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From Local Measurements to Network Spectral Properties: Beyond
Degree Distributions

Victor M. Preciado and Ali Jadbabaie

Abstract— It is well-known that the behavior of many dy-
namical processes running on networks is intimately related
to the eigenvalue spectrum of the network. In this paper, we
address the problem of inferring global information regarding
the eigenvalue spectrum of a network from a set of local samples
of its structure. In particular, we find explicit relationsh ips
between the so-called spectral moments of a graph and the
presence of certain small subgraphs, also called motifs, inthe
network. Since the eigenvalues of the network have a direct
influence on the network dynamical behavior, our result builds
a bridge between local network measurements (i.e., the presence
of small subgraphs) and global dynamical behavior (via the
spectral moments). Furthermore, based on our result, we
propose a novel decentralized scheme to compute the spectral
moments of a network by aggregating local measurements of
the network topology. Our final objective is to understand
the relationships between the behavior of dynamical processes
taking place in a large-scale complex network and its local
topological properties.

I. I NTRODUCTION

Research in complex networks has important applications
in today’s massive networked systems, including the Internet,
the World-Wide Web (WWW), as well as social, biological
and chemical networks [1]. The availability of massive
databases, and reliable tools for data analysis provides a
powerful framework to explore structural properties of large-
scale networks [2]. In many real-world cases, it is impossible
to efficiently retrieve and/or store the exact structure of a
complex network due to, for example, a prohibitively large
network size or privacy/security concerns. On the other hand,
it is often possible to gather a great deal of information
by examining local samples of the graph topology, such as
the degree distribution, which are usually easy to collect.In
this context, a challenging problem is to find relationships
between the set of local samples of the network structure
and its global functionality.

Many dynamical processes on networks, such as random
walks [3], virus/rumor spreading [4], [5], and synchro-
nization of oscillators [6], [7], are interesting to study in
the context of large-scale complex networks. The behavior
of many of these processes are intimately related to the
eigenvalue spectra of the underlying graph structure [8], [9].
For example, the speed of spreading of a virus is directly
related with the spectral radius of the adjacency matrix of the
network [4]. Hence, spectral graph theory provides us with
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a framework to study the relationship between the network
structure and its dynamical behavior.

Network motifs are small subgraphs that are present in a
network with a much higher frequently than in random net-
works with the same degree sequence [10]. There is both em-
pirical and theoretical evidence showing that these subgraphs
play a key role in the network’s function and organization
[11]. One of the main objectives of this paper is to explicitly
relate global properties of a given network with the presence
of certain small subgraphs that can be counted vialocal
measurements. We focus our attention on global properties
related with the network’s eigenvalues, in particular, theso-
called spectral moments. Since the spectral properties are
known to have a direct influence on the network dynamical
behavior, our result builds a bridge between local network
measurements (i.e., the presence of small subgraphs) and
global dynamical behavior (via the spectral moments). It
is also worth pointing out that, although a set of spectral
moments is not enough to completely describe the spectral
distribution of a network, it allows us to extract a great deal
of information. For example, Popescu and Bertsimas provide
in [12] an optimization framework for computing optimal
bounds on the properties of a distribution from moments
constrains. More generally, there is a variety of techniques
that can be applied to extract spectral information from a
truncated sequence of spectral moments [8].

Based on our results, we also propose a novel decentral-
ized algorithm to efficiently aggregate a set of local network
measurements into global spectral moments. Our work is re-
lated to [13], where a fully distributed algorithm is proposed
to compute the full set of eigenvalues and eigenvectors of
a matrix representing the network topology. In contrast, our
approach is computationally much cheaper, since it does not
require a complete eigenvalue decomposition. Furthermore,
our approach also provides a clearer view of the role of
certain subgraphs in the network’s dynamical behavior.

The rest of this paper is organized as follows. In the
next section, we review graph-theoretical terminology and
introduce definitions needed in our derivations. In SectionIII,
we derive explicit relationships between the moments of the
eigenvalue spectrum and local network measurements. Based
on these expressions, we introduce a distributed algorithm
to compute these moments in Section IV. We conclude the
paper mentioning some future work.

II. D EFINITIONS & N OTATION

Let G = (V , E) denote a simple undirected graph (with no
self-loops) onn nodes, whereV (G) = {v1, . . . , vn} denotes

http://arxiv.org/abs/1004.3524v2


the set of nodes andE (G) ⊆ V (G) × V (G) is the set of
undirected edges. If{vi, vj} ∈ E (G) we call nodesvi and
vj adjacent (or neighbors), which we denote byvi ∼ vj .
The set of all nodes adjacent to a nodev ∈ V (G) constitutes
theneighborhoodof nodev, defined byN v = {w ∈ V (G) :
{v, w} ∈ E (G)}, and the number of those neighbors is called
the degreeof nodev, denoted bydeg v or dv.

We define awalkof lengthk from v0 to vk to be an ordered
sequence of nodes(v0, v1, ..., vk) such thatvi ∼ vi+1 for
i = 0, 1, ..., k − 1. If v0 = vk, then the walk is closed.
A closed walk with no repeated nodes (with the exception
of the first and last nodes) is called acycle. Trianglesand
quadranglesare cycles of length three and four, respectively.
We say that a graphG is connectedif there exists a walk
between every pair of nodes. Letd (v, w) denote thedistance
between two nodesv and w, i.e., the minimum length of
a walk from v to w. We define the diameter of a graph,
denoted bydiam (G), as the maximum distance between
any pair of nodes inG. We say thatv and w are k-th
order neighbors ifd (v, w) = k, and define thek-th order
neighborhood of a nodev as the set of nodes within a
distancek from v, i.e.,N v

k = {w ∈ V (G) : d (v, w) ≤ k}. A
k-th order neighborhood, induces a subgraphGv

k ⊆ G with
node-setN v

k and edge-setEv
k defined as the subset of edges

of E (G) that connect two nodes inN v
k .

Graphs can be algebraically represented via theadjacency
matrix. The adjacency matrixof an undirected graphG,
denoted byAG = [aij ], is ann×n symmetric matrix defined
entry-wise asaij = 1 if nodesvi and vj are adjacent, and
aij = 0 otherwise1.

III. SPECTRAL ANALYSIS VIA SUBGRAPH EMBEDDING

In this section, we derive an explicit relationship between
the spectral moments of the adjacency matrix and the pres-
ence of certain subgraphs inG. We say that a graphH is
embedded inG if H is isomorphic2 to a subgraph inG.
The embedding frequency ofH in G, denoted byF (H,G),
is the number of different subgraphs ofG to which H is
isomorphic. The term network motif is used to designate
those subgraphs ofG that occur with embedding frequencies
far higher than in random networks with the same degree
sequence [10]. Theoretical and experimental evidence shows
that some of these motifs carry significant information about
the network’s function and organization [11]. In this section,
we derive an explicit expression for the spectral moments
as a linear combination of the embedding frequencies of
certain subgraphs. Our results provide a direct relationship
between the presence of network motifs and global properties
of the network, in particular, spectral moments. In the coming
subsections, we first provide a theoretical foundation for
our analysis. Second, we derive explicit expressions for the
spectral moments in terms of network metrics, such as the

1For simple graphs with no self-loops,aii = 0 for all i.
2An isomorphism of graphsG andH is a bijection between the vertex

setsV(G) andV(H), f : V(G) → V(H), such that any two verticesu and
v of G are adjacenct inG if and only if f(u) andf(v) are adjacent inH.

degree sequence or the number of triangles in the graph.
In the next Section, we propose a decentralized algorithm
to compute the spectral moments of a network based on
decentralized subgraph counting.

A. Spectral Moments and Subgraph Embedding

Algebraic graph theory provide us with the tools to relate
topological properties of a graph with its spectral properties.
In particular, we are interested in studying the spectral
moments of the adjacency matrix of a given graph. We
denote by{λi}

n
i=1 the set of eigenvalues ofAG and define

the k-th spectral moment of the adjacency matrix as

mk (AG) =
1

n

n
∑

i=1

λk
i . (1)

From algebraic graph theory, we have the following result
relating thek-th spectral moment of a graphG with the
number of closed walks of lengthk in G [14]:

Lemma 1:Let G be a simple graph. Thek-th spectral
moment of the adjacency matrix ofG can be written as

mk(AG) =
1

n

∣

∣

∣
Ψ

(k)
G

∣

∣

∣
, (2)

whereΨ(s)
G

is the set of all possible closed walks of length
k in G3.

Corollary 2: Let G be a simple graph. Denote byEG and
∆G the number of edges and triangles inG, respectively.
Then,

m1(AG) = 0, m2(AG) = 2EG/n, andm3(AG) = 6∆G/n.
(3)

In the following, we develop on the above Lemma to
derive an expression formk (AG) , for any k, as a linear
combination of the embedding frequencies of certain sub-
graphs. Although the first 3 moments present very simple
expressions in Corollary 2, the larger thek, the more
involved those expressions become. In what follows, we
describe a systematic procedure to derive these expressions
efficiently.

First, we need to introduce some nomenclature. Given
a walk of lengthk in G, w = (v0, v1, ..., vk), we denote
its node-set asV (w) = {v0, ..., vk} and its edge-set as
E (w) = ∪k

i=1 {vi−1, vi}. Hence, we define the underlying
simple graph of a walkw asH (w) = (V (w) , E (w)). We
say that a simple subgraphh ⊆ G spans the walkw if h is
isomorphic toH (w). Notice how different walks can share
the same underlying simple graph. We also denote byI (h)
the unlabeled simple graph isomorphic to a given graphh.
Applying the functionI to the underlying graph of a given
walkw, we obtain an unlabeled graphg = I (H (w)). Notice
how different walks, not even sharing the same edge-set,
can share the sameunlabeledunderlying simple graph. For
example, any closed triangular walkw3 = (vi, vj , vk, vi)

3We denote by|Z| the cardinality of a setZ.



with vi ∼ vj ∼ vk ∼ vi gives rise to the same unlabeled
graphI (H (w3)), namely, an unlabeled triangle.

We denote the set of closed walks of lengthk in G
sharing the same underlying simple graphh as Rh =
{

w ∈ Ψ
(k)
G

s.t.H (w) = h
}

. Inversely, consider the set of

all closed walks of lengthk in G, Ψ
(k)
G

. We can define
another set, which we denote byHk, containing all pos-
sible simple graphs spanning walks inΨ(k)

G
, i.e., Hk =

{

H (wk) , wk ∈ Ψ
(k)
G

}

. Furthermore, we define the set of
unlabeledgraph associated with walks of lengthk as Ik =
{

I (H (wk)) , wk ∈ Ψ
(k)
G

}

. In what follows, we derive an
expression for thek-th spectral moment as a linear combina-
tion of the embedding frequencies of the (unlabeled) graphs
in Ik.

Note that the mappingH : Ψ
(k)
G

→ Hk, is a surjection

ontoHk that induces a partition inΨ(k)
G

, namely, each graph
h ∈ Hk (with labeled nodes), induces a partition subset
Rh ⊆ Ψ

(k)
G

. Similarly, the mappingI : Hk → Ik is
a surjection ontoIk and induces a partition inHk. Each
unlabeled graphg ∈ Ik defines a partition subsetSg ⊆ Hk

defined asSg = {h ∈ Hk s.t. I (h) = g}. Note that for
g ∈ Ik, |Sg| is the number of subgraphs ofG isomorphic tog;
hence,|Sg| equals the embedding frequencyF (g,G). This
observation shall be important in the next Section, where
we design a decentralized algorithm to compute spectral
moments.

Based on the above, we derive the following result regard-
ing the spectral moments ofG:

Theorem 3:Given a simple graphG, its k-th spectral
moment can be written as

mk(AG) =
1

n

∑

g∈Ik

ω(k)
g F (g,G) . (4)

where ω
(k)
g =

∣

∣

∣

{

w ∈ Ψ
(k)
g : I (H (w)) = g

}∣

∣

∣
; in other

words,ω(k)
g is the number of all possible closed walks of

lengthk in g with underlying unlabeled graphs isomorphic
to g.

Proof: Consider the composition functionJ = I ◦
H. SinceJ : Ψ

(k)
G

→ Ik is a composition of surjective
functions, it is itself a surjective function. Thus,J induces
a trivial partition in Ψ

(k)
G

as follows. Given an unlabeled

graph g ∈ Ik, we define a partition subsetTg ⊆ Ψ
(k)
G

as

Tg =
{

w ∈ Ψ
(k)
G

s.t.J (w) = g
}

=
⋃

h∈Sg
Rh. Based on

this partition, we can compute the number of closed walks
of lengthk in G,

∣

∣

∣
Ψ

(k)
G

∣

∣

∣
, as

∣

∣

∣
Ψ

(k)
G

∣

∣

∣
=

∑

g∈Ik

|Tg| =
∑

g∈Ik

∑

h∈Sg

|Rh| .

Note that, for a particular (labeled) graphh ∈ Hk, the
number of closed walks of lengthk such that their underlying
simple graph ish, i.e., |Rh|, is a quantity that depends
exclusively on the topology of the unlabeled version ofh,
i.e., g = I (h). We define this quantity asωk (g) = |Rh|.

Fig. 1. In this table, we represent the set of nonisomorphic connected graph
with at most 4 nodes and 4 edges. The set of subgraphs inI4 are those
with corresponding coefficientω(4)

g > 0. These subgraphs are involved in
the computation of the4-th spectral moment.

Hence, we can rewrite the above as
∣

∣

∣
Ψ

(k)
G

∣

∣

∣
=

∑

g∈Ik

|Rh|
∑

h∈Sg

1

=
∑

g∈Ik

ω(k)
g |Sg| ,

where we have used the fact that|Rh| = ω
(k)
g in the last

equality. Therefore, substituting the above in (2) we obtain
the expression for the spectral moments in the statement of
the theorem.

The expression in the right-hand side of (4) is a linear
combination of the embedding frequencies of the set of
subgraphsg ∈ Ik. The coefficientsωk (g) in this linear
combination are defined as the number of closed walks of
lengthk with unlabeled underlying graphg. In what follows,
we describe an algorithm to determine the setIk and compute
ω
(k)
g . In order to compute the firstK spectral moments, we

have to study the sets of closed walksΨ
(k)
G

, for k ≤ K. For
each particular value ofk, the setIk are unlabeled connected
graphs with at mostk edges. Also, the maximum number of
nodes visited by walks inΨ(k)

G
are equal tok. We denote

by Gk the set of all (unlabeled) nonisomorphic connected
graphs with at mostk nodes and at mostk edges4; hence,
Ik ⊆ Gk. For example, we illustrate all the graphs inG4

(excepting the isolated-node graph) in Fig. 1.
In order to compute thek-th moment via (4), we need to

computeω(k)
g for all g ∈ Ik, whereω(k)

g can be interpreted as
the the number of closed walks of lengthk in g that visit all
the nodes and edges ofg (hence, its underlying simple graph
is g). The computational complexity of computingω(k)

g is the
same as the one of counting the number of Eulerian walks in
an undirected (multi)graph. This counting problem is known
to be#P -complete [15]. Hence, there is not a closed-form
expression forω(k)

g , and it has to be computed via a brute-
force combinatorial exploration over all the possible closed
walks of lengthk visiting all the nodes and edges of the
subgraphg. This exploration can be performed in reasonable
time for subgraphsg of small and medium size – which
are the ones we are interested in. Although computationally
expensive, this computation is done once and for all for
a particularg. In other words, onceω(k)

g is computed, the
coefficient for the spectral moment in (4) are known for any
givenG.

4This set can be easily determined using the commandListGraphs

included in the packageCombinatorica included inMathematica.



Fig. 2. In the above table, we represent the set of nonisomorphic connected graphs with at most 7 nodes and 7 edges. The set of subgraphs inI5, I6,
andI7 are those with corresponding coefficientsω(5)

g , ω
(6)
g , andω

(7)
g > 0, respectively.

For convenience, we provide the coefficientsω
(k)
g for all

the graphs inG4 in Fig. 1. Using this table as an example,
we also observe that those graphst ∈ Gk such thatt 6∈ Ik,
haveω(k)

t = 0 (sinceω(k)
t being zero indicates that there is

no walk in t satisfying the conditions to be part of the set
Ik). For convenience, we also provide a list of the graphs
in ∪k=5,6,7Ik and the associated coefficientsω(k)

g in Fig. 2
(where we have left blank those cells whereω

(k)
g = 0). In the

following paragraphs, we illustrate the usage of Theorem 3
to derive explicit expressions for the first5 spectral moments
of a given graphG.

From the subgraphs and coefficients in Fig. 1, we can
compute the4th spectral moment via (4) as follows

m4(AG) =
1

n

[

2EG + 4ΛG + 8Φ
(4)
G

]

, (5)

where EG is the number of edges,ΛG is the number of
wedge-graphs5 in G, andΦ(4)

G
is the number of 4-cycles in

G (see subgraphs and coefficients in Fig. 1). Thus, in order to
compute the4th spectral moment, we must be able to count
the number of wedge-graphs and 4-cycles inG. Although
the number of edges and cycles in a graph are common
network metrics, the number of wedges is not. It is then
convenient to rewrite the number of wedges in terms of more
familiar network metrics. In fact, we can rewrite the number
of wedges in terms of the degree sequence of the graph as
follows:

ΛG =

n
∑

j=1

(

deg j

2

)

=
1

2
(W2 −W1),

whereWr =
∑n

v=1 (deg v)
r is the r-th power-sums of the

degree sequence{deg v}nv=1. SinceEG = 1
2

∑n

v=1 deg v in
a simple graph, we can write 5 in terms of power-sums and

5A wedge graph is isomorphic to a chain graph of length 2.

4-cycles as:

m4(AG) =
1

n

[

2W2 −W1 + 8Φ
(4)
G

]

. (6)

We illustrate this result in the following example.
Example 4:Consider then-ring graphRn (without self-

loops). We know that the eigenvalues of the adjacency
matrix of the ring graphARn

are
{

2 cos i 2π
n

}n−1

i=0
. Hence,

the 4-th moment is given by the summationm4(ARn
) =

1
n

∑n−2
i=0

(

2 cos i 2π
n

)4
, which (after some computations) can

be found to be equal to6 for n 6∈ {2, 4}. We can apply
(5) to easily reach the same resultwithout performing an
eigenvalue decomposition, as follows. In the ring graph, we
haveEG = n, ΛRn

= n for n 6= 2, ΛR2
= 0, Φ

(4)
Rn

= 0 for

n 6= 4, andΦ(4)
R4

= 1. Hence, we obtain the same value for
m4(ARn

) directly from (5).

From the subgraphs in Fig. 2, and the row of coefficients
ω
(5)
g , we have the following expression for the5th spectral

moment via (4):

m5(AG) =
1

n

[

30∆G + 10ΥG + 10Φ
(5)
G

]

, (7)

where∆G andΦ(5)
G

is the number of triangles and5-cycles
in G. Also, we represent byΥG the number of subgraphs
isomorphic to the sixth subgraph in the top row of Fig.
2, counting from the left. Analyzing the structure of this
subgraph, we have thatΥG =

∑n

i=1(di − 2)∆
(i)
G

, where

∆
(i)
G

is the number of triangles inG touching nodei.
Hence, defining the clustering-degree correlation coefficient
asC∆d =

∑n

i=1 di∆
(i)
G

, we can writeΥG = C∆d−6∆G , and
the 5th spectral moment as:

m5(AG) =
1

n

[

10Φ
(5)
G

− 30∆G + 10C∆d

]

. (8)



Notice that, apart from triangles and 5-cycles, the clustering-
degree correlation influences the 5-th moment; hence, non-
trivial variations of the local clustering with the degree,as
reported in [16], are relevant in the computation of the 5-th
spectral moments.

Remark 5:The main advantage of (4) in Theorem 3 may
not be apparent in graphs with simple, regular structure.
For these graphs, an explicit eigenvalue decomposition is
available and there may be no need to look for alternative
ways to compute spectral moments. On the other hand, in
the case of large-scale complex networks, the structure of
the network is usually very intricate, in many cases not even
known exactly, and an explicit eigenvalue decomposition can
be very challenging, if not impossible. It is in these cases
where the alternative approach proposed in this paper is most
useful.

As we show in the next section, the spectral moments
can be efficiently computed via a distributed approach from
aggregation of local samples of the graph topology,without
knowing the complete structure of the network.

IV. D ISTRIBUTED COMPUTATION OF SPECTRAL

MOMENTS

According to (4), thek-th spectral moment is equal to
a linear combination of the embedding frequenciesF (g,G)
for g ∈ Ik. On the other hand, computing the embedding
frequencies in large-scale networks can be challenging in
a centralized framework, since the computational cost of
counting subgraphs rapidly grows with the network size. In
this section, we introduce an efficient decentralized approach
to compute the embedding frequencies of subgraphs from
local samples of the network topology.

During this section, we assume that there is an agent
in each nodev ∈ V (G) that is able to access itsr-
th neighborhood,Gv

r . A naive approach to compute the
embedding frequency of a particular subgraphg would be
to compute the embedding frequency ofg in each neighbor-
hood,F (g,Gv

r ), and sum them up. This approach obviously
does not work because this particular subgraphg ⊆ G can
be in the intersection of multiple neighborhoods; hence, that
subgraph would be counted multiple times. In what follows,
we propose a decentralized counting procedure that allow us
to know how many times a particular subgraph is counted.

First, we need to introduce several definitions:
Definition 6: We say that a graphical propertyPG is

locally measurable within a radiusr around a nodev if
PG is a function ofN v

r , i.e.,PG = f (N v
r ).

Definition 7: We say that a subgraphh ⊆ G is locally
countable within a radiusr around a nodev if h ⊆ Gv

r .
For example, both edges and triangles touching a nodev

are locally countable within a radius1. Also, the number of
quadrangles touchingv is locally countable within a radius
2. Furthermore, a wedge is locally countable within a radius
1 only by the node at the center of the wedge, but it is not
countable by the nodes at the extremes of the wedge. On the
other hand, the wedge is locally countable within a radius 2

by all the nodes in the wedge. In this examples, we observe
how not all the nodes being part of a subgraphh ⊆ G have
to be able to locally count the subgraph. In particular, if the
radiusr is smaller than⌈diam (h) /2⌉, none of the nodes in
h is able to count the subgraph locally. On the contrary, if the
radiusr is greater or equal to the diameter of the subgraph,
all the nodes inh are able to locally count it. In the middle
range,⌈diam (h) /2⌉ ≤ r ≤ diam (h), some nodes are able
to locally counth and some are not.

Definition 8: For a given value ofr, the set ofdetector
nodesof a given subgraphh ⊆ G is defined as

D
(r)
h = {v ∈ V (h) s.t. h ⊆ Gv

r } .
Note that, although there can be other nodesu 6∈ V (h)

able to locally counth, we do not include them in the set of
detector nodesDh. Also note that, given an unlabeled graph
g, the size ofD(r)

hi
for all the subgraphshi ⊆ G isomorphic to

g depends exclusively on the structure ofg. In other words,
we have that

∣

∣

∣
D

(r)
hi

∣

∣

∣
=

∣

∣

∣
D

(r)
g

∣

∣

∣
for all i = 1, ..., F (g,G). For a

giveng, the value of
∣

∣

∣
D

(r)
g

∣

∣

∣
can be algorithmically computed

as follows:

1) Initialize M := 0;
2) For each nodeu ∈ V (g);
3) Computeδg(u) := maxv∈g d(u, v);
4) If δg(u) ≤ r, Then M := M + 1;
5) End For,
6)

∣

∣

∣
D

(r)
g

∣

∣

∣
:= M .

For convenience, we include the values of
∣

∣

∣
D

(r)
g

∣

∣

∣
for g ∈

∪k=4,5,6Ik for radiusr = 1, 2, and3 in Fig. 4.
After these preliminary results, we now describe a novel

algorithm to distributedly computeF (g,G). Let us consider
a particular nodev ∈ V (G). We define thelocal embedding
frequencyof subgraphg within a neighborhood of radius
r around nodev, denoted byH (g,N v

r ), as the number of
different subgraphsli ⊆ N v

r isomorphic tog such thatv ∈
V (li). Our distributed algorithm is based on the following
result:

Theorem 9:Let G be a simple graph. The spectral mo-
ments of the adjacency matrix ofG can be written as

mk(AG) =
1

n

∑

v∈V(G)

∑

g∈Ik

ωk (g)
∣

∣

∣
D

(r)
g

∣

∣

∣

H (g,N v
r ) . (9)

Proof: Note that the local embedding frequency only
count subgraphsli touching nodev; hence,H (g,N v

r ) ≤
F (g,N v

r ). Furthermore, we have that
∑

v∈V(G)

H (g,N v
r ) = |Dg| F (g,G) , (10)

since every graphh ⊆ G isomorphic tog is counted
∣

∣

∣
D

(r)
g

∣

∣

∣

times in the above summation. Therefore, substituting (10)
in (4), we obtain the statement of the Theorem.

Based on Theorem 9 it is straightforward to compute the
k-th spectral moment distributedly as follows. First, define



Fig. 3. In the above table, we represent several nonisomorphic connected graphs, and the corresponsing values of
∣

∣

∣

D
(r)
g

∣

∣

∣

for r ∈ {1, 2, 2}.

the following local variables

µ
(r)
k (v) ,

∑

g∈Ik

ωk (g)
∣

∣

∣
D

(r)
g

∣

∣

∣

H (g,N v
r ) ,

for all v ∈ V(G). Note thatµ(r)
k (v) is locally measurable

within a radiusr around each nodev, namely, each agent
is able to distributedly computeµr

k (v) for all v ∈ V (G).
Thus, from (9), we have that thek-th spectral moment can
be computed via a simple distributed averaging ofµr

k (v).
Remark 10:The maximum order of the spectral moment

that can be computed via this distributed approach depends
on the radiusr of the neighborhood that each agent can
reach. In particular, in order to compute thek-th moment,
we should be able to detect all the graphsg ∈ Ik. It is easy
to prove that thek-ring with diameter⌊k/2⌋ is the graph in
Ik with the maximum diameter. As we mentioned before, in
order for a particular subgraphh to be locally countable, the
radiusr must be greater or equal to⌈diam (h) /2⌉. Hence,
for a particularr, we can distributedly compute moments up
to an orderkmax = 2r + 1.

V. CONCLUSIONS ANDFUTURE RESEARCH

In this paper, we have derived explicit relationships be-
tween spectral properties of a network and the presence of
certain subgraphs. In particular, we are able to express the
spectral moments as a linear combination of the embedding
frequencies of these subgraphs. Since the spectral properties
are known to have a direct influence on the dynamics
of the network, our result builds a bridge between local
network measurements (i.e., the presence of small subgraphs)
and global dynamical behavior (via the spectral moments).
Furthermore, based on our result, we have also developed a
novel decentralized algorithm to efficiently aggregate a set of
local network measurements into global spectral moments.
Our approach is based on a an efficient decentralized ap-
proach to compute the embedding frequencies of subgraphs
from local samples of the network topology.

Future work involves to extend our methodology to di-
rected graphs and graphs with self-loops, such as those ap-
pearing in transcription networks. Also, we are interestedin
developing techniques to extract explicit information regard-
ing the dynamical behavior of a network from a sequence

of spectral moments. Furthermore, it would be interesting
to find a fully decentralized algorithm to iteratively modify
the structure of a network of agents in order to control its
dynamical behavior. We find particularly interesting the case
in which individual agents have knowledge of their local
network structure only (i.e., myopic information), while they
try to collectively aggregate these local pieces of information
to find the most beneficial modification of the network
structure.
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