W̃ T (−
p∑
j=1

Φ(zj)Φ
T (zj)W̃ − Φ(z)eTPB)).

(5.24)

Using equations 5.10 and 5.11 to note that νad(z(t)) − ∆(z(t)) = W̃ T (t)Φ(z(t)),

canceling like terms and simplifying we have

V̇ (e, W̃) = −1

2
eTQe− tr(W̃ T (

p∑
j=1

Φ(zj)Φ
T (zj))W̃). (5.25)

Let Ω =
p∑
j=1

Φ(zj)Φ
T (zj), then due to Condition 5.1 Ω > 0. Hence we have

V̇ (e, W̃) ≤ −1

2
λmin(Q)eT e− λmin(Ω)tr(W̃ T W̃). (5.26)

It follows that

V̇ (e, W̃) ≤ − min(λmin(Q), 2λmin(Ω))

max(λmax(P), λmax(ΓW
−1))

V (e, W̃), (5.27)

establishing the exponential stability of the solution (e(t),W) ≡ (0,W ∗) of the closed

loop system given by equations 5.8 and 5.19 (using Lyapunov stability theory, see

Theorem 3.1 in [34]). Since V (e, W̃) is radially unbounded, the result is global.

Remark 5.2 The above proof shows exponential convergence of tracking error

e(t) and parameter estimation error W̃ (t) to 0 without requiring persistency of ex-

citation in the signal Φ(z(t)). The only condition required is Condition 5.1, which

guarantees that the matrix
p∑
j=1

Φ(xj)Φ
T (xj) is positive definite. This condition is eas-

ily verified online and is found to be less restrictive than a condition on PE reference

input.

Remark 5.3 The inclusion or removal of new data points in equation 3.8 does not

affect the Lyapunov candidate. Hence, the Lyapunov candidate serves as a common

59

Lyapunov function, therefore, using Theorem 1 in [62], global uniform exponential

stability of the zero solution of the tracking error dynamics e ≡ 0 and the weight

error dynamics W̃ ≡ 0 is guaranteed even when data points are removed or added

from the history-stack, as long as Condition 5.1 remains satisfied.

Remark 5.4 The rate of convergence is determined by the spectral properties of

Q, P , ΓW , and Ω, the first three are dependent on the choice of the linear gains K

and the learning rate, and the last one is dependent on the choice of the recorded

data.

The next theorem considers the case when the updates based on current data

are given higher priority by restricting the updates based on recorded data to the

nullspace of the updates based on current data.

Theorem 5.2 Consider the system in equation 5.1, the reference model in equa-

tion 5.5, the inverting controller of equation 5.2, assumption 5.1, the control law

of equation 5.6, the case of structured uncertainty with the uncertainty given by

equation 5.10. Let for each recorded data point j, εj(t) = W T (t)Φ(zj) − ∆(zj),

with ∆(zj) = ẋj − ν(zj), and let Wc(t) = Ẇt(t)(Ẇ
T
t (t)Ẇt(t))

+Ẇt(t)
T where + de-

notes the Moore-Penrose pseudo inverse and Ẇt denotes the baseline adaptive law

of equation 5.12. Furthermore, Let for each time t, NΦ(t) be the set containing all

Φ(zj) ⊥ range(Ẇt(t)), that is NΦ = {Φ(zj) : Wc(t)Φ(zj) = Φ(zj)} and consider the

following weight update law

Ẇ (t) = −ΓWΦ(z(t))eT (t)PB − ΓWWc(t)
∑
j∈NΦ

Φ(zj)ε
T
j (t), (5.28)

If the recorded data points Φ(zj) satisfy Condition 5.1, then the zero solution (e(t),W (t)) ≡

(0,W ∗) of the closed loop system given by equations 5.8 and 5.28 are globally asymp-

totically stable.

60

Proof Noting that the error dynamics in equation 5.8 have a similar form to that

of equation 2.12, the proof can be constructed in an analogous manner to the proof

of Theorem 3.3 using the Lyapunov candidate of equation 5.22.

5.3 Guaranteed Boudedness Around Optimal Weights in
Neuro-Adaptive AMI-MRAC Control with RBF-NN

In this section we show that a verifiable condition on the linear independence of the

recorded data is sufficient to guarantee that the adaptive weights stay bounded within

a compact neighborhood of the ideal weights when using concurrent learning AMI-

MRAC. As in the previous section, the commonality between the error dynamics

equation for AMI-MRAC (5.8) and MRAC (2.12) is used to relate the proofs to those

previously presented.

Let P be the positive definite solution to the Lyapunov equation 2.13 for a given

positive definite Q. Let ΓW be a positive definite matrix containing the learning rates.

Let ζ = [e, vec(W̃)] and define β =

√
eT (0)Pe(0)+tr(W̃T (0)Γ−1

W W̃ (0))

min(λmin(P),λmin(Γ−1
W))

.

Theorem 5.3 Consider the system in equation 5.1, the inverting controller of

equation 5.2, assumption 5.1, with the structure of the plant uncertainty unknown

and the uncertainty approximated over a compact domain D using a Radial Basis

Function NN as in equation 5.14 with ε̄ = supz∈D ‖ε̃(z)‖, the control law of equation

5.6, and nuad given by the output of a RBF NN as in equation 5.13. Let for each

recorded data point j, εj(t) = W T (t)Φ(zj) − ∆(zj), with ∆(zj) = ẋj − ν(zj) and

consider the following update law for the weights of the RBF NN

Ẇ = −ΓWΦ(z)eTPB −
p∑
j=1

ΓWΦ(zj)ε
T
j , (5.29)

and assume that if Z = [σ(z1),, σ(zp)] then rank(Z) = l. Let Bα be the largest

compact ball in D, and assume ζ(0) ∈ Bα, define δ = max(β, 2‖PB‖ε̄
λmin(Q)

+ pε̄
√
l

λmin(Ω)
), and

assume that D is sufficiently large such that m = α − δ is a positive scalar. If the

61

exogenous input r(t) is such that the state xrm(t) of the bounded input bounded

output reference model of equation 2.7 remains bounded in the compact ball Bm =

{xrm : ‖xrm‖ ≤ m} for all t ≥ 0 then the solution ζ(t) of the closed loop system of

equations 2.12 and 4.1 is uniformly ultimately bounded.

Proof Noting that the error dynamics in equation 5.8 have a similar form to that

of equation 2.12, the proof can be constructed in an analogous manner to the proof

of Theorem 4.1 using the Lyapunov like candidate of equation 5.22.

Corollary 5.4 If the weight update law of Theorem 5.3 is used and Condition

4.1 is satisfied such that Theorem 5.3 holds, then the adaptive weights W (t) will

approach and remain bounded in a compact neighborhood of the ideal weights W ∗.

Proof Let c1 = ‖PB‖ε̄, c2 = pε̄
√
l, since Theorem 5.3 holds the proof follows by

noting that V̇ (e, W̃) ≤ 0 when

‖W̃ (t)‖ ≥
c2 +

√
(p2ε̄2 + 4λmin(Ω)(−1

2
λmin(Q)‖e‖2) + ‖e‖c1)

2λmin(Ω)
. (5.30)

5.4 Guaranteed Boundedness in Neuro-Adaptive
AMI-MRAC Control with SHL NN

In this section, the concurrent learning method is extended to AMI-MRAC control

with Single Hidden Layer (SHL) Neural Network (NN). As mentioned in Section

2.2.3.2, SHL NN enjoy the universal approximation property (see [38]) similar to RBF

NN, with the main difference being that SHL NN are nonlinearly parameterized.

We being with the following assumptions:

Assumption 5.3 The norm of the ideal weights (W ∗, V ∗) is bounded by a known

positive value,

0 < ‖Z‖F ≤ Z̄. (5.31)

62

Where ‖.‖F denotes the Frobenious norm, and

Z
∆
=

 V 0

0 W

 (5.32)

The following assumption characterizes the structure of the concurrent learning

adaptive law.

Assumption 5.4 Let Ẇt, V̇t denote the weight update based on current data

and let Ẇb, V̇b denote the weight updates based on past data. Furthermore, let Wc(t)

and Vc(t) be orthogonal projection operators, then the structure of the concurrent

learning adaptive law is assumed to have the form

Ẇ (t) = Ẇt(t) +Wc(t)Ẇb(t), (5.33)

V̇ (t) = V̇t(t) + Vc(t)V̇b(t), (5.34)

Let i ∈ ℵ denote the index of a stored data point zi, define rbi(t) = νad(zi)−∆̂(zi),

where ∆̂(z) = ẋi − νi. Furthermore, define W̃ (t) = W (t) −W ∗, Ṽ (t) = V (t) − V ∗

as the difference between the approximated NN weights and the ideal NN weights.

We will use equations 5.17 and 5.18 for online learning, hence consider the following

operators Wc(t) and Vc(t)

Wc = I − (σ(V T x̄)− σ′(V T x̄)V T x̄)(σ(V T x̄)− σ′(V T x̄)V T x̄)T

(σ(V T x̄)− σ′(V T x̄)V T x̄)T (σ(V T x̄)− σ′(V T x̄)V T x̄)
,

Vc = I − ΓV x̄x̄
TΓV

x̄TΓV ΓV x̄
. (5.35)

Lemma 5.5 Wc(t) and Vc(t) are orthogonal projection operators projecting into

the nullspace of Ẇt(t), V̇t(t) given by equations 5.17 and 5.18 respectively.

Proof Since Wc(t) and Vc(t) are symmetric and idempotent they are orthogonal

projection operators [5]. The proof for showing that Wc(t) and Vc(t) project into the

nullspace of Ẇt(t), V̇t(t) follows by noting that Wc(t)Ẇt(t) = 0 and Vc(t)V̇t(t) = 0.

63

Let rT = eTPB for ease of exposition, where P is the positive definite solution

to the Lyapunov equation 5.9 for a given positive definite Q. Let ΓW , and ΓV be

a positive definite matrices containing the learning rates, ζ(t) = (e(t),W (t), V (t))

be a solution to the closed loop system of equations 5.8 and 5.36 for t ≥ 0. Let

β =

√
eT (0)Pe(0)+W̃T (0)Γ−1

W W̃ (0)+Ṽ T (0)Γ−1
V Ṽ (0)

min(λmin(P),λmin(Γ−1
W),λmin(Γ−1

V))
. The following theorem shows that ζ(t) is

uniformly ultimately bounded.

Theorem 5.6 Consider the system in equation 5.1, the inverting controller of

equation 5.2, assumptions 5.1, 5.3, and 5.4. Assume that the structure of the plant

uncertainty is unknown and the uncertainty is approximated over a compact domain

D by a SHL NN whose output νad is given by equation 5.15. Let Wc(t) and Vc(t) be

given by equations 5.35 and consider the following weight update law

Ẇ (t) = −(σ(V T (t)x̄(t))− σ′(V T (t)x̄(t))V T (t)x̄(t))rT (t)Γw − k‖e(t)‖W (t)

−Wc(t)

p∑
i=1

(σ(V T (t)x̄i)− σ′(V T (t)x̄i)V
T (t)x̄i)r

T
bi

(t)Γw, (5.36)

V̇ (t) = −ΓV x̄(t)rT (t)W T (t)σ′(V T (t)x̄(t))− k‖e(t)‖V (t)−

Vc(t)

p∑
i=1

ΓV x̄ir
T
bi

(t)W T (t)σ′(V T (t)x̄i), (5.37)

where ΓV ,ΓW are positive definite matrices and k is a positive constant. Let ζ(t) =

(e(t),W (t), V (t)) be a solution to the closed loop system of equations 5.8 and 5.36,

assume that ζ(0) ∈ Bα where Bα = {ζ : ‖ζ‖ ≤ α} is the largest compact ball

contained in D and β ≤ α. If D is sufficiently large, there exists a positive scalar

m such that if the states of the bounded input bounded output reference model of

equation 5.5 remain bounded in the compact ball Bm = {xrm : ‖xrm‖ ≤ m} then ζ(t)

is uniformly ultimately bounded.

Proof Begin by noting that the sigmoidal activation function, and its derivative can

64

be bounded as follows

‖σ(V T x̄)‖ ≤ bw + n2, (5.38)

‖σ′‖ ≤ ā(bw + n2)(1 + bw + n2) = āk1k2. (5.39)

Where ā is the maximum activation potential, and k1 = bw + n2, k2 = 1 + bw + n2 are

constants defined above for convenience. The Taylor series expansion of the sigmoidal

activation function about the ideal weights can be given by

σ(V ∗
T

x̄) = σ(V T x̄) +
∂σ(s)

∂s

∣∣∣∣
s=V T x̄

(V ∗
T

x̄− V T x̄) +H.O.T. (5.40)

where H.O.T. denote higher order terms. A bound on the H.O.T. can be found by

rearranging equation 5.40 and noting that Z̃ = Z − Z∗ where Z is as defined in

assumption 5.3

‖H.O.T.‖ ≤ ‖σ(V ∗
T

x̄)‖+ ‖σ(V T x̄)‖+ ‖σ′(V T x̄)‖‖Ṽ ‖‖x̄‖

≤ 2k2 + āk1k2‖x̄‖‖Z̃‖F .

Using equation 5.16 the error in the NN parametrization can be written as

νad(x̄)−∆(z) = W Tσ(V T x̄)−W ∗Tσ(V ∗
T

x̄) + ε̃(x). (5.41)

This can be further expanded to

νad(x̄)−∆(z) = W Tσ(V T x̄)−W ∗T
(
σ(V T x̄)− σ′(V T x̄)Ṽ T x̄+H.O.T.

)
+ ε̃(x),

(5.42)

= W̃ T
(
σ(V T x̄)− σ′(V T x̄)V T x̄

)
+W Tσ′(V T x̄)Ṽ T x̄+ w.

Where w is given by,

w = W̃ Tσ′(V ∗
T

x̄)V ∗
T

x̄−W ∗T (H.O.T.) + ε̃, (5.43)

bounds on w can now be found,

‖w‖ ≤ ‖W̃ T‖‖σ′(V T x̄)‖‖V ∗‖‖barx‖+ ‖W ∗‖‖(H.O.T.)‖+ ε̄, (5.44)

≤ āk1k2Z̄‖Z̃‖F‖x̄‖+ Z̄(2k1 + āk1k2‖x̄‖‖Z̃‖F) + ε̄.

65

Letting,

c0 = ε̄+ 2Z̄k1, (5.45)

c1 = āk1k2Z̄ + Z̄āk1k2. (5.46)

we have

‖w‖ ≤ c0 + c1‖Z̃‖‖x̄‖. (5.47)

To show boundedness of the reference model errors and the NN weights we use a

Lyapunov like analysis [34]. A radially unbounded and positive definite [34] Lyapunov

like function candidate is

L(e, W̃ , Ṽ) =
1

2
eTPe+

1

2
tr
{(
W̃Γ−1

W W̃ T
)}

+
1

2
tr
{
Ṽ TΓ−1

V Ṽ
}
, (5.48)

where tr{.} denotes the trace operator. Note that L(0, 0, 0) = 0 and L(e, W̃ , Ṽ) ≥

0 ∀(e, W̃ , Ṽ) 6= 0. Differentiating the Lyapunov candidate along the trajectory of

equations 5.8 and 5.36, using equation 5.42 and 5.9, and adding and subtracting
p∑
i=1

(νad(x̄i)−∆(zi))
T‖e‖ (νad(x̄i)−∆(zi)), tr

{
k‖e‖WW̃ T

}
, and tr

{
k‖e‖V Ṽ T

}
we

have

L̇(e, W̃ , Ṽ) = −1

2
eTQe+ rT

(
W̃ T

(
σ(V T x̄)− σ′(V T x̄)V T x̄

)
+W Tσ′(V T x̄)Ṽ T x̄+ w

)
+tr

{(
(Ẇt +WcẆb)Γ

−1
w W̃ T

)}
+ tr

{(
Ṽ TΓ−1

v (V̇t + VcV̇b)
)}

−
p∑
i=1

(νad(x̄i)−∆(zi))
T (νad(x̄i)−∆(zi)) +

p∑
i=1

(νad(x̄i)−∆(zi))
T (νad(x̄i)−∆(zi))

+tr
{
k‖e‖WW̃ T

}
− tr

{
k‖e‖WW̃ T

}
+ tr

{
k‖e‖V Ṽ T

}
− tr

{
k‖e‖V Ṽ T

}
.

(5.49)

Using 5.42 to expand νad(x̄i) − ∆(xi) and collecting terms we can set the following

terms to zero

tr
{((

σ(V T x̄)− σ′(V T x̄)V T x̄
)
rT + k‖e‖W + ẆtΓ

−1
W

)
W̃ T

}
= 0,

and

tr
{
Ṽ T
(
x̄rTW Tσ′(V T x̄) + k‖e‖V + Γ−1

V V̇t

)}
= 0.

(5.50)

66

and,

tr

{(
p∑
i=1

(
σ(V T x̄i)− σ′(V T x̄i)V

T x̄i
)
rTbi +WcẆbΓ

−1
W

)
W̃ T

}
= 0,

and

tr

{
Ṽ T

(
p∑
i=1

x̄ir
T
bi
W Tσ′(V T x̄i) + Γ−1

V VcV̇b

)}
= 0.

(5.51)

This leads to

Ẇt = (−
(
σ(V T x̄)− σ′(V T x̄)V T x̄

)
rT − k‖e‖W)ΓW , (5.52)

and

V̇t = ΓV (−x̄rTW Tσ′(V T x̄)− k‖e‖V). (5.53)

WcẆb = −
p∑
i=1

(
σ(V T x̄i)− σ′(V T x̄i)V

T x̄i
)
rTbiΓW , (5.54)

VcV̇b = −ΓV

p∑
i=1

x̄ir
T
bi
W Tσ′(V T x̄i). (5.55)

Noting that orthogonal projectors are idempotent and multiplying both sides of equa-

tion 5.54 with Wc and Vc respectively we have,

WcẆb = Wc

p∑
i=1

(
σ(V T x̄i)− σ′(V T x̄i)V

T x̄i
)
rTbiΓW , (5.56)

and

VcV̇b = VcΓV

p∑
i=1

x̄ir
T
bi
W Tσ′(V T x̄i). (5.57)

Summing equation 5.52 with 5.56 and 5.53 with 5.57 we arrive at the required

training law of Theorem 5.6. The derivative of the Lyapunov like candidate along the

trajectories of the system is now reduced to,

L̇(e, W̃ , Ṽ) = −1

2
eTQe+ rTw −

p∑
i=1

rTbirbi +

p∑
i=1

rTbiwi (5.58)

−tr
{
k‖e‖WW̃ T

}
− tr

{
k‖e‖V Ṽ T

}
.

67

which can be further bounded as:

L̇(e, W̃ , Ṽ) ≤ −1

2
λminQ‖e‖2 + ‖r‖‖w‖ −

p∑
i=1

‖rbi‖2 +

p∑
i=1

‖rbi‖‖wi‖ (5.59)

−k‖e‖‖Z̃‖2
F + k‖e‖‖Z̃‖F Z̄.

using previously computed bounds,

L̇(e, W̃ , Ṽ) ≤ −1

2
λminQ‖e‖2 + ‖e‖‖PB‖(c0 + c1‖Z̃‖F‖x̄‖))−

p∑
i=1

‖rbi‖2

+

p∑
i=1

‖rbi‖(c0 + c1‖Z̃‖F‖x̄‖)− k‖e‖‖Z̃‖2
F + k‖e‖‖Z̃‖F Z̄. (5.60)

hence, when λmin(Q), and k are sufficiently large, L̇(e, W̃ , Ṽ) ≤ 0 everywhere outside

of a compact set. Therefore, the inputs to the NN can be bounded as follows:

‖[bv, xT]T‖ ≤ bv + xc. (5.61)

With this bound, let ĉ1 = āk1k2Z̄ + Z̄āk1k2(bv + xc), therefore ‖w‖ ≤ c0 + ĉ1‖Z̃‖.

To see that the set is indeed compact, consider that L̇(e, W̃ , Ṽ) ≤ 0 when

‖e‖ ≥
−a0 +

√
a2

0 + 2λmin(Q)(−
p∑
i=1

−‖rbi‖2 +
p∑
i=1

‖rbi‖(c0 + ĉ1‖Z̃‖F))

λmin(Q)
(5.62)

where

a0 = ‖PB‖((c0 + ĉ1‖Z̃‖F))− k‖Z̃‖2
F + k‖Z̃‖F Z̄. (5.63)

Or

‖e‖ = 0, ‖wi‖ = 0, (5.64)

or ‖e‖ 6= 0,
p∑
i=1

‖rbi‖ 6= 0, and

‖Z̃‖ ≥
−b0 +

√
b2

0 + 4k‖e‖(−1
2
λmin(Q)‖e‖2 + ‖PB‖‖e‖c0 −

p∑
i=1

‖rbi‖2 +
p∑
i=1

‖rbi‖c0)

2k‖e‖

(5.65)

68

where

b0 = (‖e‖‖PB‖ĉ1 +

p∑
i=1

‖rbi‖ĉ1 + k‖e‖Z̄). (5.66)

Or ‖e‖ 6= 0, ‖Z̃‖ 6= 0, and

p∑
i=1

‖rbi‖ ≥
−(c0 + ĉ1‖Z̃‖F) +

√
(c0 + ĉ1‖Z̃‖F)2 + 4d0

2
, (5.67)

where

d0 = −1

2
λminQ‖e‖2 + ‖e‖‖PB‖(c0 + ĉ1‖Z̃‖F − k‖e‖‖Z̃‖2

F + k‖e‖‖Z̃‖F Z̄). (5.68)

The curves represented by equations 5.62, 5.65, and 5.67 are guaranteed to intersect.

Let Ωγ denote the compact set formed by the intersection of the curves 5.62, 5.65,

and 5.67 and note that Ωγ is positively invariant. Let Bγ = {ζ : ‖ζ‖ ≤ γ} be the

smallest compact ball containing Ωγ. Let δ = max(β, γ), if D is sufficiently large,

then m = α− δ is positive, and guarantees that if xrm ∈ Bm ∀t then x(t) ∈ D ∀t ≥ 0

the NN approximation of equation 5.16 holds and the solution ζ(t) of the closed loop

system of equations 5.8 and 5.36 is uniformly ultimately bounded.

Remark 5.5 When a data point is added or removed, the discrete change in the

Lyapunov function is zero, allowing the Lyapunov candidate to serve as a common

Lyapunov function for any number of recorded data points [62]. Hence, addition or

removal of data points does not affect the uniform ultimate boundedness.

Remark 5.6 It should be noted that if no concurrent points are stored, then the

NN weight adaptation law reduces to that of the traditional NN weight adaptation

law 5.17. This indicates that the purely online NN weight adaptation method can

be considered as a special case of the more general online and concurrent weight

adaptation method.

Remark 5.7 A key point to note is that proof of Theorem 5.6 does not require

a specific form Wc, Vc as long as they are orthogonal projection operators mapping

69

into the nullspace of Ẇt, V̇T respectively. Hence similar results as those in Theorem

5.6 can be formed for other stable baseline laws and modifications, including sigma

modification, Adaptive Loop Recovery (ALR) modification, and projection operator

based modifications.

Remark 5.8 Equation 5.67 explicitly guarantees that the model error residual

νad(x̄i)−∆(zi) stays bounded for all data points.

5.5 Illustrative Example

In this section we use the method of Theorem 5.6 for the control of an inverted

pendulum system with nonlinearities that are unknown to the inverting controller.

The nonlinear system is given as:

ẍ = δ + sin(πx)− |ẋ| ẋ+ 0.5exẋ, (5.69)

where δ is the actuator deflection, and x, ẋ describe the angular position and the

angular velocity of the pendulum respectively. The system is unstable as presented

and it can be considered as a good benchmark for a variety of controllers including

neuro-adaptive AMI-MRAC. Figure 5.5 shows the phase portrait of the system where

the unstable equilibriums can be seen. All of the unstable equilibriums are on the

right hand plane. The left-hand plane equilibriums represent the non-inverted states

of the pendulum and are hence stable. The approximate inversion model has the

simple form ν = δ. We assume that the measurement of ẍ is not available and that

all system outputs are corrupted with Gaussian white noise along with high frequency

sinusoidal noise. Consequently, an optimal fixed lag smoother is used to estimate the

model error of equation 3.9 for points sufficiently far in the past. We use a cyclic

history-stack of 10 data points where the oldest data point is bumped out with the

newest data point selected based on how different each point is from the las stored

point [19]. This example will serve to highlight the benefits brought out by this novel

adaptive control approach.

70

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 5.1: Phase Portrait Showing the Unstable Dynamics of the System

One goal of concurrent learning is to show improvement in performance on appli-

cation of a repeated command. To that effect, 4 repetition of a step command in body

position x are commanded to the closed loop system equipped with a SHL-NN based

AMI-MRAC controller of Theorem 5.6. The performance of the concurrent learning

controller is contrasted with the baseline adaptive controller in Figure 5.2. Figure 2(a)

shows the reference model tracking performance of the NN based adaptive controller

(without concurrent learning). It is seen that the plant states track the reference

model with considerable accuracy, however, no improvement in performance is seen

even as the controller tracks the same command. Particularly, the transient over-

shoot repeats at every step command. This indicates that the adaptive control based

purely on current data has no long term memory and does not show an improvement

in performance when tracking the same command repeatedly. Figure 2(b) shows the

reference model tracking performance of the concurrent learning adaptive controller.

It is seen that the transient performance improves over each successive step. Figure

71

5.3 shows the comparison of the tracking errors with and without concurrent learning

controller. It can now be easily seen that without concurrent learning (Figure 3(a))

the errors follow a similar profile every time the controller tracks the step, however

with concurrent learning (Figure 3(b)) the tracking error profile reduces through each

successive step. Figure 5.4 compares the evolution of the NN weights. It is seen that

the NN weights follow a periodic pattern when only online learning controller is used

(Figure 4(a)), showing that the adaptive law has no real long term memory, and that

it only adapts to the instantaneous dynamics. On the other hand, when concurrent

learning adaptive control is used, it is seen that the weights tend to rapidly converge

to constant values (Figure 4(b)). Figure 5.5 compares the evolution of the residual

vector rbi = νad(xi)−∆(xi) for the stack of stored points. It is seen that with concur-

rent learning, the difference between the stored estimate of the model error and the

NN estimate of the model error concurrently reduces for all stored data points. This

indicates that the NN is able to concurrently adapt to the model error over multi-

ple data points, indicating long term memory, and semi-global error parametrization.

In contrast, without concurrent learning (figure 5(a)) we see that the model error

residual vector exhibits cyclic behavior and shows little long term improvement.

To further characterize the long term learning capabilities of concurrent learning

NN, we use weights frozen at the end of the adaptation and compare the NN output

(νad) with the model error ∆ as a function of the state x in Figure 5.6. This plot shows

that with concurrent learning it is possible to approximate the unknown model error

function with sufficient accuracy over a domain of the state space. This indicates that

using concurrent learning, the concurrent learning NN training algorithm of 5.36 has

been able to find the required synaptic weights such that an approximation to the

nonlinearity over the range of the presented data has been formed. It should be noted

that when adaptation based on only current learning is used, the post adaptation NN

output is a straight line, which is a result of local learning.

72

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

x
(r

ad
)

Position

0 50 100 150
−0.6

−0.4

−0.2

0

0.2

0.4

time (sec)

xD
ot

 (
ra

d/
s)

Angular Velocity

actual
ref model
command

actual
ref model

(a) Comparison of States with Only Online Adap-

tation

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

x
(r

ad
)

Position

actual
ref model
command

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (sec)

xD
ot

 (
ra

d/
s)

Angular Velocity

actual
ref model

(b) Comparison of States with concurrent Learn-

ing Adaptive Controller

Figure 5.2: Inverted Pendulum, comparison of states vs reference model

0 50 100 150
−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

xE
rr

 (
ra

d)

Position Error

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

xD
ot

E
rr

 (
ra

d/
s)

Angular Rate Error

(a) Evolution of tracking error with Only Online

Adaptation

0 50 100 150
−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

xE
rr

 (
ra

d)
Position Error

0 50 100 150
−0.4

−0.2

0

0.2

0.4

time (sec)

xD
ot

E
rr

 (
ra

d/
s)

Angular Rate Error

(b) Evolution of tracking error with concurrent

Learning

Figure 5.3: Inverted Pendulum, evolution of tracking error

73

0 50 100 150
−0.2

−0.1

0

0.1

0.2

0.3

time (sec)

W

0 50 100 150
−1

0

1

2

3

4

5
x 10

−3

time (sec)

V

(a) Evolution of NN weights with Only Online

Adaptation

0 50 100 150
−1

−0.5

0

0.5

1

1.5

2

time (sec)

W

0 50 100 150
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

V

(b) Evolution of NN weights with concurrent

Learning

Figure 5.4: Inverted Pendulum, evolution of NN weights

0 50 100 150
−1

−0.5

0

0.5

1

1.5

ν ad
−

es
tim

at
ed

 m
od

el
 e

rr
or

Difference betweeen stored estimate of model error and current estimate of model error

time (sec)

(a) Evolution of residual with Only Online Adap-

tation

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5
ν ad

−
es

tim
at

ed
 m

od
el

 e
rr

or
Difference betweeen stored estimate of model error and current estimate of model error

time (sec)

(b) Evolution of residual with concurrent Learn-

ing

Figure 5.5: Inverted Pendulum, comparison of model error residual rbi = νad(x̄i −

∆(zi) for each stored point in the history-stack.

74

−0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparision of model error and NN parametrization post adaptation

position (rad)

to
rq

ue
 (

N
.m

)

∆
νad with concurrent learning

νad without concurrent learning

Figure 5.6: Inverted pendulum, NN post adaptation approximation of the unknown

model error ∆ as a function of x

75

CHAPTER VI

METHODS FOR RECORDING DATA FOR

CONCURRENT LEARNING

The key capability brought about by concurrent learning adaptive controllers is guar-

anteed parameter error and tracking error convergence to zero without persistency of

excitation. Concurrent learning adaptive controllers achieve this by using recorded

data concurrently with current data. The recorded data include the regressor vec-

tors Φ(xj) which form a basis for the uncertainty ∆(xj) in equation 2.6, stored in a

matrix referred to as the history-stack, and associated information (such as ẋj) for

estimating the model error ∆(xj) within a finite time after a data point has been in-

cluded in the history-stack. In the previous chapters, we showed that convergence can

be guaranteed for the case of linearly parameterized uncertainty, if the history-stack

meets a rank-condition. This condition requires that the recorded data contain as

many linearly independent elements as the dimension of the basis of the uncertainty.

Furthermore, in proof of Theorems 3.1 and 3.2 we saw that the rate of convergence de-

pends on the minimum eigenvalue λmin of the symmetric matrix Ω =
p∑
j=1

Φ(xj)Φ
T (xj).

Therefore, when implementing concurrent learning adaptive controllers, we wish to

record data such that Condition 3.1 is satisfied as soon as possible and that λmin(Ω)

is maximized.

If no previous information about a system is available, or changes to the system

have rendered the previously available information inapplicable, then a concurrent

learning implementation must begin with no data points in the memory. In this case,

a method for selecting data in real-time is needed, in which instantaneous data will

be scanned at regular intervals and data points will be selected for recording if they

76

satisfy selection criteria. We will let p ∈ ℵ denote the subscript of the last point

stored. For ease of exposition, for a stored data point xj, we let Φj ∈ <m denote

Φ(xj), which is the data point to be stored. We will let Zk = [Φ1,,Φp] denote the

history-stack at time step k. The pth column of Zk will be denoted by Zk(:, p). It

is assumed that the maximum allowable number of recorded data points is limited

due to memory or processing power considerations. Therefore, we will require that

Zk has a maximum of p̄ ∈ ℵ columns, clearly, in order to be able to satisfy Condition

3.1, p̄ ≥ m. For the jth data point, the associated model error ∆(xj) is assumed to

be stored in the array ∆̄(:, j) = ∆(xj).

6.1 A Simple Method for Recording Sufficiently Different
Points

For a given ε ∈ <+ a simple way to select the instantaneous data Φ(x(t)) for recording

is to require

‖Φ(x(t))− Φp‖2

‖Φ(x(t))‖
≥ ε. (6.1)

The above method ascertains that only those data points are selected for storage

that are sufficiently different from the last data point stored. In order to meet the

dimension of the history-stack, the data can be stored in a cyclic manner. That is if

p = p̄, then the next data point replaces the oldest data point (Φ1), and so on. This

method has been used previously for selecting data points for recording in Chapter

3, and Chapter 5, and was found to be highly effective.

If the mapping Φ has the properties of a logistic function (see for example [36])

then it is sufficient to pick sufficiently different xk in order to achieve the same effect

as that of equation 6.1. This property is useful when dealing with Neural Network

(NN) based adaptive controllers, particularly since in these cases the dimension of

Φ is often greater than the dimension of x. Furthermore, as mentioned in remark

4.3, due to Micchelli’s theorem, the satisfaction of Condition 4.1 for Radial Basis

77

Function NN is reduced to selecting distinct points for storage [65], [36]. Hence in

this particular case, the criterion in equation 6.1 is an effective and efficient way of

selecting data points for recording that meet the rank-condition. However, for general

cases, this method does not guarantee that the rank-condition will always be satisfied.

Furthermore, this method does not guarantee that λmin(Ω) is maximized.

6.2 A Singular Value Maximizing Approach

In proof of Theorems 3.1 and 3.2 we saw that the rate of convergence depends on

λmin(Ω). Letting σ(Ω) denote the singular values of Ω, we recall that for nonzero

singular values σ(Ω) =
√
λ(ΩΩT), and Ω is full ranked only if σmin(Ω) is nonzero [91],

[10]. This fact can be used to select data points for storage. The method presented

in this section selects a data point for recording if its inclusion results in an increase

in the instantaneous minimum singular value of Ω. The following fact ascertains that

the singular values of Ω are the same as that of Zk.

Fact 6.1 σmin([Φ1,,Φp]) = σmin(
p∑
j=1

ΦjΦ
T
j)

Proof Let Zk = [Φ1,,Φp], then we have that σmin(Zk) =
√
λmin(ZkZT

k). The

proof now follows by noting that
p∑
j=1

ΦjΦ
T
j = [Φ1,,Φp][Φ1,,Φp]

T = ZkZ
T
k .

The following algorithm aims to maximize the minimum singular value of the ma-

trix containing the history-stack. The algorithm begins by using criterion in equation

6.1 to select sufficiently different points for storage. If the number of stored points

increases the maximum allowable number, the algorithm seeks to incorporate new

data points in such a way that the minimum singular value of Zk is increased. To

achieve this, the algorithm sequentially replaces every recorded data point in the

history-stack with the current data point and stores the resulting minimum singular

value in a variable. The algorithm then finds the maximum over these values, and

78

accepts the new data point for storage into the history-stack (by replacing the cor-

responding existing point) if the resulting configuration results in an increase in the

instantaneous minimum singular value of Ω.

Algorithm 6.1 Singular Value Maximizing Algorithm for Recording Data Points

Require: p ≥ 1

if ‖Φ(x(t))−Φp‖2
‖Φ(x(t))‖ ≥ ε then

p = p+ 1
Zk(:, p) = Φ(x(t)); {store ∆̄(:, p) = ∆(x(t))}

end if
if p ≥ p̄ then
T = Zk
Sold = minSV D(ZT

k)
for j = 1 to p do
Zk(:, j) = Φ(x(t))
S(j) = minSV D(ZT

k)
Zk = T

end for
find maxS and let k denote the corresponding column index
if maxS > Sold then
Zk(:, k) = Φ(x(t)), {store ∆̄(:, k) = ∆(x(t))}
p = p− 1

else
p = p− 1
Zk = T

end if
end if

The method presented in this section attempts to record data points such that

σmin(Zk) is increased. Another interesting approach is to record data points such that

the condition number of the matrix Zk (that is σmax(Zk)
σmin(Zk)

) is brought as close as possible

to 1.

6.3 Evaluation of Data Point Selection Methods Through
Simulation

In this section we evaluate the effectiveness of the data point selection criteria through

numerical simulation on a wing rock dynamics model. Wing rock is an interesting

phenomena which is caused due to asymmetric stalling on lifting surfaces of agile

79

aircraft. If left uncontrolled, the oscillations caused by wing rock can easily grow

unbounded and cause structural damage [66], [83]. Let φ denote the roll angle of an

aircraft, p denote the roll rate, δa denote the aileron control input, then a simplified

model for wing rock dynamics is given by [66]

φ̇ = p (6.2)

ṗ = δa + ∆(x), (6.3)

where ∆(x) = W0 + W1φ + W2p + W3|φ|p + W4|p|p + W5φ
3. The parameters for

wing rock motion are adapted from [87], they are W0 = 0.0,W1 = 0.2314,W2 =

0.6918,W3 = −0.6245,W4 = 0.0095,W5 = 0.0214. Initial conditions for the simula-

tion are arbitrarily chosen to be φ = 1.2deg, p = 1deg/s. The task of the controller

is to drive the state to the origin. To that effect, a MRAC controller (see Chapter

2) is used. The reference model chosen is a stable second order linear system with

natural frequency of 1 radian/second and damping ratio of 0.5. The linear control

gains are given by K = [2.5, 2.3], and the learning rate is set to ΓW = 2. The simu-

lation runs for a total time of 40 seconds with an update rate of 0.005 seconds using

Euler integration. The reference model tracking performance of the baseline MRAC

algorithm (without concurrent learning) is shown in 1(a), while the reference model

tracking performance of the concurrent learning MRAC adaptive controller with sin-

gular value maximizing data point selection (algorithm 6.1) is shown in figure 1(b).

For the chosen learning rate, we note that the concurrent learning adaptive controller

is better at tracking the reference model. In this simulation however, we are con-

cerned more with the impact of the selection of data points on weight convergence.

To that effect, we will evaluate the different data point selection criterion separately

in the following.

80

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

time (sec)

x
(r

ad
)

roll angle

actual
ref model

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

time (sec)

xD
ot

 (
ra

d/
s)

roll rate

actual
ref model

(a) Reference model tracking performance of the
baseline MRAC adaptive controller without con-
current learning.

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

time (sec)

x
(r

ad
)

roll angle

actual
ref model

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

time (sec)

xD
ot

 (
ra

d/
s)

roll rate

actual
ref model

(b) Reference model tracking performance of the
concurrent learning adaptive controller with sin-
gular value maximizing data point selection (see
algorithm 6.1).

Figure 6.1: Comparison of reference model tracing performance for the control of
wing rock dynamics with and without concurrent learning.

6.3.1 Weight Evolution without Concurrent Learning

Figure 6.2 shows the evolution of weights when using the baseline MRAC controller

without concurrent learning. We note that the weights do not converge to their ideal

values. Furthermore, once the states arrive at the origin (that is once φ = 0, p = 0)

the weights are no longer updated. This is expected in a controller that only uses

instantaneous data for adaptation.

6.3.2 Weight Evolution with Concurrent Learning using a Static history-
stack

For the results presented in this section, we use a static history-stack with a fixed

number of slots. The history-stack here is called static because once a data point is

recorded, it permanently occupies a slot in the history-stack and cannot overwritten.

The data points are selected using the criterion in equation 6.1 with ε = 0.08. Figure

6.3 shows the evolution of the weights for a simulation run. It is interesting to

note that the weights continue to be updated even after the states arrive at the

origin. This is an effect of concurrent training on recorded data. In fact, it can

81

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W*(i)

Figure 6.2: Evolution of weight when using the baseline MRAC controller without
concurrent learning. Note that the weights do not converge, in fact, once the states
arrive at the origin weights remain constant.

be seen that for the chosen learning rate and the data point selection criterion, the

weights are approaching their true values, however are not sufficiently close to the

ideal values by the end of the simulation. At the end of the simulation it was found

that σmin(Ω) = 0.0265

6.3.3 Weight Evolution with Concurrent Learning using a Cyclic history-
stack

The history-stack here is called cyclic because data is recorded in a cyclical manner.

That is, once the history-stack is full, the newest data point bumps out the oldest data

point and so on. This approach aid in guaranteeing that the history-stack reflects

the most recently stored data points. The data points are selected using the criterion

in equation 6.1 with ε = 0.08. Figure 6.4 shows the evolution of the weights for a

simulation run. As in the previous case, concurrent learning results in weight update

82

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W*(i)

Figure 6.3: Evolution of weight with concurrent learning adaptive controller using a
static history-stack. Note that the weights are approaching their true values, however
are not close to the ideal value by the end of the simulation (40 seconds).

even after the states arrive at the origin. It can be seen that the weights are closer to

their true values than when using a static history-stack. At the end of the simulation

it was found that σmin(Ω) = 0.0980.

6.3.4 Weight Evolution with Concurrent Learning using Singular Value
Maximizing Approach

In this simulation run, the data points are recorded using algorithm 6.1. Figure 6.5

shows the evolution of the weights for this case. It can be seen that the weights

converge to their true values within 20 seconds of the simulation. Furthermore, con-

vergence occurs even when the states have arrived at the origin and are no longer per-

sistently exciting. At the end of the simulation it was found that σmin(Ω) = 0.3519.

Figure 6.6 compares σmin(Ω) at every time step for the three data point selection

83

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W*(i)

Figure 6.4: Evolution of weight with concurrent learning adaptive controller using
a cyclic history-stack. Note that the weights are approaching their true values, and
they are closer to their true values than when using a static history-stack within the
first 20 seconds of the simulation.

algorithms discussed in this chapter. It can be seen that when using a static history-

stack, σmin(Ω) reaches a constant value and remains there once the history-stack is

full. Whereas, when a cyclic history-stack is used, σmin(Ω) changes as new data

replaces old data and occasionally even drops below σmin(Ω) achieved when using

a static history-stack, however by the end of the simulation σmin(Ω) with a cyclic

history-stack is larger than σmin(Ω) when using a static history-stack. The singular

value maximizing algorithm (algorithm 6.1) outperforms both these methods. It can

be seen that new data points are selected and old data points removed such that

the minimum singular value is maximized. This improvement in the quality of the

data is also reflected in weight convergence, with the weights updated by the singular

value maximizing approach arriving at their true values faster than the other two

approaches.

84

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W*(i)

Figure 6.5: Evolution of weight with concurrent learning adaptive controller us-
ing the singular value maximizing algorithm (algorithm 6.1). Note that the weights
approach their true values by the end of the simulation (40 seconds).

85

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time seconds

σ m
in

(Z
k)

static history stack
cyclic history stack
SV maximizing method

Figure 6.6: Plot of the minimum singular value σmin(Ω) at every time step for
the three data point selection criteria discussed. Note that in case of the static
history-stack, σmin(Ω) stays constant once the history-stack is full, in case of the cyclic
history-stack, σmin(Ω) changes with time as new data replace old data, occasionally
dropping below that of the σmin(Ω) for the static history-stack. When the singular
value maximizing algorithm (algorithm 6.1) is used, data points are only selected such
that σmin(Ω) increases with time. This results in faster weight convergence.

86

CHAPTER VII

LEAST SQUARES BASED CONCURRENT LEARNING

ADAPTIVE CONTROL

In this chapter we maintain the idea of using past and current data concurrently for

adaptation, however, the adaptation on past data is now performed using an optimal

least squares based approach rather than gradient descent. It is well known in the

literature that the best linear fit for a given set of data can be obtained by solving the

linear least squares problem [10]. Consequently, least squares based method have been

widely used for real time parameter estimation [3], [93]. The main contribution of this

chapter is the development of a modification term that brings the desirable parameter

estimation properties of least squares based algorithms to any baseline gradient based

adaptive laws in the framework of model reference adaptive control. The presented

least squares based modification term ensures that the adaptive weights converge

smoothly to an optimal unbiased estimate of the ideal weights. We show that the

modified adaptive law guarantees that exponential tracking error and exponential

weight convergence if the stored data are linearly independent. It is interesting to

note that both, the gradient based weight update laws studied in Chapters 3 to 5, and

the least squares modification studied in this chapter, guarantee convergence subject

to an equivalent rank-condition on the recorded data.

7.1 Least Squares Regression

We begin by describing a method by which least squares Regression can be performed

online for the MRAC problem studied in Chapter 2. Let N denote the number of

recorded state measurements at time t, and θ denote an estimate of the ideal weighs

87

W ∗. For a given data point k ∈ 1, 2, ..., N , the model error ∆(k) can be observed

using the method described in remark 3.3. Furthermore, if the Fourier Transform

Regression [67] method is used for solving the least squares problem, then estimation

of ẋ is further simplified. Details of this method follow.

Define the error ε(k) = ∆(x(k)) − Φ(x(k))T θ, then the error for N discrete data

points can be written in vector form as ε = [ε(1), ε(2), ..., ε(N)]T . In order to arrive at

the ideal estimate θ of the true weights W ∗ we must solve the following least squares

problem

min
W

εT ε. (7.1)

Let Y = [∆(1),∆(2), ...,∆(N)]T and define the following matrix

X =

φ1(x(1)) φ2(x(1)) ... φm(x(1))

φ1(x(2)) φ2(x(2)) ... φm(x(2))

φ1(x(N)) φ2(x(N)) ... φm(x(N))

. (7.2)

A closed form solution to the least squares problem is given as [46]

θ = (XTX)−1XTY. (7.3)

Equation 7.3 presents a standard way of solving the Least Squares problem online,

however, it suffers from numerical inefficiencies. Fourier Transform Regression (FTR)

is a method for solving the least squares problem in the frequency domain [67]. The

three main benefits of the FTR approach are: 1) The matrix containing frequency

domain information about the stored data has constant dimensions, 2) Available

information about the expected frequency range of the data can be used to implicitly

filter unwanted frequencies in the data, 3) Fixed point smoothing is not required for

the estimation of the model error ∆(x). Let w denote the independent frequency

variable, then the Fourier transform of an arbitrary signal x(t) is given by

F [x(t)] = x̃(w) =

∫ +∞

−∞
x(t)e−jwtdt. (7.4)

88

Let N be the number of available measurements, and ∆t denote the sampling

interval, then the discrete Fourier transform can be approximated as

X(w) =
N−1∑
k=0

x(k)e−jwk∆t. (7.5)

The Euler approximation for the Fourier transform in equation 7.4 is given by

x̃(w) = X(w)∆t. (7.6)

This approximation is suitable if the sampling rate 1/∆t is much higher than any

of the frequencies of interest w. The discrete version of the Fourier transform can be

recursively propagated as follows

Xk(w) = Xk−1(w) + x(k)e−jwk∆t. (7.7)

Consider a standard regression problem with complex data, where Ỹ (w) denotes

the dependent variable, X̃(w) denotes the independent variables, ε̃ denotes the re-

gression error in the frequency domain, and Θ denotes the unknown weights

Ỹ (w) = X̃(w)θ + ε̃. (7.8)

For the problem at hand, given a measurement k and a given frequency range

ω = 1..l the matrix of independent variables is given as

X̃(w) =

φ1(x(1)) φ2(x(1)) ... φm(x(1))

φ1(x(2)) φ2(x(2)) ... φm(x(2))

φ1(x(l)) φ2(x(l)) ... φm(x(l))

. (7.9)

The vector of dependent variables is given as Ỹ (w) = [∆(1),∆(2), ...,∆(l)]T . A

benefit of using regression in the frequency domain is that the state derivative ẋk

in the frequency domain can be simply given as ẋk(w) = jwx̃k(w). This greatly

simplifies the estimation of model error ∆(x), using equation 3.9, and letting x(w)

89

and u(w) denote the Fourier transform of the state and the input signals, the model

error for a data point k in the frequency domain can be found as

∆k(w) = BT [xk(w)jw − Axk(w)−Buk(w)]. (7.10)

The least squares estimate of the weight vector θ is then given by

θ = [Re(X̃∗X̃)]−1Re(X̃∗Ỹ), (7.11)

where ∗ denotes the complex conjugate transpose. Note that, forgetting factors can

be used to discount older data when the Fourier transform is recursively computed

[67].

7.1.1 Least Squares Based Modification Term

We now describe a method by which the least squares estimate of the ideal weights

can be incorporated in the adaptive control law. Let rT = eTPB where e, P,B are as

defined in Section 2.2, let ΓW ,Γθ be positive definite matrices denoting the learning

rate, and let θ be the solution to the least squares problem of equation 7.3.

The adaptive law for weight estimates W is chosen as

Ẇ = −(Φ(x)rT − Γθ(W − θ))ΓW . (7.12)

In the above equation, the term Γθ(W − θ)) denotes the least squares based modifi-

cation to the adaptive law. For the case of the structured uncertainty (Section 2.2.2),

we have that ∆(x) = W ∗TΦ(x) and the ideal weights W ∗ are assumed to be constant.

Let W̃ = W −W ∗, then the weight error dynamics are given by

˙̃W = −(Φ(x)rT − Γθ(W − θ))ΓW . (7.13)

In order to analyze the stability of this adaptive law, we begin with the following

condition on the stored data.

Condition 7.1 Enough state measurements are available such that the matrix

X̃(w) of equation 7.9 has full column rank.

90

Recalling that the matrix X̃(w) contains Fourier transform of the vector signal

Φ(x(t)) we note that Condition 7.1 requires that the stored data points be sufficiently

different. In the following, we show that if this condition is satisfied, the adaptive

law of equation 7.12 guarantees exponential convergence of tracking error and adap-

tive weights. We note that this condition is considerably weaker than a condition

on persistency of excitation of the vector signal Φ(x(t)) which is required for con-

vergence of weights when using the baseline gradient based adaptive law of equation

2.16. Furthermore, since it is fairly simple to monitor the rank of X̃(w) online, the

fulfilment of this condition is much easier to verify than the condition on persistency

of excitation.

Theorem 7.1 Consider the system in equation 2.6, the reference model in equa-

tion 2.7, the control law given by equation 2.8, the case of structured uncertainty

with the uncertainty given by ∆(x) = W ∗TΦ(x), the weight update law of equation

7.12, and assume that Condition 7.1 is satisfied, then the zero solution (e(t),W (t)) ≡

(0,W ∗) of the closed loop system given by equations 2.12 and 7.12 is globally expo-

nentially stable.

Proof Let tr denote the trace operator, and consider the following positive definite

and radially unbounded Lyapunov candidate

V (e, W̃) =
1

2
eTPe+

1

2
tr(W̃ TΓW

−1W̃). (7.14)

Taking the time derivative of the Lyapunov candidate along the trajectories of equa-

tions 2.12 and 7.13, and using the Lyapunov equation 2.13 results in

V̇ (e, W̃) = −1

2
eTQe+ rT (W TΦ(x)−W ∗TΦ(x))

+ tr(ẆΓW
−1W̃ T).

(7.15)

Let ε be such that W ∗ = θ + ε, adding and subtracting (W T − θ)TΓθ(W
T − θ) to

91

equation 7.15 and using the definition of ε yields,

V̇ (e, W̃) = −1

2
eTQe+ rT (W̃ TΦ(x)) + tr(ẆΓW

−1W̃ T)

+ W̃ TΓθ(W − θ)− W̃ TΓθ(W − θ).
(7.16)

Rearranging yields

V̇ (e, W̃) = −1

2
eTQe

+ tr((ẆΓW
−1 + Φ(x)rT + Γθ(W − θ))W̃ T)

− W̃ TΓθ(W − θ).

(7.17)

Setting tr((ẆΓW
−1+Φ(x)rT+Γθ(W−θ))W̃ T) = 0 yields the adaptive law of equation

7.12. Consider the last term in equation 7.17, we have

W̃ TΓθ(W − θ) = (W −W ∗)TΓθ(W − θ)

= (W −W ∗)TΓθ(W −W ∗)

+(W −W ∗)TΓθε. (7.18)

Using 7.11, the definition of ε, and Condition 7.1 yields

ε = W ∗ − [Re(X̃∗X̃)]−1Re(X̃∗X̃)W ∗ = 0, (7.19)

letting λmin(Q) and λmin(Γθ) denote the minimum eigenvalues of Q and Γθ we have

that equation 7.17 becomes

V̇ (e, W̃) ≤ −1

2
‖e‖2λmin(Q)− ‖W̃‖2λmin(Γθ). (7.20)

Hence, V̇ (e, W̃) ≤ min(λmin(Q),2λmin(Γθ))

max(λmax(P),λmax(ΓW
−1))

V (e, W̃). establishing the exponential sta-

bility of the zero solution (e(t),W (t)) ≡ (0,W ∗) of the closed loop system given by

equations 2.12 and equation 7.12 (using Lyapunov stability theory, see Theorem 3.1

in [34]). Since V (e, W̃) is radially unbounded, the result is global.

Remark 7.1 The above proof guarantees exponential stability of the tracking

error e and guarantees that W will approach the ideal weight W ∗ exponentially. This

92

is subject to Condition 7.1. Considering definition 3.1 it is clear that if the signal

is exciting over any finite time interval then data points can be stored such that

Condition 7.1 is satisfied. It is interesting to note that Condition 7.1 is similar to the

rank-condition 3.1.

Remark 7.2 The above proof can be extended to the case where the uncertainty

is unstructured (Section 2.2.3 from Chapter 2) by using Radial Basis Function Neural

Networks for approximating the uncertainty. For this case, it is not possible to set

ε = 0 using equation 7.19 since Y = W ∗Tσ + ε̃ and the following adaptive law will

result in uniform ultimate boundedness of all states:

Ẇ = −(σ(x)rT − Γθ(W − θ))ΓW . (7.21)

Furthermore, referring to equation 2.19 and noting that in this case ε = ε̃, it can be

shown that the weights will approach a neighborhood of the best linear approximation

of the uncertainty. Finally, in this case, the satisfaction of Condition 7.1 is reduced

to selecting distinct points for storage due to Micchelli’s theorem [36].

Remark 7.3 Note that the term Γθ(W −θ) adds in as a modification term to the

baseline adaptive law of equation 2.16. Since the above analysis is valid for any initial

condition and since the baseline adaptive law is known to be uniformly ultimately

bounded for the closed loop system of equation 2.12 and 7.12 with θ = 0, it is possible

to set θ = 0 until sufficient data is collected online to satisfy Condition 7.1. This will

result in a σ-modification like term until satisfaction of assumption 7.1 can be verified

online [42].

Remark 7.4 This proof can be modified to accommodate any least squares so-

lution method, for example the standard least squares solution of equation 7.3 can

be accommodated by replacing equation 7.19 with the following:

ε = W ∗ − (XTX)−1XTXW = 0, (7.22)

93

In this case, Condition 7.1 requires that matrix X has full column rank.

Remark 7.5 The increased computational burden when using the adaptive law

of equation 7.12 consists mainly of evaluating equation 7.11 to obtain θ. However, θ

does not need to be updated as often as the controller itself.

Remark 7.6 It is possible to imagine a switching approach in which the online

estimate of the ideal weights θ is used in equation 2.15 by setting W = θ when

θ becomes available. However, this approaches looses the benefit of keeping the

baseline adaptive law in the control loop, namely, the adaptive weights no longer take

on values to minimize V (t) = eT (t)e(t).

+
+

u

Adaptive Law

e

Ref

Model
Plant

Estimation of

-

x

Least Squares

estimation

Figure 7.1: Schematics of adaptive controller with least squares Modification

Figure 7.1 shows the schematic of the presented adaptive control method with

94

least squares modification.

7.2 Simulation results for Least Squares Modification

In this section we use the method of Theorem 7.1 for the control a wing rock dynamics

model. Let φ denote the roll angle of an aircraft, p denote the roll rate, δa denote the

aileron control input, then a model for wing rock dynamics is [66]

φ̇ = p (7.23)

ṗ = δa + ∆(x), (7.24)

where ∆(x) = W ∗
0 + W ∗

1 φ + W ∗
2 p + W ∗

3 |φ|p + W ∗
4 |p|p + W ∗

5 φ
3. The parameters

for wing rock motion are adapted from [87] and [94], they are W ∗
0 = 0.0,W ∗

1 =

0.2314,W ∗
2 = 0.6918,W ∗

3 = −0.6245,W ∗
4 = 0.0095,W5 = 0.0214. Initial conditions

for the simulation are arbitrarily chosen to be φ = 1deg, p = 1deg/s. The task of

the controller is to drive the state to the origin. To that effect, a stable second order

reference model is used. In the following the proportional gain Kx and the feedforward

gain Kr in equation 2.8 are held constant.

7.2.1 Case 1: Structured Uncertainty

Consider first the case where the structure of the uncertainty is known (Section 2.2.2,

in Chapter 2). We use the Fourier Transform Regression [67] method for solving the

least squares problem, the details of this method are given in appendix B. Figure 7.2

shows the performance of the baseline adaptive control law of equation 2.16 without

the least squares modification. For the low gain case, a learning rate of ΓW = 3

was used, while for the high gain case a learning rate of ΓW = 10 was used; in both

cases Γθ = 0.015. It is seen that the performance of the controller in both cases is

unsatisfactory. Figure 7.3 shows the phase portrait of the states when the adaptive

law with least squares modification of Theorem 7.1 is used. It is seen that the system

follows a smooth trajectory to the origin. Furthermore, it is interesting to note that

95

the performance of both the high gain and the low gain case is almost identical.

Figure 7.4 shows the evolution of the adaptive control weights when only the baseline

adaptive law of equation 2.16 is used. It is seen that the weights do not converge to the

ideal values (W ∗) and evolve in an oscillatory manner. In contrast, figure 7.5 shows

the convergence of the weights when the least squares modification based adaptive

law of Theorem 7.1 used. Figure 7.6 compares the reference model states with the

plant states for the baseline adaptive law, while 7.7 compares the reference model

and state output when the least squares modification based adaptive law is used. It

can be seen that the performance of the adaptive law with least squares modification

is superior to the baseline adaptive law. Finally, figure 7.8 shows that the tracking

error converges exponentially to the origin when least squares modification term is

used.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

0.5

1

φ degrees

p
de

g/
se

c

baseline low gain
baseline high gain

Figure 7.2: Phase portrait of system states with only baseline adaptive control

96

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

0.5

1

φ degrees

p
de

g/
se

c

LS mod low gain
LS mod high gain

Figure 7.3: Phase portrait of system states with least squares modification

7.2.2 Case 2: Unstructured Uncertainty handled through RBF NN

For the results in this section we assume that it is only known that the structure

of the uncertainty is unknown (Section 2.2.3, Chapter 2). Hence, RBF NN with 6

nodes and uniformly distributed centers over the expected range of the state space are

used to capture the model uncertainty. Figure 7.9 shows the trajectory of the system

in the phase space when the baseline adaptive control law of equation 2.16 is used.

The performance can be contrasted with smooth convergence to the origin seen in

figure 7.10 when adaptive law with least squares modification is used. Since the ideal

weights W ∗ in this case are not known, we evaluate the performance of the adaptive

law by comparing the output of the RBF NN with the actual model uncertainty with

weights frozen after the simulation run is over. Figure 7.11 shows the comparison. It

is clearly seen that the NN weights obtained with the least squares modification based

97

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

2.5

time (sec)

W

adaptive weights
true weights

Figure 7.4: Evolution of adaptive weights with only baseline adaptive control

adaptive law are able to successfully and accurately capture the uncertainty, this is a

clear indication that the weights have converged very close to their ideal values.

7.3 A Recursive approach to Least Squares Modification

The least squares modification presented in the previous sections requires the inversion

of a matrix (7.11 or in 7.3). This inversion can prove cumbersome to perform online,

especially if multiple input cases are considered. An alternative way to solve the least

squares problem is to use a recursive approach. In this section we describe a recursive

approach to least squares modification.

98

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

adaptive weights
true weights

Figure 7.5: Evolution of adaptive weights with least squares modification

7.3.1 Recursive Least Squares Regression

A solution to the least squares problem can be found through Kalman filtering theory

by casting the least squares problem as parameter estimation problem. Since the ideal

weights are assumed to constant, the following model can be used for an estimate of

the ideal weights θ,

θ(k) = θ(k − 1), (7.25)

∆(k) = ΦT (x(k))θ(k). (7.26)

Let S(k) denote the Kalman filter error covariance matrix, θ̂ denote the estimate

of the ideal weights θ, then setting the Kalman filter process noise covariance matrix

Q(k) = 0, and the measurement covariance R > 0, the Kalman filter based least

99

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

pi
−

ra
d

roll angle

actual
ref model

0 5 10 15
−1

−0.5

0

0.5

1

time (sec)

xD
ot

 (
pi

−
ra

d/
s)

roll rate

actual
ref model

Figure 7.6: Performance of adaptive controller with only baseline adaptive law

squares estimate can be updated in the following manner

θ̂(k + 1) = θ̂(k) +K(k + 1)[∆(k + 1)− ΦT (k + 1)θ̂(k)], (7.27)

K(k + 1) = S(k)ΦT (k + 1)[R + ΦT (k + 1)S(k)Φ(k + 1)]−1, (7.28)

S(k + 1) = [I −K(k + 1)Φ(k + 1)]S(k). (7.29)

7.3.2 Recursive Least Squares Based Modification

We now describe a method by which the least squares estimate of the ideal weights

can be incorporated in the adaptive control law. Let rT = eTPB where e, P,B are as

in Chapter 2.2, ΓW ,Γθ are positive definite matrices denoting the learning rate. Let

δ(t) denote the interval between two successive samples k and k+ 1, let T denote the

time when sample k was obtained, for the current instant in time t, define the piece

wise continuous sequence θ(t) = θ̂(k) for T ≤ t < T + δ(t), where θ̂(k) is as in 7.27.

100

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

pi
−

ra
d

roll angle

actual
ref model

0 5 10 15
−0.5

0

0.5

1

time (sec)

xD
ot

 (
pi

−
ra

d/
s)

roll rate

actual
ref model

Figure 7.7: Performance of adaptive controller with least squares modification

The adaptive law for updating the weights W is chosen as

Ẇ (t) = −(Φ(x(t))rT (t)− Γθ(W (t)− θ(t)))ΓW . (7.30)

In the above equation, the term Γθ(W (t) − θ(t))) serves to combine the indirect

recursive least based estimate of the ideal weights smoothly into the baseline direct

adaptive training law of equation 2.16. This term acts as a modification term to the

baseline adaptive law.

In the following, we present Lyapunov based stability analysis for the chosen

adaptive law.

Theorem 7.2 Consider the system in equation 2.6, the reference model in equa-

tion 2.7, the control law given by equation 2.8, the case of structured uncertainty

with the uncertainty given by ∆(x) = W ∗TΦ(x), the weight update law of equation

101

0 5 10 15
−7

−6

−5

−4

−3

−2

−1

0
x 10

−3

time (sec)

Φ
 E

rr
 d

eg

Position Error

0 5 10 15
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

time (sec)

p
E

rr
 (

de
g/

s)

Angular Rate Error

Figure 7.8: Evolution of tracking error with least squares modification

7.30, and assume that Condition 7.1 is satisfied, then the solution (e(t),W (t)) of the

closed loop system given by equations 2.12 and 7.30 is uniformly ultimately bounded.

Proof Let W̃ = W−W ∗, let tr denote the trace operator, and consider the following

positive definite and radially unbounded Lyapunov like candidate

V (e, W̃) =
1

2
eTPe+

1

2
tr(W̃ TΓW

−1W̃). (7.31)

Taking the time derivative of the Lyapunov candidate along the trajectories of equa-

tions 2.12 and 7.13, and using the Lyapunov equation 2.13 results in

V̇ (e, W̃) = −1

2
eTQe+ rT (W TΦ(x)−W ∗TΦ(x))

+ tr(ẆΓW
−1W̃ T).

(7.32)

Let ε be such that W = θ + ε, adding and subtracting (W T − θ)TΓθ(W
T − θ) to

102

−15 −10 −5 0 5 10 15
−100

−80

−60

−40

−20

0

20

40

60

80

100

φ degrees

p
de

g/
se

c

baseline low gain
baseline high gain

Figure 7.9: Phase portrait of system states with only baseline adaptive control while
using RBF NN

equation 7.32 and using the definition of ε yields,

V̇ (e, W̃) = −1

2
eTQe+ rT (W̃ TΦ(x)) + tr(ẆΓW

−1W̃ T)

+ W̃ TΓθ(W − θ)− W̃ TΓθ(W − θ).
(7.33)

Rearranging yields

V̇ (e, W̃) = −1

2
eTQe

+ tr((ẆΓW
−1 + Φ(x)rT + Γθ(W − θ))W̃ T)

− W̃ TΓθ(W − θ).

(7.34)

Setting tr((ẆΓW
−1+Φ(x)rT+Γθ(W−θ))W̃ T) = 0 yields the adaptive law of equation

103

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

0

0.5

1

φ degrees

p
de

g/
se

c

LS mod low gain
LS mod high gain

Figure 7.10: Phase portrait of system states with least squares modification while
using RBF NN

7.30. Consider the last term in 7.34,

W̃ TΓθ(W − θ) = (W −W ∗)TΓθ(W − θ)

= (W −W ∗)TΓθ(W −W ∗)

+(W −W ∗)TΓθε. (7.35)

Letting λmin(Q) and λmin(Γθ) denote the minimum eigenvalues of Q and Γθ we have

that equation 7.34 becomes

V̇ (e, W̃) = −1

2
‖e‖2λmin(Q)− ‖W̃‖2λmin(Γθ)− W̃ TΓθε. (7.36)

With appropriate choice of S(0) and R, the Kalman filter estimation error θ(k)− θ̂(k)

and S(k) of equation 7.27, 7.29 remain bounded, hence ε remains bounded. Therefore,

for a given choice of Q and Γθ, V̇ (e, W̃) < 0 outside of a compact set, which shows

104

0 5 10 15 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

Δ(
x)

model uncertainty
RBF NN estimate of uncertainty

Figure 7.11: RBF NN model uncertainty approximation with weights frozen post
adaptation

that the solution (e(t),W (t)) of the closed loop system given by equations 2.12 and

7.30 is uniformly ultimately bounded.

Remark 7.7 The above proof shows uniform ultimate boundedness of the track-

ing error and adaptive weights. Furthermore, note that since Arm is Hurwitz, xrm is

bounded for bounded r(t), therefore it follows that x is bounded. It can be clearly

seen that if ε → 0 then tracking error e → 0. This condition will be achieved when

θ → W ∗, that is when the Kalman filter estimate of the ideal weights in 7.27 con-

verges. The convergence of the Kalman filter estimate is related to choice of S(0), R

and the presence of excitation in the system stats [31].

Remark 7.8 The above proof can be easily extended to the case where the struc-

ture of the uncertainty is unknown (Section 2.2.3 from Chapter 2) by using Radial

105

Basis Function Neural Networks for approximating the uncertainty. The following

adaptive law will result in uniform ultimate boundedness of all states

Ẇ = −(σ(x)rT − Γθ(W − θ))ΓW . (7.37)

Furthermore, referring to equation 2.19 and noting that in this case ε = ε̃, it can

be shown that if the Kalman filter estimates of the ideal weights converge, then

the weights will approach a neighborhood of the best linear approximation of the

uncertainty.

Remark 7.9 The increased computational burden when using the adaptive law

of equation 7.30 consists mainly of evaluating equations 7.27,7.28, and 7.29. It should

be noted that since Φ(x) ∈ <m, the inversion in equation 7.28 is reduced to a division

by a scalar.

7.4 Simulation results

In this section we use the method of Theorem 7.2 for the control a wing rock dynamics

model. The dynamics of the model are described in equation 7.23. Initial conditions

for the simulation are arbitrarily chosen to be φ = 1 degree, p = 1 degree/second.

The task of the controller is to drive the state to the origin. To that effect, a stable

second order reference model is used with a natural frequency and a damping ratio

of 1. The proportional gain Kx and the feedforward gain Kr in equation 2.8 are held

constant for all of the presented simulation results.

The structure of the uncertainty and the ideal weights W ∗ are known for the wing

rock dynamics model, hence the performance of the adaptive law can be accurately

evaluated in terms of convergence of adaptive weights W to the ideal weights. The

least squares problem is solved recursively using equations 7.27, 7.28, and 7.29. It is

assumed that no a priori information is available about the ideal weights,hence we

choose θ̂(0) = 0, consequently, the initial Kalman filter error covariance matrix S(0)

106

is chosen to have diagonal elements with large positive values. Figure 7.12 shows

the performance of the baseline adaptive control law of equation 2.16 without the

recursive least squares modification. The learning rate used was ΓW = 3 for the low

gain case, and ΓW = 10 for the high gain case. It is seen that the performance of

the controller in both cases is unsatisfactory. Figure 7.13 shows the phase portrait

of the states when the adaptive law of equation 7.30 is used. It is seen that in both

the low gain and the high gain case the system follows a smooth trajectory to the

origin. Figure 7.14 shows the evolution of the adaptive control weights when only

the baseline adaptive law of equation 2.16 is used. It is seen that the weights do not

converge to the ideal values (W) and evolve in an oscillatory manner. In contrast,

figure 7.15 shows the convergence of the weights when the adaptive law of equation

7.30 is used. Figure 7.16 compares the reference model states with the plant states for

the baseline adaptive law, while 7.17 compares the reference model and state output

when the adaptive law of equation 7.30 is used. It can be seen that the performance

of the adaptive law of Theorem 7.2 is superior to that of the baseline adaptive law.

Furthermore, we note that parameter convergence was observed despite using a non-

persistently exciting reference input (r(t) = 0∀t).

107

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

0.5

1

φ degrees

p
de

g/
se

c

baseline low gain
baseline high gain

Figure 7.12: Phase portrait of system states with only baseline adaptive control

108

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

0.5

1

φ degrees

p
de

g/
se

c

LS mod low gain
LS mod high gain

Figure 7.13: Phase portrait of system states with recursive least squares modifica-
tion of equation 7.30

109

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

W

adaptive weights
true weights

Figure 7.14: Evolution of adaptive weights with only baseline adaptive control

110

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

adaptive weights
true weights

Figure 7.15: Evolution of adaptive weights with recursive least squares modification
of equation 7.30

111

0 5 10 15
−0.5

0

0.5

1

1.5

time (sec)

pi
−

ra
d

roll angle

actual
ref model

0 5 10 15
−0.5

0

0.5

1

time (sec)

xD
ot

 (
pi

−
ra

d/
s)

roll rate

actual
ref model

Figure 7.16: Performance of adaptive controller with only baseline adaptive law

112

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

pi
−

ra
d

roll angle

actual
ref model

0 5 10 15
−0.5

0

0.5

1

time (sec)

xD
ot

 (
pi

−
ra

d/
s)

roll rate

actual
ref model

Figure 7.17: Tracking performance of the recursive least squares modification based
adaptive law of equation 7.30

113

CHAPTER VIII

FLIGHT IMPLEMENTATION OF CONCURRENT

LEARNING NEURO-ADAPTIVE CONTROL ON A

ROTORCRAFT UAS

8.1 Motivation

Unmanned Aerial Systems (UAS) represent emerging technology that has already

seen various successful applications around the globe. The interest in this technology

is fueled by the ability of UAS to perform tasks autonomously that are dangerous to

human operators, are of a repetitive nature, or demand high endurance and reliability

beyond that of human capability. Currently, UAS are used mainly for surveillance

and reconnaissances missions. UAS designed for these tasks are often remotely con-

trolled, and are incapable of performing highly aggressive maneuvers. However, as

the technology matures, UAS are expected to take on increasingly challenging roles in

both the civil and military sectors. Some possible examples include Unmanned Com-

bat Air Vehicles (UCAV), and highly agile Vertical Take Off and Landing (VTOL)

air vehicles. Hence, developing flight control systems for UAS that perform as well

as (or better) than human pilots has become an active technological challenge.

The capabilities of modern UAS are limited by their ability to track demanding

trajectories which include high speed dashes, break turns, and other such aggres-

sive maneuvers. Furthermore, UAS must also be capable of handling unmodeled

disturbances, structural changes, partial system failures, and transitioning seam-

lessly through different flight domains. For example a rotorcraft VTOL UAS must

demonstrate seamless transition through hover, forward flight, turning flight domains

[7, 63, 30, 16, 80, 64]. Recent research has shown that adaptive control methodologies

114

are one approach that can address this challenge in a robust and efficient manner.

For example Johnson, Kannan, and others have demonstrated that a VTOL UAS can

be controlled effectively through its entire flight envelop using Neural Network (NN)

based adaptive control laws similar to those in equation 2.28 [53],[50]. Furthermore,

Johnson, Turbe, Kannan, Wu and others have also shown that adaptive controllers

can be used to control a fixed-wing UAS to perform autonomous transitions to and

from hover [51]. However, it was noted that the traditional instantaneous error min-

imizing adaptive control laws (e.g. equation 2.28) suffered from short-term learning.

That is, the adaptive controller did not exhibit improvement in performance even

when the aircraft performed the same maneuvers repeatedly. On analyzing flight test

data, it was noted that if the adaptive element weights were to approach their ideal

values, long term improvement in performance could be realized. In this thesis we de-

veloped a method that uses both current and recorded data concurrently to improve

the convergence properties of NN based adaptive controllers. In this chapter, we will

apply the results for the control of a rotorcraft UAS.

8.2 Flight Test Vehicle

The concurrent learning adaptive controllers have been implemented on the Georgia

Tech GTMax UAS (figure 8.2). The GTMax is based on the Yamaha RMAX platform

and weighs around 66 Kg with a 3 meter rotor diameter. The vehicle has been

equipped with two high speed flight computers, multiple redundant data links, an

in-house developed Ground Control Station communication software, and has flown

over 450 flights since March 2002. The baseline controller on the GTMax is a SHL

NN based AMI-MRAC and uses the update laws of equation 5.17 and has been

extensively proven in flight. Further details on the baseline controller can be found

in [50] and in [53]. The concurrent learning adaptive law used is from Theorem 5.6,

which guarantees that the solution (e(t),W (t), V (t)) will stay uniformly ultimately

115

bounded.

Figure 8.1: The Georgia Tech GTMax UAV in Flight

We begin with presenting results on a High Fidelity flight simulation of the GT-

Max Simulation. These results are important due to their reproducibility, controlled

environment, and repeatability of commands. We then proceed to present flight test

results on the GTMax.

8.3 Implementation of concurrent Learning NN controllers
on a High Fidelity Simulation

The Georgia Tech UAV lab maintains a high fidelity Software In the Loop (SITL)

flight simulator for the GTMax UAS. The simulation is complete with sensor emu-

lation, detailed actuator models, external disturbance simulation, and a high fidelity

dynamical model.

We command four successive forward step inputs with an arbitrary period of no

command activity between any two successive steps. This type of input is used to

mimic control tasks which involve commands that are repeated after an arbitrary

time interval. Through these maneuvers, the UAS is expected to transition through

forward flight and hover domain repeatedly. The performance of the inner loop con-

troller is characterized by the errors in the three body angular rates (namely roll rate

p, pitch rate q and yaw rate r), with the dominating variable being pitch rate q as

116

the rotorcraft accelerates and decelerates in forward step inputs. Figure 2(a) shows

the performance of the inner loop controller with only instantaneous adaptation in

the NN. It is clearly seen that there is no considerable improvement in the pitch rate

error as the controller follows successive step inputs. The forgetting nature of the

controller is further characterized by the evolution of NN weights in W and V matri-

ces. Figure 2(c) and Figure 2(c) clearly show that the NN weights do not converge to

a constant value, in fact as the rotorcraft performs the successive step maneuvers the

NN weights oscillate accordingly, clearly characterizing the instantaneous (forgetting)

nature of the adaptation.

On the other hand, when both instantaneous and concurrent learning NN learning

law of Theorem 5.6 is used a clear improvement in performance is seen characterized

by the reduction in pitch rate error after the first two step inputs. Figure 2(b) shows

the tracking performance of the concurrent learning augmented controller. The long

term adaptation nature of the concurrent learning augmented adaptive controller is

further characterized by the tendency the of NN weights to converge. Figure 2(d)

and Figure 2(f) show that when concurrent learning is used along with instantaneous

learning the NN weights do not exhibit periodic behavior and tend to converge to

constant values. This indicates that the NN learns faster and retains the learning

even when there is a lack of persistent excitation. This indicates that the combined

instantaneous learning and concurrent learning controller will be able to perform bet-

ter when performing a maneuver that it has previously performed, a clear indication

of long term memory and semi-global learning.

117

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.5

0

0.5
Evolution of inner loop errors for successive forward step inputs

E
rr

or
 in

 p
 r

ad
/s

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.5

0

0.5

E
rr

or
 in

 q
 r

ad
/s

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.5

0

0.5

E
rr

or
 in

 r
 r

ad
/s

Time seconds

(a) Evolution of inner loop errors with Only On-

line Adaptation

2190 2200 2210 2220 2230 2240 2250 2260 2270
−0.1

0

0.1
Evolution of inner loop errors for successive forward step inputs

E
rr

or
 in

 p
 r

ad
/s

2190 2200 2210 2220 2230 2240 2250 2260 2270
−0.5

0

0.5

E
rr

or
 in

 q
 r

ad
/s

2190 2200 2210 2220 2230 2240 2250 2260 2270
−0.05

0

0.05

E
rr

or
 in

 r
 r

ad
/s

Time seconds

(b) Evolution of inner loop errors with concur-

rent Adaptation

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Evolution of NN weights V matrix (online only)

Time

N
N

 w
ei

gh
ts

 V
 m

at
rix

(c) Evolution of V matrix weights with Only On-

line Adaptation

2190 2200 2210 2220 2230 2240 2250 2260 2270
−3

−2

−1

0

1

2

3

4
Evolution of NN weights V matrix (online only)

Time

N
N

 w
ei

gh
ts

 V
 m

at
rix

(d) Evolution of V matrix weights with concur-

rent Adaptation

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Evolution of NN weights W matrix (online only)

Time

N
N

 w
ei

gh
ts

 W
 m

at
rix

(e) Evolution of W matrix weights with Only

Online Adaptation

2190 2200 2210 2220 2230 2240 2250 2260 2270
−2

−1

0

1

2

3

4

5
Evolution of NN weights W matrix (online only)

Time

N
N

 w
ei

gh
ts

 W
 m

at
rix

(f) Evolution of W matrix weights with concur-

rent Adaptation

Figure 8.2: GTMax Simulation Results for Successive Forward Step Inputs with

and without concurrent learning 118

8.4 Implementation of Concurrent Learning Adaptive Con-
troller on a VTOL UAV

In this section we present some flight test results that characterize the benefits of

using combined online and concurrent learning adaptive control. The flight tests

presented here were executed on the Georgia Tech GTMax rotorcraft UAV (8.2).

We begin by presenting flight test results for a series of forward steps. This series

of maneuvers serves to demonstrate explicitly the effect of concurrent learning by

showing improved weight convergence and reduction in the tracking error. We then

present results from more complicated and aggressive maneuvers where it is highly

desirable to have long term learning in order to improve performance. For this purpose

we choose an aggressive trajectory tracking maneuver, in which the rotorcraft UAV

tracks an elliptical trajectory with aggressive velocity and acceleration profile. The

final maneuver chosen is an aggressive reversal of direction maneuver which first

exchanges the kinetic energy of the rotorcraft for potential energy by climbing up.

From the apex of its trajectory the rotorcraft falls back and reverses its direction of

flight by continually aligning the heading with the local velocity vector.

8.4.1 Repeated Forward Step Maneuvers

The repeated forward step maneuvers are chosen in order to create a relatively simple

situation in which the controller performs a repeated task. By using combined current

and concurrent learning NN we expect to see improved performance through repeated

maneuvers and a faster convergence of weights. Figure 8.4.1 shows the body frame

states from recorded flight data for a chain of forward step inputs. Figure 4(a) and

figure 4(b) shows the evolution of inner and outer loop errors. These results assert the

stability (in the ultimate boundedness sense) of the combined concurrent and online

learning approach.

Figure 5(d) and Figure 5(b) show the evolution of NN W and V weights as the

119

rotorcraft performs repeated step maneuvers and the NN is trained using combined

online and concurrent learning method of Theorem 5.6. The NN V weights (5(b))

appear to go to constant values when concurrent learning adaptation is used, this can

be contrasted with Figure 5(a) which shows the V weight adaptation for a similar ma-

neuver without concurrent learning. NN W weights for both cases remain bounded,

however it is seen that with concurrent learning adaptation the NN W weights seem to

separate, this indicates alleviation of the rank-1 condition experienced by the baseline

adaptive law relying only on instantaneous data [22]. The flight test results indicate

a noticeable improvement in the error profile. In Figure 8.4.1 we see that the UAV

tends not to have a smaller component of body lateral velocity (v) through each

successive step. This is also seen in Figure 4(b) where we note that the error in v

(body y axis velocity) reduces through successive steps. These effects in combination

indicate that the combined online and concurrent learning system is able to improve

performance over the baseline controller through repeated maneuvers, indicating long

term learning. These results are of particular interest, since the maneuvers performed

were conservative, and the baseline adaptive MRAC controller had already been ex-

tensively tuned.

120

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.5

0

0.5
Body velocity and accln

p

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.5

0

0.5

1

q

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.5

0

0.5

r

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−5

0

5

10
Body velocity and accln

u

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−1

0

1

2

v

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−2

0

2

w

Figure 8.3: Recorded Body Frame States for Repeated Forward Steps

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.05

0

0.05
Evolution of inner loop errors for successive forward step inputs

E
rr

or
 in

 p
 r

ad
/s

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.1

0

0.1

E
rr

or
 in

 q
 r

ad
/s

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.1

0

0.1

E
rr

or
 in

 r
 r

ad
/s

Time2 seconds

(a) Evolution of inner loop errors with concur-

rent Adaptation

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−2

−1

0

1
Evolution of outer loop errors for successive forward step inputs

E
rr

or
 in

 u
 ft

/s

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−2

0

2

E
rr

or
 in

 v
 ft

/s

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.5

0

0.5

E
rr

or
 in

 w
 ft

/s

Time2 seconds

(b) Evolution of outer loop errors with concur-

rent Adaptation

Figure 8.4: GTMax Recorded Tracking Errors for Successive Forward Step Inputs

with concurrent Learning

121

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Evolution of NN weights V matrix (online only)

Time

N
N

 w
ei

gh
ts

 V
 m

at
rix

(a) Evolution of V matrix weights with Only On-

line Adaptation

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−3

−2

−1

0

1

2

3
Evolution of NN weights V matrix (with background learning)

Time2

N
N

 w
ei

gh
ts

 V
 m

at
rix

(b) Evolution of V matrix weights with concur-

rent Adaptation

2090 2100 2110 2120 2130 2140 2150 2160 2170
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Evolution of NN weights W matrix (online only)

Time

N
N

 w
ei

gh
ts

 W
 m

at
rix

(c) Evolution of W matrix weights with Only

Online Adaptation

3370 3380 3390 3400 3410 3420 3430 3440 3450 3460
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Evolution of NN weights W matrix (with background learning)

Time2

N
N

 w
ei

gh
ts

 W
 m

at
rix

(d) Evolution of W matrix weights with concur-

rent Adaptation

Figure 8.5: Comparison of Weight Convergence on GTMax with and without con-

current Learning

8.4.2 Aggressive Trajectory Tracking Maneuvers

Forward step maneuvers serve as a great test pattern due to their decoupled nature;

however in the real world the UAV is expected to perform more complex maneuvers.

In order to demonstrate the benefits of using the combined current and concurrent

learning NN we present flight test results for trajectory tracking maneuver in which

the UAV repeatedly tracks an elliptical trajectory with aggressive velocity (50ft/s)

122

and acceleration (20ft/s2) profile. Since these maneuvers involve state commands in

more than one system state it is harder to visually inspect the data and see whether

an improvement in performance is seen. In this thesis we address this issue by using

the Euclidian norm of the error signal at each time step as a rudimentary metric.

Further research needs to be undertaken in determining a suitable metric for this

task. Figure 8.4.2.1 shows the recorded inner and outer loop states as the rotorcraft

repeatedly tracks an oval trajectory pattern. In this flight, the first two ovals (until t

= 5415 s) are tracked with a commanded acceleration of 30ft/sec2, while the rest of

the ovals are tracked at 20ft/sec2. In the following we treat both these parts of the

flight test separately.

8.4.2.1 Aggressive Trajectory Tracking with Saturation in the Collective Channel

Due to the aggressive acceleration profile of 30ft/s2 the rotorcraft collective channels

were observed to saturate while performing high velocity turns. This leads to an

interesting challenge for the adaptive controller. Figure 8.7 shows the evolution of the

innerloop and outerloop tracking error. It can be clearly seen that the tracking error

in the u (body x axis velocity) channel reduces in the second pass through the ellipse

indicating long term learning by the combined online and concurrent learning adaptive

control system. This result is further characterized by the noticeable reduction in the

norm of the tracking error at every time step as shown in Figure 24.

123

5250 5300 5350 5400 5450 5500 5550 5600
−1

0

1
Body velocity and accln

p
5250 5300 5350 5400 5450 5500 5550 5600

−1

0

1

q

5250 5300 5350 5400 5450 5500 5550 5600
−1

0

1
r

5250 5300 5350 5400 5450 5500 5550 5600
−100

0

100
Body velocity and accln

u

5250 5300 5350 5400 5450 5500 5550 5600
−20

0

20

v

5250 5300 5350 5400 5450 5500 5550 5600
−20

0

20

w

Figure 8.6: Recorded Body Frame States for Repeated Oval Maneuvers

5280 5300 5320 5340 5360 5380 5400 5420
−0.5

0

0.5
Evolution of inner loop errors for successive forward step inputs

E
rr

or
 in

 p
 r

ad
/s

5280 5300 5320 5340 5360 5380 5400 5420
−0.5

0

0.5

E
rr

or
 in

 q
 r

ad
/s

5280 5300 5320 5340 5360 5380 5400 5420
−0.5

0

0.5

E
rr

or
 in

 r
 r

ad
/s

Time2 seconds

(a) Evolution of inner loop errors with concur-

rent Adaptation

5280 5300 5320 5340 5360 5380 5400 5420
−20

0

20

40
Evolution of outer loop errors for successive forward step inputs

E
rr

or
 in

 u
 ft

/s

5280 5300 5320 5340 5360 5380 5400 5420
−10

0

10

E
rr

or
 in

 v
 ft

/s

5280 5300 5320 5340 5360 5380 5400 5420
−5

0

5

10

E
rr

or
 in

 w
 ft

/s

Time2 seconds

(b) Evolution of outer loop errors with concur-

rent Adaptation

Figure 8.7: GTMax Recorded Tracking Errors for Aggressive Maneuvers with Sat-

uration in Collective Channels with concurrent Learning

124

5280 5300 5320 5340 5360 5380 5400 5420
0

5

10

15

20

25

30

35

40

45

50
plot of the norm of the error vector vs time

time s

no
rm

 o
f t

he
 e

rr
or

Figure 8.8: Plot of the norm of the error at each time step for aggressive trajectory

tracking with collective saturation

8.4.2.2 Aggressive Trajectory Tracking Maneuver

In this part of the maneuver the acceleration profile was reduced to 20ft/sec2. At

this acceleration profile, no saturation in the collective input was noted. Figure 8.9

shows the evolution of tracking error, and Figure 10(a) shows the plot of the norm of

the tracking error at each time step.

125

5400 5450 5500 5550 5600
−0.2

0

0.2
Evolution of inner loop errors for successive forward step inputs

E
rr

or
 in

 p
 r

ad
/s

5400 5450 5500 5550 5600
−0.2

0

0.2

E
rr

or
 in

 q
 r

ad
/s

5400 5450 5500 5550 5600
−0.2

0

0.2

E
rr

or
 in

 r
 r

ad
/s

Time2 seconds

(a) Evolution of inner loop errors with concur-

rent Adaptation

5400 5450 5500 5550 5600
−5

0

5

10
Evolution of outer loop errors for successive forward step inputs

E
rr

or
 in

 u
 ft

/s

5400 5450 5500 5550 5600
−5

0

5

10

E
rr

or
 in

 v
 ft

/s

5400 5450 5500 5550 5600
−2

0

2

4

E
rr

or
 in

 w
 ft

/s

Time2 seconds

(b) Evolution of outer loop errors with concur-

rent Adaptation

Figure 8.9: GTMax Recorded Tracking Errors for Aggressive Maneuvers with con-

current Learning

5420 5440 5460 5480 5500 5520 5540 5560 5580 5600
0

5

10

15

20

25

30

35
plot of the norm of the error vector vs time

time s

no
rm

 o
f t

he
 e

rr
or

(a) Evolution of the norm of the tracking error

with concurrent Adaptation

5590 5600 5610 5620 5630 5640 5650 5660
0

5

10

15

20

25

30

35
plot of the norm of the error vector vs time

time s

no
rm

 o
f t

he
 e

rr
or

(b) Evolution of the norm of the tracking error

with only online Adaptation

Figure 8.10: Comparison of norm of GTMax Recorded Tracking Errors for Aggres-

sive Maneuvers

8.4.2.3 Aggressive Trajectory Tracking Maneuvers with Only Online Learning
NN

In order to illustrate the benefit of the combined online and concurrent learning

adaptive controller we present flight test results as the rotorcraft tracks the same

126

trajectory command as in Section 8.4.2.1 , but with only online learning NN.

It is instructive to compare Figure 11(b), and Figure 11(d) which show the evo-

lution of the NN weights with only online learning with Figure 11(a), and Figure

11(c) which show evolution of the NN weights with combined online and concurrent

learning. Although absolute convergence of weights is not seen, as expected due to

Theorem 5.6 it is interesting to see that when combined online and concurrent learn-

ing is on, the weights tend to be less oscillatory than when only online learning is on.

Also, with combined online and concurrent learning, the weights do not tend to go to

zero as the rotorcraft hovers between two successive tracking maneuver. Figure 10(b)

shows the plot of the tracking error norm as a function of time without concurrent

learning. Comparing this figure with Figure 10(a) it can be clearly seen that the norm

of the error vector is much higher when only online learning is used. This indicates

that the combined online and concurrent learning adaptive controller has improved

trajectory tracking performance.

127

5590 5600 5610 5620 5630 5640 5650 5660
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Evolution of NN weights V matrix (with background learning)

Time2

N
N

 w
ei

gh
ts

 V
 m

at
rix

(a) Evolution of V matrix weights with Only On-

line Adaptation

5400 5450 5500 5550 5600
−8

−6

−4

−2

0

2

4

6
Evolution of NN weights V matrix (with background learning)

Time2

N
N

 w
ei

gh
ts

 V
 m

at
rix

(b) Evolution of V matrix weights with concur-

rent Adaptation

5590 5600 5610 5620 5630 5640 5650 5660
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Evolution of NN weights W matrix (with background learning)

Time2

N
N

 w
ei

gh
ts

 W
 m

at
rix

(c) Evolution of W matrix weights with Only

Online Adaptation

5400 5450 5500 5550 5600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Evolution of NN weights W matrix (with background learning)

Time2

N
N

 w
ei

gh
ts

 W
 m

at
rix

(d) Evolution of W matrix weights with concur-

rent Adaptation

Figure 8.11: Comparison of Weight Convergence as GTMax tracks aggressive tra-

jectory with and without concurrent Learning

In summary, the flight test results were in agreement with Theorem 5.6, which

guarantees that the closed loop solution (e(t),W (t), V (t) will remain uniformly ul-

timately bounded. Ongoing flight testing work on the GTMax includes developing

techniques for improved implementation of concurrent learning adaptive controllers.

128

CHAPTER IX

FLIGHT IMPLEMENTATION OF CONCURRENT

LEARNING NEURO-ADAPTIVE CONTROLLER ON A

FIXED WING UAS

In this chapter, we present results from flight implementation of a concurrent learning

Neuro-Adaptive controller onboard the Georgia Tech Twinstar UAS. The implemen-

tation uses a Radial Basis Function Neural Networks as the adaptive element and

uses the adaptive control law developed in Theorem 5.3.

9.1 Flight Test Vehicle: The GT Twinstar

The GT Twinstar (Figure 9.1) is a foam built, twin engine aircraft that has been

equipped with the Adaptive Flight Inc. (AFI, www.adaptiveflight.com) FCS 20 R©.

The FCS 20 embedded autopilot system comes with an integrated navigation solution

that fuses information using an extended Kalman filter from six degree of freedom

inertial measurement sensors, Global Positioning System, air data sensor, and mag-

netometer to provide accurate state information [21]. The available state information

includes velocity and position in global and body reference frames, accelerations along

the body x, y, z axes, roll, pitch, yaw rates and attitude, barometric altitude, and air

speed information. These measurements can be further used to determine the air-

craft’s velocity with respect to the air mass, and the flight path angle. The Twinstar

can communicate with a Ground Control Station (GCS) using a 900 MHz wireless

data link. The GCS serves to display onboard information as well as send commands

to the FCS20. Flight measurements of airspeed and throttle setting are used to es-

timate thrust with this model. An elaborate simulation environment has also been

129

designed for the GT Twinstar. This environment is based on the Georgia Tech UAS

Simulation Tool (GUST) environment [52]. A linear model for the Twinstar in nom-

inal configuration (without damage) has been identified using the FTR method [23].

A linear model with 25% left wing missing has also been identified [17].

Figure 9.1: The Georgia Tech Twinstar UAS. The GT Twinstar is a fixed wing
foam-built UAS designed for fault tolerant control work.

9.2 Flight Test Results

The guidance algorithm for GT Twinstar is designed to ensure that the aircraft can

track feasible trajectories even when it has undergone severe structural damage [49].

The control algorithm has a cascaded inner and outer loop design. The outerloop,

which is integrated with the guidance loop, commands the desired roll angle (φ), angle

of attack (α), and sideslip angle (β) to achieve desired waypoints. The details of the

outerloop design are discussed in detail in reference [49]. The innerloop ensures that

the states of the aircraft track these desired quantities using the control architectures

described in Chapter 5. Results from two flight tests are presented. The aircraft

is commanded to track an elliptical pattern while holding altitude at 200 ft. The

baseline implementation uses a RBF NN with 10 radial basis functions whose centers

are spaced with a uniform distribution in the region of expected operation. The

RBF width is kept constant at 1. The baseline adaptive controller uses the following

130

adaptive law

Ẇ (t) = −ΓWσ(x̄(t))eT (t)P − κ‖e(t)‖W (t). (9.1)

In the above equation, κ = 0.1 denotes the gain of the e-mod term[69]. The concur-

rent learning adaptive controller uses the learning law of Theorem 5.3. A nominal

e-mod term with κ = 0.01 is also added to the concurrent learning adaptive law ensure

boundedness of weights until Condition 4.1 is met. The ground tracks of both con-

trollers are compared in figure 9.2. In that figure, the circles denote the commanded

way points, the dotted line connecting the circles denotes the path the aircraft is

expected to take, except while turning at the waypoints. While turning at the way-

points, the onboard guidance law smooths the trajectory [49] by commanding circles

of 80 feet radius. From that figure, it is clear that the concurrent learning adaptive

controller has better cross-tracking performance. Figure 9.3 shows that the altitude

tracking performance of the two controllers are similar. The inner loop tracking er-

ror performance of the baseline adaptive controller is shown in figure 4(a), while the

innerloop tracking error performance of the concurrent learning controller is shown

in figure 4(b). The transient performance is comparable, however, it was found that

the concurrent learning controller is better at eliminating steady-state errors than

the baseline adaptive controller. This is one reason why the concurrent learning con-

troller has better cross-tracking performance than the baseline. The actuator input

required for the baseline adaptive controller is shown in figure 5(a), while the actua-

tor input required for the concurrent learning adaptive controller is shown in figure

5(b). While the peak magnitude of control input requires is comparable for both

controllers, it was found that the concurrent learning adaptive controller is better as

estimating steady-state trims. Hence, we conclude that the improved performance of

the concurrent learning controller is mostly due to better estimation of steady state

constants, which should be a result of improved weight convergence.

131

−300 −200 −100 0 100 200 300 400

−500

−400

−300

−200

−100

0

Ground track

East ft

N
or

th
 ft

cmd
RBF e−mod
RBF conc.

Figure 9.2: Comparison of ground track for baseline adaptive controller with con-
current learning adaptive controller. Note that the concurrent learning controller has
better cross-tracking performance than the baseline adaptive controller

0 5 10 15 20 25 30 35
185

190

195

200

205

210

time seconds

al
tit

ud
e

ft

cmd
RBF e−mod
RBF conc.

Figure 9.3: Comparison of altitude tracking for baseline adaptive controller with
concurrent learning adaptive controller.

132

0 5 10 15 20 25

−0.5

0

0.5

time seconds

φ
ra

di
an

s

0 5 10 15 20 25

−0.5

0

0.5

α
ra

di
an

s

time seconds

0 5 10 15 20 25

−0.5

0

0.5

β
ra

di
an

s

time seconds

innerloop errors

(a) Inner loop tracking errors for baseline
adaptive controller

0 5 10 15 20 25 30

−0.5

0

0.5

time seconds

φ
ra

di
an

s

0 5 10 15 20 25 30

−0.5

0

0.5

time seconds

α
ra

di
an

s

0 5 10 15 20 25 30

−0.5

0

0.5

innerloop errors

β
ra

di
an

s

time seconds

(b) Inner loop tracking errors for concur-
rent learning adaptive controller

Figure 9.4: Comparison of inner loop tracking errors. Although the transient per-
formance is similar, the concurrent learning adaptive controller was found to have
better trim estimation

0 5 10 15 20 25 30
−0.2

0

0.2
Controller inputs

ru
dd

er

0 5 10 15 20 25 30
0

0.2

0.4

el
ev

at
or

0 5 10 15 20 25 30
−0.5

0

0.5

ai
le

ro
n

0 5 10 15 20 25 30
0

50

100

T
hr

ot
tle

Time seconds

(a) Actuator inputs for baseline adaptive
controller

0 5 10 15 20 25 30 35
−0.2

0

0.2
Controller inputs

ru
dd

er

0 5 10 15 20 25 30 35
0

0.2

0.4

el
ev

at
or

0 5 10 15 20 25 30 35
−0.5

0

0.5

ai
le

ro
n

0 5 10 15 20 25 30 35
20

40

60

80

T
hr

ot
tle

Time seconds

(b) Actuator inputs for concurrent learn-
ing adaptive controller

Figure 9.5: Comparison of actuator inputs. The concurrent learning adaptive con-
troller was found to have better trim estimation. Note that the aileron, rudder, and
elevator inputs are normalized between −1 and 1, while the throttle input is given as
percentage.

133

CHAPTER X

APPLICATION OF CONCURRENT GRADIENT

DESCENT TO THE PROBLEM OF NETWORK

DISCOVERY

In this chapter, the problem of network discovery is formulated and the concurrent

gradient descent method of Theorem 3.1 (Section 3.3) is proposed as a method for

arriving at a solution.

10.1 MOTIVATION

Successful negotiation of real world missions often requires diverse teams to collab-

orate and synergistically combine different capabilities. The problem of controlling

such networked teams has become highly relevant as advances in sensing and pro-

cessing enable compact distributed systems with wide ranging applications, including

networked Unmanned Aerial Systems (UAS), decentralized battlefield negotiation,

decentralized smart-grid technology, and internet based social-networking (see for ex-

ample [75], [68], [11], [27], and [74]). The development of these systems however,

present many challenges as the presence of a central controlling agent with access to

all the information cannot be assumed.

There have been significant advances in control of networked systems using infor-

mation available only at the agent level, including reaching consensus in networked

systems, formation control, and distributed estimation (see for example [75], [27]).

The emphasis has been to rely only on local interactions to avoid the need for a cen-

tral controlling agent. However, there are many applications where the knowledge of

the global network topology is needed for making intelligent inferences. Inferences

134

such as identifying the interactions between agents, identifying faulty or misbehav-

ing agents, or identifying agents that enjoy high connectivity and are in a position

to influence the decisions of the networked system. This information in turn, can

allow agents to make intelligent decisions about how to control a network and how to

build optimal networks in real-time. The key problem that needs to be addressed for

enabling the needed intelligence is: How can an agent use only information available

at the agent level to make global inferences about the network topology? We term

this problem as Network Discovery, and formulate the problem in the framework of

estimation theory.

The idea of using measured information to gather information about the net-

work characteristics was explored by Franceschelli et al. through the estimation of

the eigenvalues of the network graph Laplacian [28]. They proposed a decentralized

method for Laplacian eigenvalue estimation by providing an interaction rule that en-

sured that the state of the agents oscillate in such a manner such that the problem of

eigenvalue estimation can be reduced to a problem of signal processing. The eigen-

values are then estimated using Fast Fourier Transforms. The Laplacian eigenvalues

contains useful information that can be used to characterize the network, particularly

the second eigenvalue of the Laplacian contains information on the connectivity of the

network and how fast it can reach agreement. However, the knowledge of eigenvalues

does not yield information about other details of the topology, including the degree

of connectivity of individual agents and the graph adjacency matrix.

Agent level measurements of other agents states was used by Franceschelli, Egerst-

edt, and Giua for fault detection through the use of motion probes [29]. The idea

behind motion probes is that individual agents perform in a decentralized way a ma-

neuver that leaves desirable properties of the consensus protocol invariant and analyze

the response of others to detect faulty or malicious agents. This work emphasized the

importance of excitation in the network states for network property discovery.

135

It may be possible to approach the network discovery problem through the use

of communication, where each agent relays the information about its connectivity

to other agents, and the graph Laplacian is formed using relayed information in a

decentralized manner. Muhammad and Jabdabaie have proposed using Gossip-like

algorithms for minimizing communications overhead in discovering network proper-

ties through relayed information [68]. However there are various situations where

communication may not be possible or cannot be trusted. For example, communi-

cations based approach may not work if some of the agents have become faulty, are

unable to communicate, are maliciously relaying wrong information, or if the agent

that wants to discover the network wishes to operate covertly. Hence, we restrict our

attention to the development of algorithms that use information that is measured or

otherwise gathered only at the agent level. Clearly the addition of communications

would compliment any of the presented approaches.

Finally, we mention that the problem we are concerned with is quiet different

from that of distributed estimation (see for example reference [32] and the references

therein). In distributed estimation the purpose is to reach consensus about the value

of an external global quantity in a decentralized manner through distributed mea-

surements over different agents. Whereas, we are concerned with the estimation of

internal network properties (particularly the rows of the graph Laplacian) through

measurements.

In this section We show that under a number of assumptions the problem of net-

work discovery can be related to that of parameter estimation. Furthermore, we

propose and compare various methods that an agent can use for network discovery.

We rely heavily on an algebraic graph theoretic representation of networked systems,

where the network and its interconnections are represented through sets. The section

is organized as follows, we begin by showing that the problem of identifying a partic-

ular agents degree of connectivity and neighbors can be reduced to that of estimating

136

that agent’s linear consensus protocol. We then show that subject to certain assump-

tions, namely static network, and complete availability of information, this problem

can be cast as that of parameter estimation and propose three different methods to

solve the problem online. We also consider a case when the assumption of complete

availability of information is relaxed.

10.2 The Network Discovery Problem

Consider a network consisting of N independent agents enabled with limited com-

munication capabilities and operating under a protocol to reach consensus [75]. We

assume that the information available to an agent is composed entirely of what it

can sense, measure, or otherwise gather. A network such as this is capable of rep-

resenting a wide variety of decentralized networked dynamical systems, including a

collaborating group of mobile ground robots or unmanned aerial vehicles communi-

cating through wireless datalinks, a power grid connecting distributed sources with

consumers, or computer systems connected over ethernet. Such a network can be

represented as a graph G = V × E, with V = 1, ..., N denoting the set of vertices

or nodes of the network, and E denoting the set of edges E ⊂ V × V , with the pair

(i, j) ∈ E if and only if the agents i can communicate with or otherwise sense the

state of agent j. In this case, agent j is termed as a neighbor of agent i. The total

number of all neighbors of an agent at time t is termed as its degree at time t. Let

Zi ∈ <n denote the state of the ith agent, with Zi = {z1, z2, z3, ..., zn}. The elements

of Zi can represent various physical quantities of interest, such as position, velocity,

voltage etc. If the elements of the edge set (that is the pairs (i, j)) are unordered,

the graph is termed as undirected. We will consider undirected graphs for ease of

exposition, we note that an extension to the directed case is straightforward.

In the following, we will refer to the agent whose degree and neighbors are to be

estimated as the target agent, while the agent which wishes to estimate the consensus

137

protocol of the target agent as the estimating agent. The problem of network discovery

can now be formulated:

Problem 10.1 The Network Discovery Problem Use only the information

available at estimating agent to determine the degree of the target agent and identify

it’s neighbors.

Note that multiple target and estimating agents may be present in a network. We

now introduce a simplification in the notation, namely, when only one component

of zi is under consideration its identifying subscript will be dropped. Using this

convention, let the vector x = {x1, x2, ..., xN} ∈ <N contain the ith element zi ∈ < of

all agents. We assume that the dynamics of the target agent (agent i) is given by the

following equation [27]

ẋi(t) =
∑
j∈Ni

[xi(t)− xj(t)] , (10.1)

where the mapping yi(t) =
∑
j∈Ni

[xi(t)− xj(t)] denotes the un-weighted consensus

protocol of agent i [75], [27]. The preceding equation basically states that yi = ẋi, and

we will often drop the subscript i on y for notational convenience. Let ζ ∈ <l+1 denote

the vector containing the states of all of agent i’s neighbors where l < N denotes the

degree of agent i. Note that with an arbitrary numbering of the agents, the state

vector x can be written as x = [ζ, ξ], where ξ ∈ <N−l is the vector containing the

states of all the agent’s in the networks which are not agent i’s neighbors. Therefore,

y can be also expressed as: y = W Tx, where the vector W ∈ <N is the ith row of

the instantaneous graph Laplacian [27]. Taking advantage of this fact, we denote W

as the Laplacian vector of agent i. Under conditions on connectivity of the network,

the consensus protocol will result in x → 1
N

11Tx(0), where 1 = [1, 1, 1, 1..1] ∈ <N

[27]. In this thesis however, we are not concerned with the convergence properties of

the consensus protocol. What we are concerned with, is the problem of estimating

agent i’s degree and neighbors (problem 10.1. Figure 10.1 depicts a network discovery

138

scenario where the estimating agent can sense the states of the target agent and all

of its neighbors, but not all of the agents in the network.

Estimating
Agent

Target Agent

Target
agent’s

neighbors

Estimating Agent’s
sensing range

Arrows
indicate

connectivity

Figure 10.1: A depiction of the network discovery problem, where the estimating
agent uses available measurements to estimate the neighbors and degree of the target
agent. Note that the estimating agent can sense the states of the target agent and
all of its neighbors, however, one agent in the target agent’s network is out of the
estimating agent’s sensing range.

10.3 Posing Network Discovery as an Estimation Problem

Obtaining a solution to problem 10.1 in the most general case can be a quiet daunting

task due to a number of reasons, including:

• The neighbors of the target agent may change with time,

• The estimating agent may not be able to sense information about all of target

agent’s neighbors,

139

• The target agent may be actively trying to avoid identification of its consensus

protocol.

In order to progress, we will make the following simplifying assumption.

Assumption 10.1 Assume that the network edge set does not change for a pre-

defined time interval ∆(t), that is the network is slowly varying.

The above assumption requires that within a time interval ∆(t), W (t) = W , that

is the Laplacian vector W (t) is time invariant for a predefined amount of time. That

is, we require that the network topology be “slowly” varying. Such slowly varying

networks can be used to model many real-world networked systems. This assumption

allows us to cast the problem of network discovery as a problem of estimating the

Laplacian vector of the target agent. The Laplacian vector contains the informa-

tion about the degree of agent i and its adjacency to other agents in the network,

information that can be used to solve the network discovery problem. The interval

is expected to be sufficiently large such that estimation algorithms can arrive at a

solution, and the length of the interval depends on the choice of the algorithm. Let

x̄ ∈ <k contain the measurements of the states of agents that are available to the

estimating agent. Note that without loss of generality we can assume that k ≤ N , for

if k > N , then we can always set N = k. In essence, the estimating agent assumes

that all of the agents it can measure are a part of the network. Then, letting Ŵ ∈ <k

the following estimation model can be used for estimating W

ν(t) = Ŵ T (t)x̄(t). (10.2)

Recalling that y(t) = W T (t)x(t) the estimation error can be formulated as

ε(t) = ν(t)− y(t) = Ŵ T (t)x̄(t)−W Tx(t). (10.3)

One way to approach the network discovery problem, is to design a weight law

˙̂
W (t) such that ε(t)→ 0 uniformly as t→∞, or ε(t) is identically equal to zero after

140

some time T . That is ε(t) = 0 ∀t > T (it follows that ε(t) = 0 ∀x(t) t > T if ε(t)

is identically equal to zero). The following proposition shows that if the estimating

agent cannot measure the states of all of the target agent’s neighbors, then ε(t) cannot

be identically equal to zero.

Proposition 10.1 Consider the estimation model of equation 10.2 and the esti-

mation error ε of equation 10.3, and suppose x̄ does not contain the state measure-

ments of all of the target agent’s neighbors, then ε(t) cannot be identically equal to

zero.

Proof Ignoring the irrelevant case when the target agent has no neighbors, let

ζ ∈ <m denote the vector containing all of target agent’s neighbors. Then letting i

denote the identifying subscript for the target agent, and degi denote the degree of

i we have that y(t) = ẋi(t) = [−1,−1, ..., degi, ...,−1]T ζ(t) = W̌ T ζ(t). Therefore the

vector W̌ ∈ <m contains only nonzero elements. Let x̄ ∈ <k, and assume that k < m

(the case when k > m follows in a similar manner), furthermore, let ζ = [x̄, ξ], with

ξ ∈ <m−k. Suppose ad absurdum ε(t) is identically equal to zero, then we have that

ν(t)− y(t) = [Ŵ (t), 0..0]T

 x̄(t)

ξ(t)

− W̌ ζ(t) = 0. (10.4)

Since we claim that ε(t) is identically equal to zero, then in the nontrivial case (i.e.

ζ(t) 6= 0) we must have that [Ŵ (t), 0..0] − W̌ = 0, for all t > T in order to satisfy

equation 10.4. Therefore W̌ must contain m− l zero elements, which contradicts the

fact that W̌ contains only nonzero elements. Hence, if x̄ does not contain the state

measurements of all of the target agent’s neighbors, then ε(t) cannot be identically

equal to zero.

Remark 10.1 Note that in the above proof we ignored the case when ζ(t) is

identically equal to zero. If ζ(t) is identically equal to zero then the states of all

141

agents have converged to the origin, an unlikely prospect, considering the consensus

equation only guarantees x → span(1) as t → ∞. Another unlikely but interesting

case arises when ζ(t) is such that [Ŵ (t), 0..0]−W̌ ⊥ ζ(t) ∀t > T . In both these cases,

one can argue that the states ζ(t) do not contain sufficient excitation, and proposition

10.1 becomes irrelevant. The importance of excitation in the states for solving the

network discovery problem is explored further in Section 10.4.

Remark 10.2 Proposition 10.1 formalizes a fundamental obstruction to obtain-

ing a solution to the problem of network discovery: If the estimating agent cannot

measure or otherwise know the states of the target agent’s neighbors, then an esti-

mation based approach alone cannot be used to solve the network discovery problem.

Therefore, we have shown that in order to use the estimation model of equa-

tion 10.2 to solve the network discovery problem, the following assumption must be

satisfied:

Assumption 10.2 Assume that the estimating agent can measure or otherwise

perceive the position of all of the target agent’s neighbors.

The following theorem shows that if a weight update law
˙̂
W (t) exists such that

ε(t) can be made identically equal to zero, then a solution to the network discovery

problem (problem 10.1) can be found.

Theorem 10.2 Consider the estimation model of equation 10.2 and the estima-

tion error ε of equation 10.3, let assumption 10.2 hold, assume that the network edge

set does not change for a predefined time interval (assumption 10.1), and x(t) is not

identically equal to zero, then finding a weight update law
˙̂
W (t) such that ε(t) be-

comes identically equal to zero (that is ε(t) = 0 ∀t > T), is equivalent to finding a

solution to the network discovery problem 10.1.

142

Proof Suppose there exists a weight update law
˙̂
W (t) exists such that ε(t) becomes

identically equal to zero. Since assumption 10.2 holds, we can arbitrarily reorder the

states such that x̄ = [ζ, ξ], where ξ denote the states of the agents which are not

neighbors of the target agent, hence we have

ν − y = Ŵ T (t)x̄(t)− [W, 0..0]T

 ζ

ξ

 = 0. (10.5)

Letting W̃ = Ŵ − [W, 0..0], we have

ν(t)− y(t) = W̃ (t)x̄(t) = 0. (10.6)

Since x(t) is assumed to be not identically equal to zero, in the nontrivial case we

must have that W̃ (t) = 0 ∀t > T . Therefore it follows that Ŵ = [W, 0..0] contains

the Laplacian vector of the target agent, which is sufficient to identify the degree and

neighbors of the target agent.

Remark 10.3 As in the proof of proposition 10.1, an interesting but unlikely

case arises when W̃ (t) ⊥ x̄(t) ∀t. Once again this relates to a notion of sufficient

excitation in the system states and is further explored in Section 10.4.

To simplify the notation a little bit, we can let x̄ = x, this is equivalent to saying

that the estimating agent can measure states of all of the agents that affect the target

agent. Due to Theorem 10.2, this is equivalent to saying that for the purpose of

the network discovery problem, the network can be assumed to be made of only the

agents that either interact with the target agent or are visible to the estimating agent.

Hence, this change in notation does not affect the structure of the problem, except

that we now have ε(t) = ν(t)− y(t) = Ŵ T (t)x(t)−W Tx(t) = W̃x, which is simpler

to deal with. In this case, the Laplacian vector of the target agent W will contain

zero elements corresponding to agents that the target agent is not connected to.

143

Through the above discussion ,we have essentially shown that subject to assump-

tion 10.1 and 10.2 the network discovery problem can be cast as the following simpler

problem

Problem 10.2 Let an estimation model for the network discovery problem be

given by equation 10.2, and the estimation error be given by equation 10.3. Design

an update law
˙̂
W such that Ŵ (t)→ W as t→∞.

In this way, we have reduced the network discovery problem to that of a parameter

estimation problem. Various approaches have been proposed for online parameter

estimation in the literature. In the following we will highlight three such approaches.

10.4 Instantaneous Gradient Descent Based Approach

In this simplest and most widely studied approach Ŵ is updated in the direction

of maximum reduction of the instantaneous quadratic cost V (ε(t)) = ε2(t). That is,

letting Γ be a positive learning rate we have Ẇ = −γ ∂V

∂Ŵ
. This results in the following

update law

˙̂
W (t) = −Γx(t)ε(t). (10.7)

The convergence properties of the gradient descent based approach have been widely

studied, it is well known that for this case persistency of excitation (see definition

3.2) in x(t) is a necessary and sufficient condition for ensuring Ŵ (t)→ W as t→∞

exponentially [1],[3],[70],[93].

Note that Definition 3.2 requires that the matrix
∫ t+T
t

x(τ)xT (τ)dτ be positive

definite over all future predefined finite time intervals. As an example, consider that

in the two dimensional case, vector signals containing a step in every component are

exciting, but not persistently exciting; whereas the vector signal x(t) = [sin(t), cos(t)]

is persistently exciting. Hence, in order to ensure that W̃ → 0 as t → ∞, we must

ensure that the system states x(t) are persistently exciting. However, there is no

144

guarantee that the network state vector x(t) would be exciting if the network is only

running the consensus protocol of equation 10.1. For example, the following fact

shows that if the initial state of the network happens to be an eigenvector, then the

system states are not persistently exciting.

Fact 10.3 The solution x(t) to the consensus equation ẋ(t) = −Lx(t), where L

is the graph Laplacian, need not be persistently exciting for all choices of x(0).

Proof

Let x(0) and λ ∈ < be such that Lx(0) = λx(0), that is let x(0) be an eigenvector

of L. Then we have x(t) = e−λtx(0), hence∫ t+T

t

x(τ)xT (τ)dτ =

∫ t+T

t

e−2λtx(0)xT (0), (10.8)

which is at-most rank 1, and hence not positive definite over any interval.

Therefore, an external forcing term will be needed to enforce persistency of exci-

tation in the system. The consensus protocol can then be written as

ẋi(t) =
∑
j∈Ni

xi(t)− xj + f(xi(t), t), (10.9)

where f(xi(t), t) is a known bounded mapping <2 → < used to insert excitation into

the system. In its most simplest form f(xi(t), t) can simply be a random sequence of

numbers, or it could be an elaborate periodic pattern (such as in [29]) which is known

over the network.

With the details of the algorithm in place, we evaluate its performance through

simulation on a network containing 9 nodes with each of the nodes updated by equa-

tion 10.9, for solving the network discovery problem. It is assumed that f(xi(t), t)

is a known Gaussian random sequence with an intensity of 0.01 and that yi(t) =

ẋi(t) − f(xi(t), t) can be measured. Note that the chosen f(xi(t), t) does introduce

145

persistent excitation in the networked system. The agents are arbitrarily labeled,

and the third agent is arbitrarily picked as the estimating agent, and it estimates the

consensus protocol for the second agent (which is the target agent). The Laplacian

vector for the target agent is given by W = [0,−3, 1, 0, 0, 1, 1, 0, 0], and its consensus

protocol will have the form yi = W Tx. The target agent has 3 neighbors (i.e. degree

of i is 3), they are agent 3, 6, and 7. Figure 10.2 shows the performance of the gradient

descent algorithm for the network under consideration with Γ = 10. It can be seen

that the algorithm is unsuccessful in estimating the Laplacian vector for W by the end

of the simulation, even when persistent excitation is present. Increasing the learning

rate Γ may slightly speed up the convergence, however the key condition required is

that the x(t) remain persistently exciting such that the scalar γ in definition 3.2 is

large. That is, the convergence is dependent not only on the existence of excitation,

but also on its magnitude.

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

time seconds

Ŵ

evolution of estimates

true adjecency values
estimates
true degree

True degree

True adjecency

Figure 10.2: Consensus estimation problem with gradient descent

146

10.5 Concurrent Gradient Descent Based Approach

In the previous section we noted that the gradient descent algorithm is susceptible

to being stuck at local minima, and requires persistency of excitation in the system

signals to guarantee convergence. For many networked control applications the condi-

tion on persistency of excitation is infeasible to monitor online, particularly since the

trajectories of individual agents are not known a-priori. On examining equation 10.7

we see that the update law uses only instantaneously available information (x(t), ε(t))

for estimation. If the update law used specifically selected and recorded data con-

currently with current data for adaptation, and if the recorded data were sufficiently

rich, then intuitively it should be possible to guarantee Ŵ → W as t → ∞ without

requiring persistently exciting x(t).

The concurrent gradient descent algorithm of Theorem 3.1 can be used to leverage

this intuitive concept. Let j ∈ {1, 2, ...p} denote the index of a stored data point xj,

let εj = W̃ Txj, let denote a positive definite learning rate matrix, then the concurrent

learning gradient descent algorithm for this application is given by

Ẇ (t) = −Γx(t)ε(t)−
p∑
i=1

Γxjεj. (10.10)

The parameter error dynamics W̃ (t) = Ŵ (t) −W for this case can be expressed as

follows

˙̃W (t) = −Γx(t)ε(t)− Γ

p∑
j=1

xjεj

= −Γx(t)x(t))W̃ (t)− Γ

p∑
j=1

xjx
T
j W̃ (t)

= −Γ[x(t)x(t)) +

p∑
j=1

xjx
T
j]W̃ (t).

(10.11)

The concurrent use of current and recorded data has interesting implications, as

the exciting term f(xi, t) will not need to be persistently exciting, but only exciting

over a finite period such that rich data can be recorded. In fact, we have already shown

147

that the recorded data xj need only be linearly independent in order to guarantee

weight convergence (3.1). This condition on sufficient richness of the recorded data

for this application is captured in the following statement

Condition 10.1 The recorded data has as many linearly independent elements

as the dimension of the basis of the uncertainty. That is, if Z = [x1,, xp], then

rank(Z) = m.

This condition is easier to monitor online and essentially requires that the recorded

data contain sufficiently different elements to form the basis of the state space. The

following theorem can now be proved.

Theorem 10.4 Consider the estimation model of equation 10.2, the estimation

error ε of equation 10.3, the weight update law of equation 10.10, and assume that

assumptions 10.1 and 10.2 are satisfied. If Condition 10.1 is satisfied, then the zero

solution of parameter error dynamics W̃ ≡ 0 of equation 10.11 is globally uniformly

exponentially stable when using the concurrent learning gradient descent weight adap-

tation law of equation 10.10.

Proof A proof can be formed in an equivalent manner to proof of Theorem 3.1.

We now evaluate the performance of the concurrent learning gradient descent al-

gorithm on the networked system simulation setup described in Section 10.4. Figure

10.3 shows the performance of the concurrent gradient descent algorithm for the net-

work under consideration with Γ = 10. The simulation began with no recorded points,

at each time step, the state vector x(t) was scanned online, and points satisfying the

condition ‖ZTx(t)‖ < 0.5 or y(t) − ν(t) > 0.3 were selected for storage. Condition

3.1 was found to be satisfied within 0.1 seconds into the simulation. It can be seen

that the algorithm is successful in estimating the Laplacian vector for W , and thus in

estimating the degree of the third agent and the identity of its neighbors. Hence, the

148

algorithm outperforms the traditional gradient descent based method (Section 10.4)

with the same level of enforced excitation. In general, the speed of convergence will

be dependent on the minimum eigenvalue of the matrix ZZT and to a lesser extent,

the learning rate Γ. That is, ideally we would like the stored data to not only be

linearly independent, but also be sufficiently different in order to maximize the min-

imum singular value of Z. At the end of the simulation the minimum singular value

was found to be 1.58.

0 0.5 1 1.5 2 2.5 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

time seconds

Ŵ

evolution of estimates

real adjecency values
estimates
real degree

True degree

True adjecency

Figure 10.3: Consensus estimation problem with concurrent gradient descent

149

CHAPTER XI

CONCLUSIONS AND SUGGESTED FUTURE

RESEARCH

The key contribution of this thesis was to show that memory (recorded data) can

be used to guarantee convergence in a class of adaptive control problems without

requiring Persistently Exciting (PE) exogenous inputs. To that effect we presented

a method termed as concurrent learning which uses recorded data concurrently with

current data to guarantee global exponential convergence to zero of the tracking error

and parameter error dynamics in model reference adaptive control subject to a sim-

ple condition on linear independence of the recorded data. The presented condition

requires that the recorded data have as many linearly independent elements as the

dimension of the basis of the uncertainty. Lyapunov analysis was used to show that

meeting this condition is sufficient to guarantee global exponential parameter con-

vergence in parameter estimation problems with linearly parameterized estimation

models when using concurrent learning. It was also shown that meeting the same

condition is sufficient to guarantee global exponential stability of the zero solution of

the tracking error and parameter error dynamics in adaptive control problems with

structured linearly parameterized uncertainty when using concurrent learning. For

this class of problems it was also shown that if the adaptive law prioritizes weight

updates based on current data by restricting weight updates based on recorded data

to the nullspace of weight updates based on current data, then meeting the same con-

dition is sufficient to guarantee global asymptotic stability of the zero solution of the

tracking error and parameter error dynamics. For adaptive control problems where

150

the structure of the uncertainty is unknown and neural networks are used to cap-

ture the uncertainty, it was shown that the same condition is sufficient to guarantee

uniform ultimate boundedness of the parameter and tracking error.

Classical result for exponential convergence in adaptive control requires the ex-

ogenous input signal to have as many spectral lines as the dimension of the basis of

the uncertainty (Boyd and Sastry 1986) and is well justified for adaptive controllers

that use only current data for adaptation. The results in this thesis show that if both

recorded and current data are used concurrently for adaptation then the condition for

weight convergence relates directly to the spectrum of the recorded data. In essence,

these results formalize the intuitive argument that if sufficiently rich data is available

for concurrent adaptation, then weight convergence can occur without system states

being persistently exciting. The presented condition on linear independence of the

recorded data is found to be less restrictive than a condition on PE exogenous input

and allows a reduction in the overall control effort required. Furthermore, unlike a

condition on PE exogenous inputs, this condition is easily verified online. Finally,

the additional computational overhead required for concurrent adaptation is easily

handled by modern embedded computer systems. For these reasons, we believe that

the presented adaptive control methods can be applied directly to improve the control

performance in control of various physical plants. Furthermore, the concurrent gra-

dient descent method described for convergence without PE states could be extended

beyond adaptive control to a wide variety of control and optimization problems.

11.1 Suggested Research Directions

11.1.1 Guidance algorithms to ensure that the rank-condition is met

In this work, for the case of structured uncertainty, we showed that Condition 3.1

(Rank-Condition) is sufficient to guarantee the convergence of the adaptive weights

to their ideal weights (or to a neighborhood of the ideal weights if the uncertainty is

151

unstructured and a neural network is used as the adaptive element). Furthermore,

we showed in Theorems 3.2 and 5.1 that the rate of convergence is directly related

to the minimum singular value of the history-stack Zk = [Φ1,,Φp]. An interesting

future research direction is to design guidance laws to ensure that the rank-condition

is met as soon as possible, and λmin(Ω) is maximized. One way to achieve this would

be to find the nullspace of the recorded data points in the history-stack and generate

trajectories online such that new data points can be recorded in the nullspace of

the current history-stack. This approach would essentially enforce excitation in the

directions that have not been recorded. The idea here differs from other ideas such

as “intelligent excitation” developed by Cao and Hovakimyan [13]. In intelligent

excitation, excitation is imposed as a function of the tracking error, whereas in this

approach excitation would be inserted only in the direction in which it is needed,

thereby minimizing unnecessary excitation.

As a simple example, assume that the mapping Φ : <n → <m is invertible, and

let Q be the nullspace of the history-stack, that is Q = {Φ(x) : ZkΦ(x) = 0}. Then

a simple guidance logic would be to select a feasible vector Φk ∈ Q and invert the

mapping Φ to obtain the state x that is to be commanded by an existing guidance

algorithm.

11.1.2 Extension to Dynamic Recurrent Neural Networks

Dynamic Recurrent NN DRNN, also known as differential NN, have at least one inter-

nal feedback loop. In this aspect, they differ significantly from the static NN studied

in this thesis. Many authors believe that these internal feedback loops make DRNN

better suited for approximating dynamical systems (see references in [78]). These

NN can model dynamical systems with time-delay, internal feedback, and hysteresis.

A particularly interesting application of DRNN arises in output feedback adaptive

control. In these applications, it may be possible to model the dynamical system

152

with a DRNN and train the DRNN with the system outputs. If the estimate of the

dynamic system converges, then the output feedback problem can be solved using

a direct control methodology without having to solve the state estimation problem

explicitly. However, the most common training laws proposed for training DRNN

are gradient based, and hence, do not guarantee parameter error convergence unless

conditions equivalent to persistency of excitation are met. An interesting extension

of this work would be the extension of concurrent learning adaptive laws to DRNN

and the development of conditions on the recorded data to guarantee parameter error

convergence. Furthermore, while these NN have been studied to some extent in other

control applications, not many applications of DRNN based adaptive flight control

exist. It is suggested that DRNN based adaptive flight controllers be developed to

realize the benefit of internal feedback.

11.1.3 Algorithm Optimization and Further Flight Testing

In this work, the developed concurrent learning adaptive controllers were implemented

on a number of research aircraft. In all cases, some improvement in performance was

seen, this is an encouraging sign for further testing and development of concurrent

learning adaptive flight controllers. Further optimization of elements of the controller

is expected to further improve this performance. Efforts should be spent on developing

and optimizing algorithms for picking data points to record and to manage the history-

stack. For example, in Chapter 6 we presented a brute-force algorithm for determining

whether a new data point should replace an existing data point in the history-stack.

This algorithm however, requires the computation of the singular values of the history

stack matrix, which can be computationally expensive.

11.1.4 Quantifying the Benefits of Weight Convergence

In this work we showed that concurrent learning adaptive controllers can guarantee

tracking error and weight convergence subject to a verifiable condition on the recorded

153

data. For the case of structured uncertainty, once the weights converge, the tracking

error dynamics are linear and exponentially stable. This guarantees that the states of

the plant track the states of the reference model exponentially. It remains to be shown

rigorously whether this guarantees that the chosen transient response and stability

properties of the reference model are recovered by the adaptive controller. Research

in this direction can lead to adaptive controllers for nonlinear systems guaranteed to

recover the stability and performance margins of a chosen linear system. Further-

more, such weight convergence in adaptive flight control allows one to use handling

specifications such as those in reference [89], enabling a pathway to flight certification

of adaptive controllers.

11.1.5 Extension to Other Adaptive Control Architectures

Another research direction of interest is to combine concurrent learning algorithms

with other adaptive control methods and architectures. In Theorem 5.6 we showed

that concurrent learning can be added to a baseline adaptive controller equipped with

e-mod. Research is suggested in combining other modifications to adaptive control

with concurrent learning algorithms, including ALR modification [12] and Kalman

Filter modification [99]. Another method of particular interest is Q modification,

which relies on an integral of the tracking error over a finite window of past data to

drive the weights to a hypersurface that contains the ideal weights [96, 95]. Further

research is suggested in exploring the similarities and differences between Q modifi-

cation and concurrent learning adaptive control.

11.1.6 Extension to Output Feedback Adaptive Control

In this thesis, we assumed that the complete state of the plant was available for

measurement. This is normally true for aircraft, where sensors are often available

to measure all the states of interest, and the cost of instrumentation is justified to

reduce risks. However, in other applications, such as active structural control, or

154

control of multi-joint robot arms, it may be infeasible to assume that all of the states

are available for measurement. In such applications, output feedback adaptive control

holds great promise. Research is therefore suggested to extend the concurrent learning

framework to output feedback adaptive control.

One interesting research direction is to explore whether concurrent learning can be

used in existing based output feedback adaptive control architectures. Hovakimyan

et al. have presented an output feedback method applicable to non-minimum phase

systems with parametric uncertainty and unmodeled dynamics whose non-minimum

phase zeros are known with sufficient uncertainty (see for example references [39]

and [41]). The method uses a neural network trained using the observed errors of

the system for mitigating modeling error. Research is suggested to examine whether

concurrent learning can bring performance gains in similar architecture.

11.1.7 Extension to Fault Tolerant Control and Control of
Hybrid/Switched Dynamical Systems

In this thesis, we assumed that the plant uncertainty can be modeled using an adaptive

element for which a set of static ideal weights exist. However, if the dynamics of

the plant exhibit switching, this assumption no longer holds. For example, if an

aircraft undergoes severe structural damage, the modeling uncertainty can change

significantly, possibly voiding an existing assumed parametrization, and making the

recorded set of data irrelevant. Concurrent learning algorithms that prioritize training

on current data over that of training on recorded data (such as those presented in

Theorems 3.3 and 5.2) ensure that under these situations the tracking error will

still remain bounded. What is needed however, is a method for detecting such drastic

changes in the system dynamics and a method for using this information to repopulate

the history-stack. This can be achieved through further research in health monitoring.

In reference [18] for example, we proposed a frequency domain method for detecting

oscillations in the control loop. We also showed that this method could be used to

155

detect sudden loss of part of the wing. Furthermore, such health monitoring tools

will also enable the extension of concurrent learning adaptive control to control of

switched/hybrid dynamical systems.

11.1.8 Extension of Concurrent Learning Gradient Descent beyond Adap-
tive Control

Gradient descent has been widely studied as a fast and efficient method for solving

optimization problems online. However, it is well known that gradient descent based

method are susceptible to being stuck at local minima, and their performance de-

pends on the richness of the information available online. In Chapter 3 we showed

that concurrent learning gradient descent on quadratic cost can guarantee convergence

without requiring persistency of excitation. A suggested research direction therefore

is to further explore the use of concurrent learning gradient descent algorithms for

applications beyond adaptive control. A particular area of interest is networked con-

trol, in which agent level information (local information) must be used to find minima

of cost functions defined over the entire network (global minima). In Chapter 10 we

showed that concurrent learning yields excellent result when used to solve the net-

work discovery problem. Further research is suggested to explore development and

application of concurrent learning theory for problems in networked control.

Another area of interest is Artificial Intelligence and Machine Learning, where NN

have often been used to solve classification and estimation problems. In this thesis,

we used Lyapunov framework to analyze concurrent gradient descent laws. Further

research is suggested in using other frameworks, such as Reproducing Kernel Hilbert

Spaces [2] to improve understanding of the benefits of inclusion of memory in control,

estimation, and classification algorithms.

156

APPENDIX A

OPTIMAL FIXED POINT SMOOTHING

Numerical differentiation for estimation of state derivatives suffers from high sensi-

tivity to noise. An alternate method is to use a Kalman filter based approach. Let

x, be the state of the system and ẋ be its first derivative, and consider the following

system: ẋ

ẍ

 =

 0 1

0 0

 x

ẋ

 (A.1)

Suppose x is available as sensor measurement, then an observer in the framework

of a Kalman filter can be designed for estimating ẋ from available noisy measurements

using the above system. Optimal Fixed Point Smoothing is a non real time method

for arriving at a state estimate at some time t, where 0 ≤ t ≤ T , by using all

available data up to time T . Optimal smoothing combines a forward filter which

operates on all data before time t and a backward filter which operates on all data

after time t to arrive at an estimate of the state that uses all the available information.

This appendix presents brief information on implementation of optimal fixed point

smoothing; the interested reader is referred to Gelb [31] for further details. For

ease of implementation on modern avionics, we present the relevant equations in the

discrete form. Let x̂(k|N) denote the estimate of the state x = [x ẋ]T , let Zk denote

the measurements, (−) denote predicted values, and (+) denote corrected values, dt

denote the discrete time step, Q and R denote the process and measurement noise

covariance matrices respectively, while P denotes the error covariance matrix. Then

157

the forward Kalman filter equations can be given as follow:

Φk = e

0 1

0 0

dt
, (A.2)

Zk = [1 0]

 x

ẋ

 , (A.3)

x̂k(−) = Φkx̂k−1, (A.4)

Pk(−) = ΦkPk−1Φk
T +Qk, (A.5)

Kk = Pk(−)Hk
T [HkPk(−)Hk

T +Rk]
−1, (A.6)

x̂k(+) = x̂k(−) +Kk[Zk −Hkx̂k(−)], (A.7)

Pk(+) = [I −KkHk]Pk(−). (A.8)

The smoothed state estimate can be given as:

x̂k|N = x̂k|N−1 +BN [x̂N(+)− x̂N(−)], (A.9)

where x̂k|k = x̂k.

158

REFERENCES

[1] Anderson, B., “Exponential stability of linear equations arising in adaptive
identification,” IEEE Transactions on Automatic Control, vol. 22, pp. 83–88,
Feb 1977.

[2] Aronszajn, N., “Theory of reproducing kernels,” Transactions of the Ameri-
can Mathematical Society, vol. 68, pp. 337–404, may 1950.

[3] Aström, K. J. and Wittenmark, B., Adaptive Control. Readings: Addison-
Weseley, 2 ed., 1995.

[4] Bayard, D., Spanos, J., and Rahman, Z., “A result on exponential tracking
error convergence and persistent excitation,” IEEE Transactions on Automatic
Control, vol. 43, no. 9, pp. 1334–1338, 1998.

[5] Berberian, S. K., Introduction to Hilbert spaces. AMS Chelsea publication,
1961.

[6] Bernstein, D. and Wassim, H., Control-System synthesis: The Fixed Struc-
ture Approach. Atlanta, GA: Georgia Tech Book Store, 1995.

[7] Bogdanov, A., Carlsson, M., Harvey, G., Hunt, J., Kieburtz, D.,
Van Der Merwe, R., and Wan, E., “State dependent riccatti equation
control of a small unmanned helicopter,” in Proceedings of Guidance Navigation
and Control conference, American Institute of Aeronautics and Astronautics,
2003.

[8] Boskovich, B. and Kaufmann, R. E., “Evolution of the honeywell first-
generation adaptive autopilot and its applications to f-94, f-101, x-15, and x-20
vehicles,” AIAA Journal of Aircraft, vol. 3, no. 4, pp. 296–304, 1966.

[9] Boyd, S. and Sastry, S., “Necessary and sufficient conditions for parameter
convergence in adaptive control,” Automatica, vol. 22, no. 6, pp. 629–639, 1986.

[10] Bretscher, O., Linear Algebra with Applications. Prentice Hall, 2001.

[11] Bullo, F., Cortés, J., and Mart́ınez, S., Distributed Control of Robotic
Networks. Applied Mathematics Series, Princeton University Press, 2009. Elec-
tronically available at http://coordinationbook.info.

[12] Calise, A., Yucelen, T., Muse, J., and Yang, B. J., “A loop recoevery
method for adaptive control,” in Proceedings of the AIAA Guidance Navigation
and Control Conference, held at Chicago, IL, 2009.

159

[13] Cao, C. and Hovakimyan, N., “Design and analysis of a novel adaptive con-
trol architecture with guaranteed transient performance,” Automatic Control,
IEEE Transactions on, vol. 53, pp. 586 –591, march 2008.

[14] Cao, C., Hovakimyan, N., and Wang, J., “Intelligent excitation for adap-
tive control with unknown parameters in reference input,” IEEE Transactions
on Automatic Control, vol. 52, pp. 1525 –1532, Aug 2007.

[15] Cao, C. and Hovakimyan, N., “L1 adaptive output feedback controller for
systems with time-varying unknown parameters and bounded disturbances,” in
Proceedings of American Control Conference, (New York), 2007.

[16] Castillo, C., Alvis, W., Castillo-Effen, M., Valavanis, K., and W.,
M., “Small scale helicopter analysis and controller design for non-aggressive
flights,” in 58th AHS Forum, (Montreal, Canada), 2002.

[17] Chowdhary, G., Debusk, W., and Johnson, E., “Real-time system iden-
tification of a small multi-engine aircraft with structural damage,” in AIAA
Infotech@Aerospace, 2010.

[18] Chowdhary, G., Srinivasan, S., and Johnson, E., “Frequency domain
method for real-time detection of oscillations,” in AIAA Infotech@Aerospace,
2010. Nominated for best student paper award.

[19] Chowdhary, G. V. and Johnson, E. N., “Adaptive neural network flight
control using both current and recorded data,” in Proceedings of the AIAA
Guidance Navigation and Control Conference, held at Hilton Head Island, SC,
2007.

[20] Chowdhary, G. V. and Johnson, E. N., “Theory and flight test validation
of long term learning adaptive flight controller,” in Proceedings of the AIAA
Guidance Navigation and Control Conference, (Honolulu, HI), 2008.

[21] Christophersen, H. B., Pickell, W. R., Neidoefer, J. C., Koller,
A. A., Kannan, S. K., and Johnson, E. N., “A compact guidance, naviga-
tion, and control system for unmanned aerial vehicles,” Journal of Aerospace
Computing, Information, and Communication, vol. 3, May 2006.

[22] Chwodhary, G. and Johnson, E., “Theory and flight test validation of
a concurrent learning adaptive controller,” Journal of Guidance Control and
Dynamics, 2010. accepted.

[23] Debusk, W., Chowdhary, G., and Eric, J., “Real-time system identifica-
tion of a small multi-engine aircraft,” in Proceedings of AIAA AFM, 2009.

[24] Dorsey, J., Continuous and Discrete Control Systems. Singapore: McGraw-
Hill Higher Education, 2002.

160

[25] Duarte, M. A. and Narendra, K. S., “Combined direct and indirect ap-
proach to adaptive control,” IEEE Transactions on Automatic Control, vol. 34,
no. 10, pp. 1071–1075, 1989.

[26] Dydek, Z., Annaswamy, A., and Lavretsky, E., “Adaptive control and
the nasa x-15-3 flight revisited,” Control Systems Magazine, IEEE, vol. 30,
pp. 32 –48, june 2010.

[27] Egerstedt, M. and Mesbahi, M., Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[28] Franceschelli, M., Gasparri, A., Giua, A., and Seatzu, C., “Decentral-
ized laplacian eigenvalues estimation of the network topology of a multi-agent
system,” in IEEE Conference on Decision and Control, 2009.

[29] Franceschelli, M., M., E., and Giua, A., “Motion probes for fault detec-
tion and recovery in networked control systems,” in American Control Confer-
ence, 2008.

[30] Frazzoli, E., Dahleh, M. A., and Feron, E., “A hybrid control architec-
ture for aggressive maneuvering of autonomous helicopters,” in IEEE Conf. On
Decision and Control, 1999.

[31] Gelb, A., Applied Optimal Estimation. Cambridge: MIT Press, 1974.

[32] Gupta, V., Distributed Estimation and Control in Networked Systems. PhD
thesis, California Institute of Technology, 2006.

[33] Haddad, W. M., Volyanskyy, K. Y., Bailey, J. M., and Im, J. J.,
“Neuroadaptive output feedback control for automated anesthesia with noisy
eeg measurements,” IEEE Transactions on Control Systems Technology, 2010.
to appear.

[34] Haddad, W. M. and Chellaboina, V., Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton: Princeton University Press,
2008.

[35] Hayakawa, T., Haddad, W., and Hovakimyan, N., “Neural network adap-
tive control for a class of nonlinear uncertain dynamical systems with asymp-
totic stability guarantees,” IEEE Transactions on Neural Networks, vol. 19,
pp. 80 –89, jan. 2008.

[36] Haykin, S., Neural Networks a Comprehensive Foundation. Upper Saddle
River: Prentice Hall, USA, 2 ed., 1998.

[37] Holzel, M. S., Santillo, M. A., Hoagg, J. B., and Bernstein,
D. S., “System identification using a retrospective correction filter for adaptive
feedback model updating,” in Guidance Navigation and Control Conference,
(Chicago), AIAA, August 2009.

161

[38] Hornik, K., Stinchcombe, M., and White, H., “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366,
1989.

[39] Hovakimyan, N., Yang, B. J., and Calise, A., “An adaptive output
feedback control methodology for non-minimum phase systems,” Automatica,
vol. 42, no. 4, pp. 513–522, 2006.

[40] Hovakimyan, N., Robust Adaptive Control. Unpublished, 2008.

[41] Hovakimyan, N., Yang, B.-J., and Calise, A. J., “An adaptive output
feedback control methodology for non-minimum phase systems,” in Conference
on Decision and Control, (Las Vegas, NV), pp. 949–954, 2002.

[42] Ioannou, P. A. and Kokotovic, P. V., Adaptive Systems with Reduced
Models. Secaucus, NJ: Springer Verlag, 1983.

[43] Ioannou, P. A. and Sun, J., Robust Adaptive Control. Upper Saddle River:
Prentice-Hall, 1996.

[44] Ishihara, A., Menahem, B., Nguyen, N., and Stepanyan, V., “Time
delay margin estimation for adaptive outer- loop longitudinal aircraft control,”
in Infotech@AIAA conference, (Atlanta), 2010.

[45] Jankt, J. A., Scoggins, S. M., Schultz, S. M., Snyder, W. E., White,
S. M., and Scutton, J. C., “Shocking: An approach to stabilize backprop
training with greedy adaptive learning rates,” IEEE Neural Networks Proceed-
ings, vol. 3, no. 7, 1998.

[46] Jategaonkar, R. V., Flight Vehicle System Identification A Time Domain
Approach, vol. 216 of Progress in Astronautics and Aeronautics. Reston: Amer-
ican Institute of Aeronautics and Astronautics, 2006.

[47] Johnson, E., Turbe, M., Wu, A., and Kannan, S., “Flight results of
autonomous fixed-wing uav transitions to and from stationary hover,” in Pro-
ceedings of the AIAA GNC Conference, August 2006.

[48] Johnson, E. N., Limited Authority Adaptive Flight Control. PhD thesis, Geor-
gia Institute of Technology, Atlanta Ga, 2000.

[49] Johnson, E. and Chowdhary, G., “Guidance and control of an airplane
under severe structural damage,” in AIAA Infotech@Aerospace, 2010. Invited.

[50] Johnson, E. and Kannan, S., “Adaptive trajectory control for autonomous
helicopters,” Journal of Guidance Control and Dynamics, vol. 28, pp. 524–538,
May 2005.

162

[51] Johnson, E., Turbe, M., Wu, A., Kannan, S., and Neidhoefer, J.,
“Flight test results of autonomous fixed-wing uav transitions to and from sta-
tionary hover,” AIAA Journal of Guidance Control and Dynamics, vol. 2,
March-April 2008.

[52] Johnson, E. N. and Schrage, D. P., “System integration and operation of
a research unmanned aerial vehicle,” AIAA Journal of Aerospace Computing,
Information and Communication, vol. 1, pp. 5–18, Jan 2004.

[53] Kannan, S. K., Adaptive Control of Systems in Cascade with Saturation. PhD
thesis, Georgia Institute of Technology, Atlanta Ga, 2005.

[54] Kim, N., Improved Methods in Neural Network Based Adaptive Output Feedback
Control, with Applications to Flight Control. PhD thesis, Georgia Institute of
Technology, Atlanta Ga, 2003.

[55] Kim, Y. H. and Lewis, F., High-Level Feedback Control with Neural Networks,
vol. 21 of Robotics and Intelligent Systems. Singapore: World Scientific, 1998.

[56] Krstić, M., Kanellakopoulos, I., and Kokotović, P., Nonlinear and
Adaptive Control Design. New York: John Wiley and Sons, 1995.

[57] Lavertsky, E. and Wise, K., “Flight control of manned/unmanned military
aircraft,” in Proceedings of American Control Conference, 2005.

[58] Lavretsky, E., “Combined/composite model reference adaptive control,” Au-
tomatic Control, IEEE Transactions on, vol. 54, pp. 2692 –2697, nov. 2009.

[59] Lee, S., Neural Network based Adaptive Control and its applications to Aerial
Vehicles. PhD thesis, Georgia Institute of Technology, School of Aerospace
Engineering, Atlanta, GA 30332, apr 2001.

[60] Leonessa, A., Haddad, W., Hayakawa, T., and Morel, Y., “Adap-
tive control for nonlinear uncertain systems with actuator amplitude and rate
saturation constraints,” International Journal of Adaptive Control and Signal
Processing, vol. 23, pp. 73–96, 2009.

[61] Lewis, F. L., “Nonlinear network structures for feedback control,” Asian Jour-
nal of Control, vol. 1, pp. 205–228, 1999. Special Issue on Neural Networks for
Feedback Control.

[62] Liberzon, D., Handbook of Networked and Embedded Control Systems,
ch. Switched Systems, pp. 559–574. Boston: Birkhauser, 2005.

[63] McConley, M., Piedmonte, M. D., Appelby, B. D., Frazzoli, E.,
D. M. A., and Feron, E., “Hybrid control for aggressive maneuvering of
autonomous aerial vehicles,” in 19th Digital Avionics System Conference, 2000.

163

[64] Mettler, B., Modeling Identification and Characteristics of Miniature Rotor-
crafts. USA: Kluwer Academic Publishers, 2003.

[65] Micchelli, C. A., “Interpolation of scattered data: distance matrices and
conditionally positive definite functions,” Construct. Approx., vol. 2, pp. 11
–22, dec. 1986.

[66] Monahemi, M. M. and Krstic, M., “Control of wingrock motion using
adaptive feedback linearization,” Journal of Guidance Control and Dynamics,
vol. 19, pp. 905–912, August 1996.

[67] Morelli, E. A., “Real time parameter estimation in the frequency domain,”
Journal of Guidance Control and Dynamics, vol. 23, no. 5, pp. 812–818, 2000.

[68] Muhammad, A. and Jadbabaie, A., “Decentralized computation of homol-
ogy groups in networks by gossip,” in American Control Conference, 2007.

[69] Narendra, K. and Annaswamy, A., “A new adaptive law for robust adapta-
tion without persistent excitation,” IEEE Transactions on Automatic Control,
vol. 32, pp. 134–145, February 1987.

[70] Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems. En-
glewood Cliffs: Prentice-Hall, 1989.

[71] Nguyen, N., “Asymptotic linearity of optimal control modification adaptive
law with analytical stability margins,” in Infotech@AIAA conference, (Atlanta,
GA), 2010.

[72] Nguyen, N., Krishnakumar, K., Kaneshige, J., and Nespeca, P., “Dy-
namics and adaptive control for stability recovery of damaged asymmetric air-
craft,” in AIAA Guidance Navigation and Control Conference, (Keystone, CO),
2006.

[73] Ochiai, K., Toda, N., and Usui, S., “Kick-out learning algorithm to reduce
the oscillation of weights,” Elsevier Neural Networks, vol. 7, no. 5, 1994.

[74] of the Secretary of Defense, O., “Unmanned aircraft systems roadmap
2005-2030,” tech. rep., Department of Defense, August 2005.

[75] Olfati-Saber, R., Fax, J., and Murray, R., “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, pp. 215
–233, jan. 2007.

[76] Park, J. and Sandberg, I., “Universal approximation using radial-basis-
function networks,” Neural Computatations, vol. 3, pp. 246–257, 1991.

[77] Patiño, H., Carelli, R., and Kuchen, B., “Neural networks for advanced
control of robot manipulators,” IEEE Transactions on Neural Networks, vol. 13,
pp. 343–354, Mar 2002.

164

[78] Ponzyak, A. S., Sanchez, E. N., and Yu, W., Differential Neural Networks
for Robust Nonlinear Control, Identification, State Estimation, and Trajectory
Tracking. Singapore: World Scientific, 2001.

[79] Psichogios, D. C. and Ungar, L. H., “Direct and indirect model based
control using artificial neural networks,” Industrial and Engineering Chemistry
Research, vol. 30, no. 12, p. 25642573, 1991.

[80] Roberts, J. M., Corke, P. I., and Buskey, G., “Low-cost flight control
system for a small autonomous helicopter,” in IEEE Intl Conf. on Robotics and
Automation, 02.

[81] Rumelhart, D. E., E., H. G., and Williams, R. J., “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, p. 533, 1986.

[82] Rysdyk, R. T. and Calise, A. J., “Adaptive model inversion flight control for
tiltrotor aircraft,” AIAA Journal of Guidance, Control, and Dynamics, vol. 22,
no. 3, pp. 402–407, 1999.

[83] Saad, A. A., SIMULATION AND ANALYSIS OF WING ROCK PHYSICS
FOR A GENERIC FIGHTER MODEL WITH THREE DEGREES-OF-
FREEDOM. PhD thesis, Air Force Institute of Technology, Air University,
Wright-Patterson Air Force Base, Dayton, Ohio, 2000.

[84] Santillo, M. A. and Bernstein, D. S., “Adaptive control based on retro-
spective cost optimization,” AIAA Journal of Guidance Control and Dynamics,
vol. 33, March-April 2010.

[85] Santillo, M. A., D’Amato, A. M., and Bernstein, D. S., “System iden-
tification using a retrospective correction filter for adaptive feedback model
updating,” in American Control Conference, (St. Louis), June 2009.

[86] Sastry, S. and Bodson, M., Adaptive Control: Stability, Convergence, and
Robustness. Upper Saddle River: Prentice-Hall, 1989.

[87] Singh, S. N., Yim, W., and Wells, W. R., “Direct adaptive control of
wing rock motion of slender delta wings,” Journal of Guidance Control and
Dynamics, vol. 18, pp. 25–30, Feb. 1995.

[88] Slotine, J.-J. E. and Li, W., “Composite adaptive control of robot manip-
ulators,” Automatica, vol. 25, no. 4, pp. 509–519, 1989.

[89] Standard, A. D., “Handling qualities requirements for military rotor-craft,
ads-33e,” tech. rep., United States Army Aviation and Missile Command, Red-
stone Arsenal, Alabama, march 2000.

[90] Steinberg, M., “Historical overview of research in reconfigurable flight con-
trol,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, vol. 219, no. 4, pp. 263–275, 2005.

165

[91] Strang, G., Linear Algebra and its Applications. Brooks: Thomson Learning,
1988.

[92] Suykens, J. A., Vandewalle, J. P., and Moor, B. L. D., Artificial Neural
Networks for Modelling and Control of Non-Linear Systems. Norwell: Kluwer,
1996.

[93] Tao, G., Adaptive Control Design and Analysis. New York: Wiley, 2003.

[94] Volyanskyy, K. and Calise, A., “An error minimization method in adaptive
control,” in Proceedings of AIAA Guidance Navigation and Control conference,
2006.

[95] Volyanskyy, K. Y., ADAPTIVE AND NEUROADAPTIVE CONTROL
FOR NONNEGATIVE AND COMPARTMENTAL DYNAMICAL SYSTEMS.
Ph.d., Georgia Institute of Technology, Atlanta, March 2010.

[96] Volyanskyy, K. Y., Haddad, W. M., and Calise, A. J., “A new neu-
roadaptive control architecture for nonlinear uncertain dynamical systems: Be-
yond σ and e-modifications,” IEEE Transactions on Neural Networks, vol. 20,
pp. 1707–1723, Nov 2009.

[97] Xu, J.-X., Jia, Q.-W., and Lee, T. H., “On the design of nonlinear adap-
tive variable structure derivative estimator,” IEEE Transactions on Automatic
Control, vol. 45, pp. 1028–1033, may 2000.

[98] YU, H. and LLOYD, S., “Combined direct and indirect adaptive control of
constrained robots,” International Journal of Control, vol. 68, no. 5, pp. 955–
970, 1997.

[99] Yucelen, T. and Calise, A., “Kalman filter modification in adaptive con-
trol,” Journal of Guidance, Control, and Dynamics, vol. 33, pp. 426–439, march-
april 2010.

[100] Zhou, K., Doyle, J. C., and Glover, K., Robust and Optimal Control.
Upper Saddle River, NJ: Prentice Hall, 1996.

166

VITA

Girish received a Bachelor of Aerospace Engineering degree with first class honors

from the Royal Melbourne Institute of Technology (RMIT), Melbourne, Australia

in 2003. He then worked as a research engineer with the German Aerospace Center

(DLR) at the Institute for Flight Systems Technology in Braunschweig Germany from

2004 to 2006. In Fall 2006, Girish joined the school of Aerospace Engineering at the

Georgia Institute of Technology in Atlanta, GA. At Georgia Tech, he has worked with

Professor Eric N. Johnson in Aerospace Guidance, Navigation, and Control as well

as Autonomous Systems Technology. Girish received a Master of Science degree in

Aerospace Engineering from Georgia Tech in 2008.

167

	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Figures
	Summary
	Chapter 1 — Introduction
	Model Reference Adaptive Control
	Contributions of This Work
	Outline of the Thesis
	Some Comments on Notation

	Chapter 2 — Model Reference Adaptive Control
	Adaptive Laws for Online Parameter Estimation
	Model Reference Adaptive Control
	Tracking Error Dynamics
	Case I: Structured Uncertainty
	Case II: Unstructured Uncertainty

	Chapter 3 — Concurrent Learning Adaptive Control
	Persistency of Excitation
	Concurrent Learning for Convergence without Persistence of Excitation
	A Condition on Recorded Data for Guaranteed Parameter Convergence

	Guaranteed Convergence in Online Parameter Estimation without Persistency of Excitation
	Numerical Simulation: Adaptive Parameter Estimation

	Guaranteed Convergence in Adaptive Control without Persistency of Excitation
	Guaranteed Exponential Tracking Error and Parameter Error Convergence without Persistency of Excitation
	Concurrent Learning with Training Prioritization
	Numerical Simulations: Adaptive Control

	Notes on Implementation

	Chapter 4 — Concurrent Learning Neuro-Adaptive Control
	Concurrent Learning Neuro-Adaptive Control with RBF NN

	Chapter 5 — Extension to Approximate Model Inversion based Model Reference Adaptive Control of Multi-Input Systems
	Approximate Model Inversion based Model Reference Adaptive Control for Multi Input Multi State Systems
	Tracking Error Dynamics
	Case I: Structured Uncertainty
	Case II: Unstructured Uncertainty

	Guaranteed Convergence in AMI-MRAC without Persistency of Excitation
	Guaranteed Boudedness Around Optimal Weights in Neuro-Adaptive AMI-MRAC Control with RBF-NN
	Guaranteed Boundedness in Neuro-Adaptive AMI-MRAC Control with SHL NN
	Illustrative Example

	Chapter 6 — Methods for Recording Data for Concurrent Learning
	A Simple Method for Recording Sufficiently Different Points
	A Singular Value Maximizing Approach
	Evaluation of Data Point Selection Methods Through Simulation
	Weight Evolution without Concurrent Learning
	Weight Evolution with Concurrent Learning using a Static history-stack
	Weight Evolution with Concurrent Learning using a Cyclic history-stack
	Weight Evolution with Concurrent Learning using Singular Value Maximizing Approach

	Chapter 7 — Least Squares based Concurrent Learning Adaptive Control
	Least Squares Regression
	Least Squares Based Modification Term

	Simulation results for Least Squares Modification
	Case 1: Structured Uncertainty
	Case 2: Unstructured Uncertainty handled through RBF NN

	A Recursive approach to Least Squares Modification
	Recursive Least Squares Regression
	Recursive Least Squares Based Modification

	Simulation results

	Chapter 8 — Flight Implementation of Concurrent Learning Neuro-Adaptive Control on a Rotorcraft UAS
	Motivation
	Flight Test Vehicle
	Implementation of concurrent Learning NN controllers on a High Fidelity Simulation
	Implementation of Concurrent Learning Adaptive Controller on a VTOL UAV
	Repeated Forward Step Maneuvers
	Aggressive Trajectory Tracking Maneuvers

	Chapter 9 — Flight Implementation of Concurrent Learning Neuro-Adaptive Controller on a Fixed Wing UAS
	Flight Test Vehicle: The GT Twinstar
	Flight Test Results

	Chapter 10 — Application of Concurrent Gradient Descent to the Problem of Network Discovery
	MOTIVATION
	The Network Discovery Problem
	Posing Network Discovery as an Estimation Problem
	Instantaneous Gradient Descent Based Approach
	Concurrent Gradient Descent Based Approach

	Chapter 11 — Conclusions and Suggested Future Research
	Suggested Research Directions
	Guidance algorithms to ensure that the rank-condition is met
	Extension to Dynamic Recurrent Neural Networks
	Algorithm Optimization and Further Flight Testing
	Quantifying the Benefits of Weight Convergence
	Extension to Other Adaptive Control Architectures
	Extension to Output Feedback Adaptive Control
	Extension to Fault Tolerant Control and Control of Hybrid/Switched Dynamical Systems
	Extension of Concurrent Learning Gradient Descent beyond Adaptive Control

	Appendix A — Optimal Fixed Point Smoothing
	References
	Vita

