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Abstract—The security threat posed by malware in mobile to as recovered. In the replicative model, the receptors, in
wireless networks can be countered through immunization usg  addition, become dispatchers themselves - thus the disgratc
security patches. The distribution of patches however consnes replicate. In each model, the tradeoff between resource con

bandwidth which is specially scarce in wireless networks, rad fi d it b trolled b tivati |
must therefore be judiciously controlled in order to attain desired SUMPUON and securily can be controlied by activating only a

trade-offs between security risks and resource consumptio The ~ desired fraction of dispatchers and also regulating the aft
desired tradeoffs can be attained by activating at any given which they transmit packets.

time only fractions of dispatchers and selecting their packt b) Contributions: First, we model the dynamics of the
transmission rates. We formulate the above trade-offs as djmal spread of the worm in mobile wireless networks in presence

control problems that seek to minimize the aggregate netwdsr f arbit d ic dispatch tivati dt o
costs that depend on security risks and resource consumed byo arbrrary dynamic dispatcher activation and transmissi

the countermeasures. We prove that the optimal control streegies ~ rate control policies, and quantify the costs associatetl wi
have simple structures. When the resource consumption cosite the corresponding security risks and resource consungtion

is concave, the control strategies are bang-bang with at mbs (§|1). This formulates the dynamic activation of the dispatich
one jump from the maximum to the minimum value. When the 514 getting their communication rates as an optimal control
resource consumptlon cost rate Is convex, the above tran®h is bl that ks t L th b Il t
strict but continuous. problem that seeks to minimize the above overall cost.
Second, in both non-replicative and replicative models, we
prove that optimal policies have simple structures: for a con-
|. INTRODUCTION cave resource consumption cost rate, activate all dispegch

o . . and choose the maximum possible transmission rate for them
a) Motivation: Self-propagating malicious codes, re- - L .
) : until a certain time; subsequently all dispatchers must be
ferred to as worms, have represented a persistent thraasaga ) : . .
de-activated until the end of the network operation period

networks. Worms can eavesdrop, analyze the data travers :
L ) ) . . I1,IV). We have therefore shown that the optimal control

the network, access privileged information, hijack sessio

disrupt network functionalities such as routiedg.In addition, |s.b_ang-bangw!th at most one jump that terminates a.t the
. T . . minimum possible value. The optimal control has a similar
a worm carkill a node, that is, it can render an infective node,

dysfunctional by inflicting irretrievable damage. The titref structure for a stnctly_c_onvex resource consumption cat, r
) A . . . . except that its transition from the maximum to minimum
malware is but more dire in mobile wireless networks in WhICﬁ

. . values is (strict but) continuous rather than abrupt.
the network resources are inherently more constrainedthtend i . L
S T . o c) Related Works: [1] and [2] consider both replicative
initial intrusion is easier, as the media is shared.

Worms spread through message transmission frdected and non-replicative dispatch in wired networks. The anedyt

to susceptiblenodes. This spread of contagion through ContaE:C%OIS and the _result_s presented _there do_not however apply in
Rur context since (i) the patching rate is assumed constant

can be countered by immunization and healing. Specmcallx, [1], [2], whereas we consider dynamic patching policies

the underlymg vuIn_erab|I|ty u_t|I|zed by the worm, can t!eand (i) [1], [2] consider the final (maximum, resp.) number
amended by installing security patches [1] that immunize . ; .

. : . . . of the infective nodes as the performance metric whereas we
the susceptible, and heal and immunize the infective nOd|ens\iesti ate more general cost functions based on the ldvel o
However, the distribution of the patches burdens the lichite g 9

. . infection as well as the overall bandwidth consumed by the
resources in the network, and hence if not carefully coletdgl y

. dispatchers.
can become a menace itself. . .
: L L . Very few research works have in fact tried to adopt the
We considernon-replicative and replicative settings for

. S ; . : .~ malware propagation models to investigate an optimal dynam
dissemination of the security patches in a mobile wireless o .
S ~countermeasure response based on a quantified cost function
network. In the non-replicative model, a number of mobile . . i .
. . Ih wired or wireless networks; [4]-[6] constitute some rudéa

(or stationary) nodes, referred to as dispatchers, aréopred . : . :
. ) . exceptions. [4] investigates a different counter-meastivat

with the security patch, and deliver the patch to other nod

: . . 67 reduction of reception gain of wireless nodes for slowing
upon contact. The susceptible and infective receptorsesuba wn the spread of malware in wireless networks. Our work

guently become immune to the contagion, and are referrgI ers from [5], [6] in that we consider () both replicagiv
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quadratic functions in [5], [6]. Also unlike [5] we do not use Let 9(t) := u(t)e(t), and letSy := £ x limy_ 00 %, Bi =
any linearization of the system which can be very poor in thex limy_, %, wherelimy_ o % is the node density. Now
context of epidemic behaviour. Investigation of optimaluso according to the results of [9], & grows,S(t), I(t) andD(t)
tions in our context thus require different analytical argants. converge to the solution of the following system of diffeiah

Il. SYSTEM MODEL equatlc.)nk
A. non-replicative dispatch S(t) = —=Bol(t)S(t) — f1I(t)RoS(2) (1a)
A susceptiblenode is a mobile wireless device which is I(t) = Bol(t)S(t) — mB1I(t) Rol(t) — SI(t) (1b)
not contaminated by the worm, yet is vulnerable to infection D(t) = 61(t) (1c)

A node isinfective if it is contaminated by the worm. An .
infective spreads the worm to a susceptible while trangrgitt With initial constraints:
data or control messages to it. The worm &dhan infective 10)=1,, S0)=1-1Iy—Ry, D(0)=0 )
host, i.e., render it completely dysfunctional - such noales
denoteddead A functional node that is immune to the wormand also satisfy the following constraints at all
is referred to agecovered A fraction Ry, of mobile nodes,
referred to aslispatchersare pre-loaded with security patches. 0= 5(0), 1), D), SO +IH+ D) <1 @)
The dispatchers are immune to infection themselves and ar@he network may suffer over time from the infected hosts,
therefore always in the recovered state. The dispatchers csed by the worm to (i) eavesdrop and analyze and/or (i) alte
transmit the patches to the susceptible and infective nadés or destroy the traffic that is generated or relayed by thectefi
immunizethe susceptibles and possibigal the infectives to hosts. An attacker also inflicts cost by killing nodes. Atleac
the recovered state. time ¢, the network incurs a cost at the rate fofZ(¢)) due to
Let the total number of nodes in the network Ve Let the the presence of the infectives, andD(¢)) owing to the loss
fraction of susceptible, infective, recovered and deadesat of nodes through mortality, wherg(.) is a non-decreasing,
time ¢t be denoted by5(t), I(t), R(t) and D(t), respectively. twice-differentiable, convex function af such thatf(0) = 0
Then, S(t) + I(t) + R(t) + D(t) = 1. One can therefore andf(I) > 0 for I > 0, ¢(.) is a non-decreasing differentiable
represent the system using any three of the above states:fwrection of D such thatg(0) = 0.
choose(S, I, D). At the start of the recovery process, that is Recall that there ar®' R dispatchers in alk(t) fraction of
at time zero, some but not all nodes are infectee: 7(0) = them are activated at timg and these scan the media at rate
Iy < 1, and WLoG only the dispatchers are in the recoveredt). Thus the total rate of bandwidth consumed in scanning
state:R(0) = Ry, 0 < Ro < 1, Iy + Ry < 1, and WL0oG no the media at time is directly proportional tee(t)u(t)Ry =
node is deadD(0) = 0. Thus,S(0) =1 — Iy — Ry. 9(t)Ro. The network incurs a cost at raté RyJ(t)) due to
All functional nodes are assumed to roam in a vast 2-fhe above bandwidth consumption, whetér) is a twice-
region of aread with an average velocity. An infective differentiable and increasing function in such thath(0) =
transmits a message to a susceptible with a given prolabilit and 2(z) > 0 whenz > 0. Note that the assumptions
whenever the two are inontact that is, the infective detectson f(.),g(.), h(.) are mild and natural and a large class of
the presence of the susceptible in its transmission rangget) functions satisfy them.
mobility models such as the random waypoint or random The aggregate network cost therefore?s:
direction model [7], Groenevekt al. [8] have shown that T
the time between consecutive contacts of a specific pair of J :/ F @)+ g (D(t)) + h(Rod(t)) dt. 4)
nodes is nearlyexponentiallydistributed whose rate can be 0
represented as/A, wheref is a constant proportional to theThe system seeks to minimize the aggregate cdst) by
communication range and average relative speed of the nodgspropriately regulating the immunization rate functibt)
The worm at an infective node Kills the host (by invokingubject t0:0 < ¥(t) < Ymax for all ¢ € [0, T]. The bounds on
specific codes) after an exponential random time with date(¢) arise sinced < ¢(t) < 1 and0 < u(t) < umax due to
a parameter of the worm. physical constraints of the dispatcher devices. With apipate
A dispatcher comes into contact with another node also aftataling by choice of3;, we can assumé,,., = 1. Thus,
exponentially distributed random time with possibly diffat
parameter3/A. Let the fraction of activated dispatchers at 0<9(t) <1foralltel0,T]. ()

time ¢ be (), and each scans the media at rat¢) (i.e.,  Definition 1: An immunization rate function(.) is called
u(t) is the rate of transmission of scanning packets). Up@h admissible controlif (i) 9(.) satisfies (5), and (ii}J(.)

a contact between an activated dispatcher and another nggepiecewise continuous such that the left and right hand
the security patch is transmitted from the dispatcher to thigits exist at the points of discontinuity. A pair of state
receiver node. If the receptor is a susceptible node, iillsst and control functions((S(.),1(.), D(.)),¥(.)) is called an
the security patch, is subsequently immunized, and it® stat

changes to recovered. If however the receptor is an infectiv 1Throughout the paper, variables with dot marks (654t)) represent their

; ; time derivatives (e.g., time derivative 8f¢)) and the prime signs (e.gf! (1))
the paich may fail to heal it, or, the worm may prevent It%?signate their derivatives with respect to their argunterg., I).

inSta”a_ti(_)n' We capture the above possibility, by intrdm! 2The cost function can also have terms depending on the finakeotration
a coefficientd < 7 < 1. of the infective and the dead nodes.



admissible pairf (i) ¥(.) is anadmissible controand (ii) the analysis, we represent the system using
pair satisfies (1), (2). .

lem. 1: Any admissible pair of state and control functions S,(t) = —hol(S() - AV RHSE) (63)
((S(t),I(t), D(t)),9(t)), satisfies the state constraints in (3)  1(t) = Bol (£)S(t) — wB1I(t)R(¢)I(t) — 6I(t)  (6b)
in [0, 7] interval. Moreover, all constraints except(t) > 0 R(t) = B19(t)R()S(t) 4+ mB19(t)R(t)I(t) (6¢)
are satisfied in thstrict form in [0, T7.

Outline of the proof: First, le6 > 0. The initial conditions
in (2) ensure that all constraints in (3) are strictly met at 0. I(0) = Iy, R(0)= Ry, S(0)=1-1Iy— Ry, 7
except thatD(0) = 0. From (2) and the continuity of the state
functions, S(t),1(t) > 0, in an interval of positive length and as befor® < Iy, Ro, Ip + Ry < 1. Also,
starting from¢ = 0. Suppose this interval ends &t < 7.

But then, eitherS(t;) = 0 or I(t;) = 0, sinceS + 1 < 0 0= 50,10, k1), SO+HIH+RO<L  (§)

over this interval. Thus, from (1af(t) > —(8o + 51)S(t), Note that (6) differs from (1) in only that the equations for
and hence,S(t) > S(0)e~PotAt and similarly, I(t) > S(t) andI(t) have R(t) instead ofR,.

I(0)e= A1+t in (0,t;). However, the continuity ofS, T The resource consumption cost incurred at titnéue to
imply thatS(¢1), I(¢1) > 0. Thus,t; £ T, and hence5, I are the bandwidth consumed in media scanning by the dispatchers
positive throughout. From (1)% (S(¢) + I(t) + D(t)) < 0 at is h (R(t)¥(t)) (instead ofh (Ry9(t)) in the non-replicative

all t € (0,7] sinceS(t),I(t) > 0. Also, S(0)+1(0)+D(0) < case). Thus, the aggregate network cost is:

1. Thus,S(t)+I(t)+D(t) < 1atallt € (0,T]. Finally, since

with initial constraints:

d>0andI(t)>0atallt, D(t) >0atallt>0, from (1c). J(9) = /T[f (I(t)) + g (D(t)) + h (R)I()] dt, (9)
The lemma follows. Wher = 0, the only difference is that 0
D(t) =0 forall ¢ €[0,7]. whereD(t) = 1— (S(t) + I(t) + R(t)) . Here, f(.), g(.), h(.)

Since the state constraints in(3) are never active, we csatisfy the same assumptions as before.
pose an optimal control problem without any state congsain lem. 1 can be readily extended to the replicative case. Thus,
which is, minimization of the cost in (4) through appropeiatthe state constraints (8) are ignored henceforth and thmabpt

choice of admissible paif(.S, I, D), ). control problem can be posed similar to last paragraph of
§l-A.
. =0 . =1 Remarks: Epidemic models (1), (6) demonstrate that in
o 0 both non-replicative and replicative models, the stateadyics

os os are non-linear differential equations and the state fondt{t)
0 0 may be not monotonic.
02 02 Epidemic models similar to (1), (6) have been validated
O o wm w0 e e through experiments as well as network simulations to pi@vi
an acceptable representation of the spread of malware in
mobile wireless networks (see e.g. [10], [11]).
Note that sinceR(t) > R, at all ¢, we can always
(dynamically) choose the value @fep in replicative setting
so thatRdrep is equal toRyYnon-rep and hencehe aggregate
cost under replicative dispatch is no higher than that un-
T e M ™ der non-replicative dispatchdowever, comparably, replicative
Fig. 1: The top figure represents the optimal control and the bottoff{SPatch is more vulnerable to contamination of the patches
figure the corresponding system states as functions of titmedn- themselves as the number of dispatchers may grow exponen-
replicative dispatch wheré(.) is concave. Heref(I) = 10I%, tially. Note that since only the initial dispatchers traristhe
g(D) = 20D* T = 100, fo = fi = 0.2, § = 0.005, patches in non-replicative setting, the system can couhier
Io = Ro = 0.1, h(v)) = 10Rov. Also, Left: 7 =0, Right: m = 1.y, 00¢ relatively easily by securing only these dispatsher
In order to obtain fundamental bounds on the efficacy of
the defense, we assume that the system computes the optimal
immunization rate assuming full knowledge of the attack
B. replicative dispatch parameters, e.g., the killing rafie the spread rates,, 5; and
nealing efficacy of the patch. We also assume that the values
f these parameters do not change with time.

The dynamics of state evolution in replicative dispatc
differs from the non-replicative case in only that once aenoé)
receives a security patch, it can retransmit it upon comtébt
other nodes. Thus, all recovered nodes become dispatchers i
the replicative model, and hence the fraction of dispather We consider the optimal control problem posed by system
grows toR(¢) at timet starting from the initial value oy, dynamics of (1) and cost functional (4). First note that sileed
whereas the fraction of dispatchers continue tofeat all control techniques do not provide the optimal immunization
times in the non-replicative model. Here, for conveniente oate in closed form since the state dynamics (1) is non-linea

IIl. OPTIMAL NON-REPLICATIVE DISPATCH



: : s A. Structure of optimal non-replicative dispatch

0.8 08

o o We now show that the optimal immunization rate function
o o 9(.) follows simple structures:
02 Theorem 1:An optimal immunization rate function(.)
S | N has the following structure:
1) Whenh(.) is concave(t) = 1 for 0 < t < ¢; and
d(t)=0fort; <t <T.
2) Whenh(.) is strictly convexd tg,t1,0 < tg <t; <T:

0s a) ¥(t)=10on0 <t <tp;
. b) ¥(t) strictly and continually decreases o, ¢1);
c) 9(t)=0ont; <t <T.
T T T T MmO Figures 1, 2 illustrate the optimum controls for linear and
Fig. 2: The optimal control and the the corresponding system staeictly convexh(.) respectively. o _
as functions of time for non-replicative dispatch with atisi convex Proof: Letp := 1 Ro(A1S+mA21) which is a continuous
h(.). The parameters are the same as in Fig. 1, excepthftgt= function of time, and by (12)p(7T") = 0. Also, as we prove
10(Ro¥)?. Also, Left: # = 0, Right: 7 = 1. in §111-B,
lem. 2: ¢(¢) is a strictly decreasing function dffor ¢ €
and the aggregate cost function (4) is not necessarilydioea [0, T). _ L
: Now we can rewrite the Hamiltonian in (10) as:
quadratic.

Let ((S,I,D),¥) be an optimal solution. Consider they — F(D+g(D)+(A2—A1)BolS+(A3—A2)dT+h(Ro?)—pd.
Hamiltonian H, and co-stateor adjoint functions A, (¢) to (14)
A3(t) defined as follows: From (13), for each admissible contrland for allt € [0, 77,

H = f(I) + g(D) + h(Ro¥) + (A2 — A1) BolS (10) h (Rod(t)) — @()0(t) < h (Rod(t)) — (t)9(t)  (15)
—B1RoIAN S — w1 Ro¥A2L + (A3 — A2)d1. = J(t) € arg I%nu h (Roz) — p(t)z. (16)
xel0,
. 0H Also, sinced = 0 is an admissible control, using (15),
AL = ~35 = —(A2 = A1)Bol + B1RoIN
. OH / h(Ro¥) — ¥ < h(0) =0 at all ¢. a7)
Ao =——=—f"(I)—(Aa— M)BoS
2 ol Py = 1)fo (12) We now separately consider the cases fha} is concave
+ mB1Ro9 2 — (A3 — X2)6 and strictly convex.
S oH D 1) h(.) concave:Whenh” < 0, at each time, h(Rox) —
3= 7ap Y (D). o(t)z is a concave function aof, and thus a minimum in (16)

is either atr =0 or x = 1. Then,

1, () > h(R).

along with thetransversalityconditions:

M) =0, M(T)=0, N(T)=0.  (12) (18)

Then according to Pontryagin’s Maximum Principle ( [12According to(T) = 0 and the continuity ofp and since
P. 109, Theorem 3.14]), there exist continuous and piedefo) > 0, we havey(t) < h(Ro) over a subinterval that
S,I,D, M1, )2, \s, that (i) satisfy (2), (12), and (i) at every follows from (18) yvithtl = 0. Else, from the continuity o,
t€[0...T] whered is continuous, satisfy (1), (11). Also, ~and the Intermediate Value Theorept(¢) = h(Ro) for some
t € [0,T). But, there can be at most one sughsayt;, by

¥ € arg min H(X,(S,1,D),9). (13) lem. 2. lem. 2 also implies that(t) > h(Ro) for ¢ € [0, 1),
0=v<1 and o(t) < h(Ry) for t € (t1,T]. The theorem follows from
(18).

Relation (13) between the optimum contrél and the 5y, gtrictly convex: :Whenh(.) is strictly convex (i.e.,
Hamiltonian (10) allows us to expressas a function of the ;. > 0), (16) implies that, if-2 (h (Roz) — o(t)z)]._, = 0
state (S, I, D) and co-statg A1, A2, A3) functions in (1) and ay € [0,1], thend(t) = y, gTseﬁ(t) € {0,1). Thgﬁ,y
(11), resulting in a system of differential equations immog
only the state and co-state functions, and not the control 0, © < Roh/(0)
function. Using the initial and final values on the state and  — AW "Yp/Ro), Rol'(0) < ¢ < Rol'(Ro) (19)
co-state functions, (2) and (12) respectively, this systam 1 ’ Rol'(Ro) <
be solved numerically to obtain the optimum state and cte sta ’ 0 0) = @
functions, which can now be used to computefiyia (13), Note thato(T) = 0 < Ryh'(0), sinceRy > 0 andh/(z) > 0
(10) and (ii) J () via (4). for all 2. Also, sinceh(.) is strictly convex,h/(.) is a strictly



increasing function - hence, sindg& > 0, h’'(0) < h'(Ry). First, let \y(t*) — A1(¢*) = 0. Now, from (11) and (14),
Thus, following lem. 2, there exisp,t1, 0 <ty < t;1 < T, S (£F) — (£
such thaty > Roh/(Rp) on 0 < t < o, Roh/(0) < ¢ < (A2(£77) = M (7))

Roh/(Ro) onty <t < ty, andp < Roh'(0) ont; <t <T. = —f'(I) + 7P1RoIA2 — (A3 — X2)d — B1RoIN
The theorem now follows from (19). [ | H 1 D 1

W Tollows from (1) —7+$+&1)4—?(}1(}%019)—@9)—1—(/\3—/\2)5

1 H —g(D
The state and co-state functions, and henceglienction, 1
are differentiable at each e [0,T) at which thed function —(1 = m)B1Ro9N + f(h(Roﬁ) — @0)
is continuous. Since) is piecewise continuous ang is (22)
continuous, the lemma follows if we can show that< 0 N o
at each such. Sincef,, Ry > 0, at each such € [0,7), From the supposition ot and continuity of\; (¢), Ay (t*7) >
" 1 4 0. Now, f(I) — f'(I)I < 0 because of Property 2, since

- —o=MS+MS+7hI+7AI  f(x) is convex, f(0) 0 and I > 0 at all ¢t by
PRy PRy dt , lem. 1. Thus, from (5),(17),(21) and (22), we observe that
= =2 = A)BolS = (1 = m)MBolS — mf'(I)I —mAs6l [ (), — \,)]|,-+ < 0. This contradicts Property 1. Hence,
The right hand side is negative at edob [0, T) from lem. 1, (A2(t"7) = A (#"")) > 0. Now let )‘1(151: 0. ben from
since0 < 7 < 1,8, 81 > 0,8 >0, f'(z) > 0 at eachz, and (11), Aaf= = =(A2—A1)Bol. Since(Ao (£77) =i (£77)) > 0,

because: and from lem. 1,\;(¢**) < 0. This contradicts Property 1,
lem. 3: For all 0 < ¢ < T, we havels > 0, A, > 0, and and hence negates the existencé*ofThe lemma follows.m
(A2 — A1) > 0.
Proof: First, A3(T) = 0 and at anyt € [0,7] at which IV. OPTIMAL REPLICATIVE DISPATCH
9 is continuous A3(t) = —¢'(D(t)) < 0. Thus, sinced is We seek to find an admissiblé(t) to minimize the cost

piecewise continuous\s(¢) > 0 for all 0 < ¢ < T. We prove function in (9) for the state dynamics (6) and initial staddéues
the other two inequalities using the following real anaysi(7). We again apply Pontryagin’s Maximum Principle. Define
properties (which we state without proof due to lack of spacdhe Hamiltonian as:
Property 1: Let ¢(¢) be a continuous and piecewise differ- H = f(I)+ g(D) + h(R9) + (A2 — M\)BoIS
entiable function oft. Let ¢)(t1) = L and(t) > L for all “ (O = A9)BORS — (o — Ag)TBr0RI — Apdl
t € (t1...to]. Ther® () > 0. 1= AR 27 AT 208
Property 2: For any convex and differentiable functionwhereD =1 — (S + I + R), and the co-state functions as:

(23)

v(z), which is0 atz = 0, v'(z)x — v(z) > 0 for all z > 0. . OH
The system isautonomousi.e., the Hamiltonian and the A1 = — 2= = —(%2 — A1)Bol + (M1 — A3)B19R + ¢'(D)
constraints on the control (5) do not have an explicit depen- OH )
dency on the independent variableThus, [13, P.236] M=—or = —f(I) = (A2 = A1) BoS + (A2 — A3)mB1IR
H(S,I,D,9, A1, 2, A3) = constant. (20) + X260 + ¢'(D)
. 0H
Thus, from (12),H = H(T) = f(I(T)) + g(D(T)) + Ag = = (/\1 - )\3)&195 + (/\2 - )\3)7Tﬁ119[

h(Ro¥(T)). Also, D = 61 > 0, and g(.) is a non-decreasing OR

function, thusg(D(T)) > g(D(t)) forall ¢ € [0...T]. Hence: — OW(9) +4'(D)

(24)
H —g(D(t)) = fL(T)) + h(Rod(T)) > 0. (21) and the transversality conditions as:
The positivity follows since (i) according to lem. I(T") > 0 MA(T) = Ao (T) = Aa(T) = 0 o5
and hencef (I(T)) > 0 and (i) h(Ro¥(T)) > 0. 1(T) = 2e(T) = As(T) = 0. (25)
We proceed in the following two steps: Then according to Pontryagin’'s Maximum Principle ( [12,
Step-1. (A2(T) — M (T)) = 0 and A\y(T) = (A(T) — P. 109, Theorem 3.14]), there exist continuous and piece-
}\1(T_)_) = —f'(I(T)) < 0. Also, \y(T) = M(T) = 0 wise continuously differentiable state and co-state fionst
and A\ (T) = —Xo(T)BoI(T) > 0. Therefore,\i(t) and S, 1, R, 1, A2, A3, that (i) satisfy (7), (25), and (ii) at every
(A2(t) — A\1(t)) are positive in an open interval of nonzerdg € [0...7] whered is continuous, satisfy (6), (24). Also,
length ending afl. . v
Step-2. Proof by contradiction. Let* > 0 be the last time v € arg 02921 HQ (51, R), 9). (26)
beforeT at which (at least) one of the other two inequality
constraints is active, i.e., A. Structure of optimal replicative dispatch
fort* <t <T: A(t)>0, (A2(t)—Ai(t) >0 In this section, we show thdahe optimum control has the
X same structure as under non-replicative dispatch. Speadlific

and, (1) =0 OR Ax(t) — M (t7) =0 Theorem 1 holdsNote that the transition froml to 0 in

3For a general functions(x), the notationsj(x;) ande(x; ) are defined the ban_g-bgng qptimal control should invaria_bly occuriearl
aslimg |, ¥(x) andlimgt,, ¥(z), respectively. for replicative dispatch ( for concavk(.)) This is because



in replicative dispatch the number of dispatchers increase We only need to show that the right hand side is negative

exponentially fast. Thus, more infectives and susceptible at eacht € [0, 7). Note thatR(h'(R) — h/(R9)) = 0. This
healed and immunized respectively in shorter durationallo follows readily forh” = 0 as thenh/(R) — h/(RJ) = 0 for
ing for smaller initial period of maximum rate immunizationany value ofd. Whenh” < 0, as we argued in (30) and after,
Also, the exponential growth in the number of dispatcherg m& € {0,1}; now for ¢ = 1, h'(R) — h/(RY) = 0 and for

result in a huge cost due t, if it is not shut down to zero ¥ = 0, R = 0. The negativity follows from generalization

earlier.

of 1 for the replicative case and lem. 4.

In the rest of the subsection, we outline the proof of 2) h(.) strictly convex: When h(.) is strictly convex (i.e.,

Theorem 1 for replicative dispatch.

Proof: Define ¢ := (A — A3)B1RS + (A2 — A3)7 BRI,
which is a continuous function of time, and from (25)T") =
0. The Hamiltonian in (23) can be rewritten as follows:

H = f(])+g(D)+(/\2—/\1)50]S—)\251+h(R19)—§019. (27)
From (26), for each admissible contré] andVt € [0, 7],
h(R($)0(t)) — e()d(t) < h (R()D(H)) — @(t)2(t), thus
9(t) € arg m[%)nl] h(R(t)x) — o(t)z. (28)
xel0,

Also, sinced = 0 is an admissible controla(RY) — v <
0 at all ¢.

R > 0), (28) implies that, ifa% (h(R(t)z) — ¢(t)z)|,y = 0
atay € [0,1], then¥(t) =y, elsed(t) € {0,1}. Thus,

0, £ < 1'(0)
9= LW=1(2), K(0)< % <W(R) (32)
1, W(R) < %.

Note thaty(T)/R(T) = 0 < R/(0), from the fact that
o(T) = 0, lem. 4 and sinceé/(z) > 0 for all . The rest
of the proof is identical to that for strictly convek(.) in
§l11-A2 provided we can show tha) = (¢/R) is a strictly
decreasing function of time. Sinakis piecewise continuous,
and+ is continuous, it suffices to show thatis negative at

As in the non-replicative dispatch, we consider the casas thiny ¢ < [0, 7') at whichd is continuous. At at any such

h(.) is concave and strictly convex separately. In both, we will
use the expression fap at eacht at which is continuous,
which we next obtain:

¢ = (M —A\3)B1RS + (A2 — A\3)mB1RI + (M1 — \3) 31 RS
+(Ag = A3)TBLRI + (A1 — A3)B1RS + (M2 — A\3)7BL RI

replacing from (6), (24) and simplifiying yields:

= —Bof1(1 = m)RIS(A1 — A3) — BoSriRIS(A2 — A1)

—nB1f (I)RI 4+ w1 RISNs + Rh (RY).
(29)

We will also use the following key properties of the co-
state functions, whose proof is similar to that of lem. 3, and?l
is omitted for brevity.

lem. 4: For all0 < ¢ < T, we have(Aa — A1) >0, (A —
)\3) >0 and )3 <0.

1) h(.) concave:Whenh(.) is concave (i.e.h” < 0), a
minima in (28) is either at = 0 or x = 1 at each time, and
this minima is unique unless(R) — ¢ = 0. Then,

:{0, o —h(R) <0

(1]

(3]
(4

(5]
1, p—h(R)>0 (30)
For the case ofi” < 0, wheneverh(R) — ¢ =0, ¥ € {0,1}.
Let ¢ (t) = ¢(t) — h (R(t)). Becausep(T') = 0 and from (30)
and sinceh (R(T")) > 0, ¢ < 0 over a subinterval that extends
to 7. We next show that for alt € [0,T), #(¢t) strictly
decreases with increasedinThe rest of the proof is identical
to that for concavé:(.) in §llI-Al (with ¢ instead ofp and
0 instead ofh(Ry) in the arguments).
Sinced is piecewise continuous ang h, R are continuous, [10]
it suffices to show thaf is negative at any [0, T') at which
¥ is continuous. Referring to (29), at any such

V=¢-N(RER
= —Fof1(1 —m)RIS(M — A3) — BoSiRIS( A2 — A1)
—mB1f (I)RI 4+ w1 RISNs — R(W (R) — I/ (RY)) (31)

(6]
(7]

(8]

El

[11]

[12]

[13]

¢—R%  {negative termh + R[I/(R)) — £]
R - R

=

The last equality follows from (29), and the negative term is
—[‘30[‘31(1 - W)RIS(/\l — )\3) — ﬂoﬂlRIS(/\Q — )\1)

—wB1f'(I)RI + nB1RISAs. The negativity of this term is
established by generalized lem. 1 for propagative case and
lem. 4. Now, from (32),R[h/(R¥) — %] < 0. Hence,y) < 0.

[ |
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