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Abstract— In this work we focus on mission planning prob-
lems in scenarios in which a carrier vehicle, typically slow
but with virtually infinite range, and a carried vehicle, which
on the contrary is typically fast but has a shorter range, are
coordinated to make the faster vehicle visit a given collection
of points in minimum time. In particular in this paper we will
address two mission planning problems: a first one, in which we
have to sequentially visit a list of points under the hypothesis
the takeoff/landing sequence is not determined a priori and a
second one, a Traveling Salesman Problem (TSP), in which the
optimal visiting sequence of points has to be determined. Those
two problems will be analyzed, sub-optimal heuristics will be
presented and their properties pointed out.

I. INTRODUCTION
The complexity of many applications envisioned for fu-

ture autonomous vehicle networks, ranging from planetary
exploration to rescue missions, requires a broad range of
capabilities for individual units—ranging from air, ground or
sea mobility, to sophisticated multi-modal sensor suites and
actuation devices—which cannot be implemented on a single
platform class. Rather, it may be necessary to coordinate
several specialized units to attain complex objectives in a
reliable, timely, and efficient fashion [1]. While considerable
progress has been made on cooperative control of networks
of homogeneous vehicles (see for example [2], [3], [4],
[5]), heterogeneous networks are still relatively poorly un-
derstood. In such a direction recent developments aiming
at spreading the adoption of unmanned systems in real-
world operational scenarios—[6], [7]—consider the employ-
ment of cooperating mobile robots [8], often denoted as
multiple mobile robot systems, combining the characteristics
of heterogeneous vehicles with complementary features. To
understand how to optimally exploit the different capabilities
of each individual unit and obtain the desired final behavior,
the team is required to be suitably coordinated through
advanced planning and control algorithms. In this paper, we
concentrate on a very simple system of heterogeneous vehi-
cles, arising from the combination of (i) a slow autonomous
surface carrier (typically a ship) with long operating range
capabilities and (ii) a faster vehicle (typically a helicopter,
a UAV, or an offshore vehicle) with a limited range. The
carrier is able to transport the faster vehicle, as well as to
deploy, recover, and service it. Even though this two-vehicle
system is very simple, it reveals new aspects of many path
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Fig. 1. The carrier-vehicle system on a rescue scenario.

planning and coordination problems of interest, including
those introduced in [10], [9], [11] for groups of homogeneous
robots. In the preliminary works [12], [13] the determination
of the optimal trajectories connecting n has been detailed.
Here we extend those results for the cases in which the
number of points visited between a take-off and a landing or
the visiting sequence is not given a priori.

II. THE CARRIER-VEHICLE SYSTEM
The system we are going to deal with is composed of

two different vehicles, a vehicle carrier (also denoted in the
following as carrier), whose variables and functions will be
denoted by subscript ·c, and a carried vehicle (compactly
referred to as the vehicle), denoted by subscript ·v . In the
following we will refer to the combined system as the
carrier-vehicle system. To derive a mathematical model for
the system, we will consider the vehicles as points belonging
to the Euclidean space R

2. Let pc(t) = [xc(t) yc(t)]
T ,

pv(t) = [xv(t) yv(t)]
T be, respectively, the position of the

carrier and of the vehicle at time t. We will assume that the
position of the carrier pc(t) evolves accordingly to the first
order O.D.E.

ẋc = Vc cos(φc), ẏc = Vc sin(φc) (1)

with Vc ∈ R
+ the given velocity of the carrier and φc ∈ R the

control input. This implies that the class of the admissible
paths for the carrier are all continuous curves in the two-
dimensional Euclidean space. The carrier travel on these
paths with a speed bounded in magnitude by Vc. In modeling
the dynamics of the carried vehicle we distinguish between
two different situations:

1) when the vehicle is not on board the carrier it evolves
following its free planar motion:

ẋv = Vv cos(φv), ẏv = Vv sin(φv) (2)

with Vv ∈ R
+, Vv > Vc and φv ∈ R the control input

for the vehicle.
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2) when it is on board the carrier, its position coincides
with the carrier position, pv (t) = pc (t).

From the above arguments it appears that the carried vehicle
dynamics shows an intrinsically hybrid behavior. Because
one of the distinguish features of the carried vehicle is to
have a finite operating range (e.g., due to maximum fuel
capacity), we assume that, after leaving the carrier deck, it
can operate as a stand-alone vehicle only for a limited time
ā. For the sake of simplicity, it is supposed that any time the
faster vehicle comes back to the carrier its operating range
is instantaneously restored.

III. PREVIOUS RESULTS - ORDERED VISIT OF n POINTS

The first step to deal with the mission planning problems
described is this paper is the availability of an effective
optimization procedure able to solve in a reasonable amount
of time the following basic path planning problem

Problem 1 — given an initial point p0 such that pc(0) =
pv(0) = p0, a desired final point pf and a list of n points
qlist = [q1, ..., qn], determine the minimum-time trajectory
such that each point is visited by the carried vehicle in an
ordered way by following, for each point qi, a given sequence
of takeoff - visiting the new point- landing prescriptions and
finally both the carrier and the vehicle approach the point
pf . �

In [13] it has been shown that such a problem can be
rephrased into a convex optimization problem that may be
solved with a very low computational effort. Moreover it
has been shown that, even if up to our knowledge an exact
closed form formula for the optimal cost is not known in the
general case (beside some special cases like those discussed
in [12]), it is possible to analytically characterize an upper
bound and a lower bound to the optimal solution of Problem
1. Namely, it is possible to prove that a lower bound to the
optimal cost of Problem 1 is given by:

tL(�, n) = max {(�/Vc − nVvā/Vc + nā) , �/Vv} . (3)

where � denotes the sum of all the distances between the
points of interest, i.e., � =

∑n+1
i=1 di−1,i. and where d0,1 :=

‖p0−q1‖ , di−1,i := ‖qi−1−qi‖ , i ∈ {2, 3, ...n} , dn,n+1 :=
‖qn − pf‖ . Note that, by construction, � denotes the length
of the shortest path visiting all the points of interest. To
derive an upper bound it is possible to proceed as follows.
Let us denote with dmin := mini=1,...,n di−1,i and let ā′ =
min{dmin/Vv, ā}; then, the following upper-bound may be
obtained

t′U (�, n, θlist) = tL(�, n) +

n∑
i=1

Δ′(θi, ā, ā
′)

Vc
(4)

with

Δ′(θ, ā, ā′) :=

⎧⎨
⎩ (ā− ā′)Vv if θ ≤ 2 arcsin

(
Vc

Vv

)
āVv − ā′Vc/ sin(θ/2) else

,

(5)
where θlist := [θ1, θ2, ...θn] denotes list of the n angles
such that θi ∈ [0, π], i = 1, ..., n − 1, i.e. the set of the

minimum amplitude angles formed by the segments that
connect two consecutive points to be visited (for a graphical
intuition see also Figure 2). Please note that if ā′ = ā and if
θi ≤ 2 arcsin (Vc/Vv) for all θi ∈ θlist , the proposed upper
bound precisely matches the cost of the lower bound (3),
and indeed it represents one of the optimal solutions. As
highlighted in [13] tighter upper bound maybe given under
some particular assumptions.
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āVv
2
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Fig. 2. The geometric interpretation behind the proposed algorithm to build
a feasible solution to visit a set of n points (3 in the figure).

IV. MISSION PLANNING

In this paper we discuss two mission planning problems
for the carrier-vehicle system. By mission planning problems
we mean those problems in which discrete decisions on the
behavior of the vehicles are variables of the optimization
problem. Typically this kind of planning problems requires
mixed-integer optimization for their solution, and are in
general in the class of NP-Hard problems

A. Ordered Visit of n points without prescribed takeoff-
landing sequences

In Section III we have recalled the problem of visiting
an ordered sequence of points under the constraint that
for each takeoff only one target is reached by the vehicle
before returning to the carrier. The goal of this section is
then to remove this constraint in order to address the more
general scenario in which the vehicle is allowed to visit
more than one point before landing back on the carrier’s
deck. Thus, given an initial point p0 = pv(0) = pc(0) and
a final point pf , we want to determine the minimal time
trajectory allowing the ordered visit of a list of n points
qlist = [q1, ..., qn] and, after the last landing, the return of
both vehicles to pf . In order to model the fact that after
a takeoff the faster vehicle may visit more then one point
belonging to qlist, let us introduce the binary variables

αij ∈ {0, 1} , i ≤ j. (6)

whose semantic is that if αij = 1 then all and only the points
belonging to the sublist qlist,i,j = [qi, qi+1, ..., qj−1, qj ]
will be sequentially visited by the carried vehicle without
returning to the carrier. For any sublist qlist,i,j of targets we
will also denote with pto,i and pl,j the corresponding takeoff
and landing points. Because every point has to be visited
exactly once, any point may belong to one and only one
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group of points to be visited in a row. This can be modeled
by the following n constraints on the αi,j variables:∑

(i,j):i≤k≤j

αij = 1, k = 1, ..., n (7)

Let us introduce also the time tto,lij representing the elapsed
time between a takeoff, at the point pto,i, and a landing event,
at the point pl,j . During that interval of time the carried
vehicle visits all and only the points belonging to the list
qlist,i,j . By exploiting the above discussion on the binary
variables αij and by using the same arguments detailed in
[13], such a time can be bounded as follows

αij
1

Vv

(
||qi−pto,i||+

j−1∑
k=i

||qk+1−qk||+||qj+pl,j ||

)
≤tto,lij

αij
1

Vc
(||pto,i − pl,j ||) ≤ tto,lij

αijt
to,l
ij ≤ ā

i = 1, ..., n, j = i, ..., n.

(8)

Note that the latter constraints reduce to tto,lij ≥ 0 if αij =

0. Similarly if we introduce the time tl,toi representing the
interval of time between the landing at point pl,i−1 and the
takeoff at point pto,i after which the first point to be visited
will be qi (it is assumed pl,0 = p0) we obtain
n∑

j=i

αi,j
1

Vc
||pl,i−1 − pto,i|| ≤ tl,toi , i = 1, ..., n

1

Vc
||pl,n − pf || ≤ tl,ton+1

(9)

Note that the first n constraints above reduce to tl,toi ≥ 0 for
each value of i such that qi is not the initial point of a sublist
of targets to be visited in a row. Finally, the ordered visit of
n points without prescribed takeoff/landing sequences can be
formally rewritten as the following mixed-integer nonlinear
programming problem:

min
n∑

i=1

n∑
j=i

tto,nij +
n+1∑
i=1

tl,toi

subject to : (6), (7), (8), (9).

(10)

Some observations on the form of the above problem may
be of interest. First, note that if the binary variables αi,j , i =
1, ..., n, j = i, ..., n have been assigned, then

• the problem becomes a convex optimization problem;
• if αi,j = 0, then in the optimal solution of the corre-

sponding problem it would result tto,lij = 0 ;
• if αi,j = 0, ∀j = i, ..., n, then in the optimal solution

of the corresponding problem it would result tl,toi = 0.

Moreover, if we focus on the constraints (6)-(7), it is worth
noticing that the number of possible ways of partitioning
a list into subsequences is equal to 2n−1 (see [14] amongst
others). However, interestingly enough, in most practical path
planning cases many solutions can be discarded a priori by
exploiting the result of the following Lemma:

Lemma 2 - A necessary and sufficient condition to ensure
that the optimization problem (10) admits a feasible solution

with αij = 1, i ≤ j, is that there exist points pto, pl ∈ R
2

and a positive scalar t ∈ R≥ ensuring that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
||pto − qi||+

j−1∑
k=i

||qk+1 − qk||+ ||qj − pl||

)
≤ Vvt

(||pto − pl||) ≤ Vct
t ≤ ā

(11)Proof: It is enough to note that if no feasible solutions
for (11) exist when αi,j = 1, then the constraints (8) cannot
be satisfied altogether. Otherwise, if a solution to (11) exists
then a feasible solution for (10) can be build by using αij =
1, pto,i = pto, pl,j = pl
The previous result can be used to pre-process the problem
and discard solutions that consider groups of points too far
from each others in the same group. Then, if we denote with
Ω the set of indexes (i, j) for which the previous lemma’s
results allow αij to be equal to one, we can simplify (10)
by imposing

αij = 0, ∀(i, j) /∈ Ω. (12)

It is also worth noticing that the computation of Ω using the
convex feasibility problem (11) is solved in at most n(n −
1)/2 steps. While in some cases of interest the above pre-
processing task renders the optimization problem tractable,
in most of the cases the problem remains computationally
prohibitive. For such a reason, heuristic approaches will
be proposed in this paper. In particular, we will build up
a solution that minimizes the number of takeoffs of the
faster vehicle. Interestingly enough, the minimal number of
takeoffs can be easily determined by means of the following
Lemma

Lemma 3 - Given a list of points qlist = [q1, ..., qn],
the minimum number of takeoffs required to visit it can
be determined by solving the following linear programming
optimization problem

min
αi,j∈R

∑
(i,j)∈Ω

αi,j

subject to∑
(i,j)∈Ω:i≤k≤j

αij = 1, k = 1, ..., n

αi,j ≥ 0 ∀(i, j) ∈ Ω

(13)

Proof: As a result of Lemma 2, for any admissible
solution of (6)-(10) we have that αi,j = 0, ∀(i, j) /∈ Ω.
Then, the minimum number of αi,j to be equal to one
can be computed by solving the following Integer Linear
Programming problem

min
∑

(i,j)∈Ω

αi,j

subject to (6), (7),
αi,j = 0, ∀(i, j) /∈ Ω.

(14)

It remains to prove that by relaxing the integer constraints
in (14), all vertices of the resulting Linear Programming
problem (13) are integer. This can be proved by means of
standard technicalities here omitted for the sake of brevity
(see Appendix for details).

1356



An heuristic algorithm based on the above Lemma may be
summarized as follows

HEURISTIC 1 - MINIMUM NUMBER OF TAKE-OFFS

HEURISTIC

1) Determine the set Ω of couples (i, j) such that αi,j = 1
is admissible for (11);

2) Determine the values of α∗i,j , i = 1, ..., n, j = i, ..., n
as the optimal solution of the linear programming
problem (13);

3) Substitute αi,j = α∗i,j , i = 1, ..., n, j = i, ..., n
into (10) and solve the resulting convex optimization
problem.

As it will be shown in the numerical simulations, the above
heuristic enjoys a poor performance w.r.t. the real optimal
solution. However, its structure may be exploited to build
up more efficient heuristics. To this end, it is important to
understand that, typically, the visit of a set of points “in
a row” is not cost effective when the limited autonomy of
the faster vehicle forces the carrier to make large deviations
to “rescue” it. Such an anomalous behavior usually appears
when the distance covered by the vehicle in visiting the
points amongst qi and qj , that we will denote hereafter as
dvi,j =

∑j
k=i+1 ‖(qi − qk)‖ or the distance between the first

and the last point of the sequence, i.e. dci,j = ‖(qi − qj)‖
is “large.” To justify the above statement, let us consider
a very simple case in which p0 = [0 0]T , pf = [8 0]T ,
q1 = [3.75 0.1]T , q2 = [4 r]T and q3 = [4.25 0.1]T and
where r ∈ [2, 2.3850] is a scalar parameter that it is used to
increase dv1,3. The above benchmark has been intentionally
and specifically constructed so that the optimal solution for
each admissible value of r is achieved by visiting each point
separately. In Figure 3 it is shown that the optimal value and
the value obtained by visiting the three points all in a row
coincides for small values of dv1,3 while they diverge once
a certain threshold is trespassed. As depicted in Figure 4

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
7.9

8

8.1

8.2

8.3

8.4

8.5

dv
1,3

C
os

t

Optimal Solution vs Heuristic 1

Optimal Solution Cost
Heuristic 1 Cost

Fig. 3. Comparison between the optimal solution and the solution obtained
by means of the Heuristic 1 for growing dv

1,3

this is due to the big deviation from the straight line the
carrier is forced to follow so as to recover the vehicle. An
analogous situation is obtained by increasing the distances
dci,j for a constant dvi,j . The above considerations have been
exploited to design two new heuristics based on the idea of
excluding all that combinations of points such that dci,j (or
respectively dvi,j) is larger than a certain threshold. To this
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Fig. 4. Comparison between the optimal solution and the solution obtained
by means of the Heuristic 1 for dv

1,3 = 4.5374

end we will first build two lists listc and listv each one of
them containing all the couples (i, j) ∈ Ω and ordered so as
to have decreasing values of dci,j and dvi,j respectively. Let
kf be the cardinality of the set Ω, the following heuristics
can be defined:

HEURISTIC 2 [3] - MINIMUM NUMBER OF TAKE-OFFS

HEURISTIC WITH THRESHOLD ON dc [dv]

0. Initialization

0.1 Determine the set Ω of couples (i, j) such that
αi,j = 1 is admissible for (11);

0.2 Determine the list listc [listv] of couples (i, j) ∈
Ω such that dcik,jk ≥ dcik+1,jk+1

[dvik,jk ≥
dvik+1,jk+1

] where (ik, jk) denotes the k−th ele-
ments of listc [listv];

0.3 Set c� =∞, α∗i,j = 0, i = 1, ..., n, j = i, ..., n;

1. for k = 1 : kf + 1

1.1 Determine the values of α̃i,j , i = 1, ..., n, j =
i, ..., n as the optimal solution of the linear pro-
gramming problem (13);

1.2 Substitute αi,j = α̃i,j , i = 1, ..., n, j = i, ..., n
into (10), solve the resulting convex optimization
problem and obtain the cost c̃;

1.3 if c̃ < c∗, set c∗ = c̃ and α∗i,j = α̃i,j , i =
1, ..., n, j = i, ..., n;

1.4 Eliminate the couple (ik, jk) from the set Ω, i.e.
Ω = Ω \ (ik, jk)

Note that, being kf ≤ n(n+ 1)/2, Heuristics 2 and 3 have
a computational complexity time at most n(n + 1)/2 times
the one of Heuristic 1.

Numerical Results - In order to evaluate the performance
of the proposed heuristics we considered as a case study a
carrier vehicle with maximum velocity Vc = 1 and a carried
vehicle with Vv = 5 and normalized operating range ā = 1,
both starting from an initial position p0 = (0, 0), having
to visit 10 target points qi, with i = 1, ..., 10, randomly
generated in a 5× 5 box and then coming back to pf = p0.
A total number of 3000 randomly generated instances of the
problem have been considered. The results have synthetically
be reported in Table I. As expected the performance of
Heuristic 1 is poor, while evident improvements may be
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Heuristic 1 Heuristic 2 Heuristic 3
Average Degradation 17, 53% 1, 08% 0, 26%

Maximum Degradation 124, 29% 22, 23% 6, 37%

TABLE I

HEURISTICS 1,2,3 VS. OPTIMAL SOLUTION

obtained when using Heuristic 2 and Heuristic 3. Moreover,
it is worth remarking that by always picking the smaller
cost obtained by the two heuristics the Average Degradation
reduces to 0.22% and the Maximal Degradation to 5.16%.

B. Traveling Salesman Problem with prescribed takeoff-
landing sequence

The last mission planning problem considered in this paper
is a version of the Traveling Salesman Problem (TSP) for
the multi-vehicle system under consideration. Let us assume
that the initial positions of both vehicle and carrier are the
same pc(0) = pv(0) = p0 and that an unordered set of n
points qset = {q1, ..., qn} to be visited are given. The goal
is to determine the optimal trajectory for the vehicle that,
from its initial position, touches all n points one and only
one time and returns to the initial point p0 (i.e. pf ≡ p0)
for landing on the carrier vehicle and concluding the cycle.
As well known, TSP problems are typically NP-Hard. For
such a reason, in most practical cases, heuristics or constant-
factor approximations are used. In this paper, in order to deal
with the particular TSP problem at hands, hereafter denoted
as Carrier/Carried-TSP (CC-TSP), we propose a heuristic
algorithm based on the Euclidean TSP. The Euclidean TSP
(E-TSP) is a particular case of the general TSP in which,
given n points in the space, we want to determine the optimal
sequence that minimizes the sum of the Euclidean distances
amongst consecutive points. One of the main feature of this
class of TSP problems is that, although still NP-Hard, it
admits a polynomial-time approximation scheme (see [15]).
This means that, for any scalar e > 0, it is possible to find in
a polynomial time a tour whose length is at most (1 + 1/e)
times larger than the optimal length. Then, in practice, for
any instance of the E − TSP we can obtain an almost-
optimal solution in a reasonable time. The CC-TSP heuristic
here proposed consists of the following two steps:

1) determine the visiting order of the almost-optimal E-
TSP tour for the set of points {p0} ∪ qset;

2) use the above visiting order and solve the resulting
ordered visit of n points by means of the convex
optimization procedure detailed in [13]

The idea behind this approach is that, as it will be clear soon,
the completion time of the CC-TSP is connected to the sum
of the distances between points, and then, the minimization
of E-TSP leads usually to achieve a reasonably good CC-
TSP solution. In particular, it is possible to prove that:

Lemma 4 - Let p0 and the set of n points qlist to be visited
be given. Let �optETSP be the length of the optimal E-TSP tour
for the given set of points. Then, a lower bound to CC-TSP
is given by tL(�

opt
ETSP , n).

Proof: By recalling the definition of the lower bound (3) and
assuming the number of takeoff points n given (according

to the cardinality of the set qlist), it follows that �1 ≤ �2 ⇒
tL(�1, n) ≤ tL(�2, n). Let � be the length of a generic
hamiltonian cycle for the points p0, qlist starting at the point
p0. From the definition of E-TSP, it results that �optETSP ≤ �.
Then, tL(�

opt
ETSP , n) ≤ tL(�, n). This proves that the lower-

bound computed considering the optimal E-TSP tour is also
a lower-bound for the CC-TSP because no other choice for
the visiting order can obtain a lower value.
Moreover, by recalling the upper bound introduced in Section
III it is possible to bound the maximal error achieved by the
proposed heuristic :

Lemma 5 - Let the set {p0} ∪ qlist be given and �ETSP

denote the length of the (1 + 1/e)-approximated optimal E-
TSP tour with e ≥ 0. Then, the completion time theuCC−TSP

obtained with the CC-TSP heuristic has a cost which is at
most ε times the optimal one with ε given by

ε :=
t′U (�ETSP , n, θlist)

tL

(
�ETSP

1+1/e , n
)

where t′U (·) is defined in (4).
Proof: Because �ETSP denotes the length of the quasi-
optimal E-TSP tour we have that the optimal length �optETSP

is bounded from below by a function of the scalar parameter
e, �optETSP ≥ �ETSP /(1+ 1/e). Applying Lemma 4 we have
that the optimal solution of the CC-TSP is then greater than
or equal to tL

(
�ETSP

1+1/e , n
)
. Moreover, by following Section

III arguments, it is possible to build up an upper bound
considering the sequence of points obtained with the almost-
optimal E-TSP and the angles θlist which corresponds to this
solution.
Please note that in the particular for the case in which
the points to be visited are sufficiently far each others
(i.e. dmin/Vv > ā) and the angles θi formed by the
segments connecting the points in the order given by the
ETSP algorithm satisfy θi ≤ 2 arcsin (Vc/Vv) then ε =

tL(�ETSP , n)/tL

(
�ETSP

1+1/e , n
)

and thus the optimal ETSP
sequence of points is also optimal for CC-TSP.

Numerical Results - Results from numerical simulations
have been analyzed to compare the optimal solution of the
CC-TSP with the one obtained by minimizing the ETSP
cost. Again, we use as a case study a carrier with maximum
velocity Vc = 1 and a vehicle with Vv = 5 with normalized
operating range ā = 1 which, starting from an initial
position p0 = (0, 0), has to visit 5 randomly generated points
qi, i = 1, ..., 5 and come back to pf = p0. We consider three
different scenarios according to how the points are generated:
first we consider the ND (Normal Distance) case where the
points are randomly generated in a box 50 × 50, than, to
evaluate what happens when the points are confined in more
restricted areas, we considered the SD (Short Distance) and
the VSD (Very Short Distance) cases where the points are
generated within boxes of dimension 20 × 10 and 10 × 10
respectively. Results are reported in Table II where Cases
# denotes the number of samples considered, Opt. Sol. the
percentage of cases in which the optimal sequence generated
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Cases # Opt. Sol. Avg Degradation Max Degradation
ND 500 88.2% 0.028% 1.48%
SD 1000 73.1% 0.104% 7.5%

VSD 500 52% 0.526% 25.1%

TABLE II

COMPARISON OPTIMAL SOLUTION OF CC-TSP AND E-TSP

by the CC-TSP and the E-TSP heuristics exactly coincide and
Avg Degradation and Max Degradation the average and the
maximal degradations in the cost considering E-TSP instead
of CC-TSP. Note that the performance of E-TSP is, in the
average case, a very tight approximation of that pertaining
to CC-TSP. It is possible to note that, for points generated
in a larger space, the optimal solutions of E-TSP and CC-
TSP coincides in most of the cases while for points very
close to each other the average degradation increases. In
Table III, the statistics of the number of samples that shows
a degradation lower than 0.1%, 1%, 2.5%, 5% and 10% are
reported. As a final remark we want to highlight that usually
the cases with a degradation greater than 1% present several
points very close one to each other: for instance the outlier
in the VSD case with a degradation of 25.1% corresponds to
the unrealistic case in which the optimal completion time is
4.3024229 and 4 out of the 5 points to be visited, as depicted
in Figure 5, are within a ball of radius 2.03 from the starting
point.
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Fig. 5. Comparison between the optimal CC-TSP solution and the solution
obtained by means of the optimal ETSP. Worst case.

Degradation < 0.1% < 1% < 2.5% < 5% < 10%
ND 94.2% 99% 100% 100% 100%
SD 92.0% 97.9% 99% 99.5% 100%

VSD 82.4% 88.6% 93.2% 97% 99.4%

TABLE III

NUMBER OF CASES WITH A DEGRADATION LESS THEN

0.1%, 1%, 2.5%, 5% AND 10% RESPECTIVELY

V. CONCLUSIONS

In this paper we have studied path planning problems
for a class of carrier/carried vehicle systems in which a
slow carrier with infinite operating range cooperates with
a carried vehicle which, on the contrary, is faster but has a
limited range. By taking advantage of previous results on the
topic, two problems in which decision variables are involved
have been considered: the former consists of determining the
optimal takeoff/landings sequences required to visit n points
while the latter consists of a version of the TSP for the class
of vehicles at hands. Being those problems hard to be solved

in an exact way, heuristic solutions have been proposed and
their performances analyzed.
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APPENDIX - ON THE PROOF OF LEMMA 3

As a first step to prove that all entries of the vertices
of the polyhedral set associated to (10) are integer, let
aggregate the variable αi,j such that (i, j) ∈ Ω into the vector
α = [α1,1, ..., αn,n]

T ∈ R
card{Ω} where card{Ω} denotes

the cardinality of the set Ω. We can then reformulate the
feasible set of (10) as Aα = 1n,1, α ≥ 0n1

where the matrix
A ∈ R

n×card{Ω} is such that its entries αi,j in each column
j assume the value 1 for each row k such that i ≤ k ≤ j
and 0 otherwise, i.e.

(i, j)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... ... 0 ... ... k = 1

... ... ... ... ... ...

... ... 0 ... ... k = i − 1

... ... 1 ... ... k = i

... ... ... ... ...

... ... 1 ... ... k = j

... ... 0 ... ... k = j + 1

... ... ... ... ...

... ... 0 ... ... k = n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that every column of such a matrix enjoys the so-called
”consecutive ones” property, i.e. the ones in a column are
always consecutive. This observation concludes the proof. In
fact, this implies that the matrix A is Totally Unimodular that
ensures, by classical mathematical programming arguments,
that all entries of the vertices of (10) are integers.
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