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Abstract— This work focuses on decentralized decision mak- First, determining which type of information should the
ing in a population of individuals each implementing the DMs send to the fusion center. Second, computing optimal
sequential probability ratio test. The individual decisions are decision rules both for the DMs and the fusion center where
combined into a decentralized decision via an aggregation rule . . L . .
chosen from a family of aggregation rules, denoted ag out of N opumahty refers to_ maximizing accuracy. One ke_y implicit
rule. We study how the population size affects the performance assumption made in these works, is the assumption that the
of the decentralized decision making, i.e., the decision accuracy aggregation rule is applied by the fusion center only after a
and time. In a group applying the q ouf of N, a global decisionis  the DMS have provided their local decisions.
reached as soon ag out of the N decision makers agree on an The work presented in this paper, relaxes the assumption
answer. Under the assumption of measurement independence . . . -
among individuals, we introduce a novel numerical method that on the local de_C|_5|ons. Indeed_ the fusion Center might peovi
allows the ana|ysis of the decision accuracy and time of a group the global deC|S|0n mUCh earllel’ than the time needed fOI’ the
of decision makers. We present the numerical method and show local decisions to be made by the whole group. Our main
a preliminary sets of results that can be obtained using such a concern is the exact computation of both the accuracy of
method. the final group decision as well as the expected number of
observations required by the group, in order to provide the
final decision. In this work we accomplish these objectives b

d T_h|_s workka|msDt'(\)A unger?tatl:]d how grouzmg |nd|V|dua_I roposing exact expressions for the conditional probadsli
iqsh'(m mat edr.s‘.((j I) a echs e”sptge dan_ _accgrr;csy WIBE the group giving the correct and wrong final decisions, at
which these individuals reach a coflective decision. £ any time instant. We perform this analysis for a wide set of

of problgms. has a rich history a.”d some of [ts \{ariation§a|ues ofq and for varying group sizes. This represents the
are studied in the context of distributed detection in Sens?najor contribution of this paper

ne:woris [é]’ [27]' [3]. [4], [5] and Bayesian learning in sat We provide in the first part of this work expressions that
networks [6], [7]. relate the probabilities of a network making a decision as a

In this paper we consider a group of individuals each function of the network size and fusion rule. In the second

of them individually implementing the standard sequenti art of this work. we use these expressions to charactérize t
probability ratio test (SPRT) with the purpose of decidin ; 1S Work, we us xP !

) o adeoff between the accuracy and the expected time and the
between two hypothesif, and H,. We refer to the individ- y P

. . group size and the chosen aggregation rule. For illustratio
uals asdecision makersvhich we denote as DMs hereafter., o congider a discrete distribution of the Koopman-Darmoi-
In our setup no-communication is allowed between the DM

0 DM h ided a decision it cates it t Pitman form. We find that, for a fixed value @f and for
nce a as provided a decision It communicates 1t to fﬁcreasing values of, the accuracy improves and the ex-

fusion cepter. The fusion C(_er_ner C.O"eCtS the various b pected number of observations required to provide a decisio
and prqwdes a global decision via an qggregatlon rule. increases. Similarly, for a fixed value gfand for increasing

In this paper we focus on the fa”."'y of the O.Ut of values of N, the accuracy improves and the expected number
N aggrggatlons ruIes_. _Loosely speaking, the fusion pentg; observations required to provide a decision increases. |
makes its global decision as soon as one hypothesis 98tHer words, the greater the size of the group of DMs and the

g Votes in its favo_r. Forg ranging from1 to [N/2] +1, value ofg are, the more accurate and slower the decentralized
and for distinct sizes of the group of DMs, we studySF,RT algorithm is

the performance of the decentralized decision making, i.e.

. " The rest of the paper is organized as follows. In Section I
the decision accuracy and expected number of observatlo\% review the standard SPRT. In Section Il we formally
required to provide a decision.

The f K | in thi . lated tintroduce the problem studied in this paper, i.e., the decen
the :nerirgﬁgggre\évinarrfaﬁzye pIr:]\perlsS iﬁafheer Ilist,e:gtﬂrz strezlized SPRT with theq out of N aggregation rules. In

' tion 1V t | ical meth ful

for instance [8], [1], [9], [2]. [10], [3], [11] and referers ction IV we present our novel numerical method usefu

therein. The f tth K il two-fol 0 analyze the problem of interest. In Section V we provide
erein. The focuses of these works are mainly tWo-10105me numerical results. We conclude in Section VI.
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we follow the treatment in [12]. andn;, how can we compute the values of tRsayH; | Hy,
]P’[SayH()|H1], E[T‘H()] and]E[T|H1}7
We start by observing that an exact computations of those
SPRT algorithm has been developed in 1943 by Abragsrobabilities and expected values would be possible if we
ham Wald for the purpose of deciding between two simplenew the probabilities of crossing the boundaries at any
hypotheses. Suppose that the random varidbleas a dis- time ¢ € N!. Indeed in such case, if;;(t) denotes the
tribution f(x; #) and that we want to test the null hypothesigorobability of decidingH; at time k, given thatH; is the
H, : § = 6, against the alternative hypothedi : § = 6,.  correct hypothesis, i.ep;|;(t) := P[sayd;|H;, T = t], from

A. Classical Wald’s analysis

Suppose the observation$l), z(2),z(3), ..., are taken one standard probabilistic arguments it follows that
at a time until a decision is made and assume that they are
independent, i.eE[z(i)x(j)] = E[z(d)|E[z())] if ¢ # j. We PlsayH, | Ho) = Zpuo ©)
define the log-likelihood ratio associatedttth observation P}
z(t) as oo
A(t) = log f(:c(t),@l)' E[T|Ho] = (pojo(t) + prjo(t))t. 4)
f(x(t), 60) =1

The sum of the log-likelihoods up tois denoted by\(t) =  Similar formulas apply foi?[sayH,|H,] andE[T'|H,].
Z;Zl)\(j). For the SPRT, sampling continues as long as The author in [10], provided a recursive method for
no < A(t) < m, wheren, and n; are two pre-assigned computing the exact values of these probabilities which can
thresholds. Sampling is stopped the first time this inegali be applied to a broad class of discrete distributions, pedgi
is violated. If A(t) < 7o, then we decide fof = ¢,. If when X is a discrete random variable of the Koopman-
A(t) > m1, then we decide foé = 6;. It can be shown that, Darmoi-Pitman form. The approach we will take later in
for any values ofj, and;, the SPRT algorithm provides a analyzing a group of DMs assumes the knowledge of the
decision almost surely. quantities {p; ; (t }t ;» 6j = 1,2. We proceed now by
The goal is to set the thresholgs and; in such a way reviewing the procedure pfOPOSEd in [10] for computing

that the probabilities of misdetection (sayiify when H;  these terms.

is correct, i.e.P[sayHy|H;]) and of false alarm (saying/, Let X be a discrete random variable of the Koopman-
when H, is correct, i.e.P[sayH;|H,]) are equal to some Darmoi-Pitman form; that is

pre-assigned valueg,, and p; (the subscriptsm and f _ .

refer, respectively, to misdetection and false-alarm)ldwa f(x,®) :{ h(x)eXp(B(eg)Z(w) A0)) :]: ;;5

proved that in order to guarantee the following probalidist

constraints whereh(z), Z(x) and A(6) are known functions and where
Z is a subset of the integer numbefs In this section
Plsayflo|Fh] = pm  and  Plsayii|Hol =ps (1) o shail assume that () g: z. It is worth noting that
the values ofj)y andr; must satisfy the following conditions: the Bernoulli, binomial, geometric, negative binomial and
no > log 1 p'” andn, < log :=2=_ Clearly, using equalities Poisson distributions are some widely used distributiohs o
in the above inequalities, that | is, the Koopman-Darmoi-Pitman form, satisfying the condition
Z(x) = z. For distributions of this form we have that

1 m
and —log— ™ (2

Pm
L —ps Ps A(t) = (B(61) — B(6ho))x(t) — (A(01) — A(6o)).
one obtain[sayH,|H1] < p,, andP[sayH,|Hy] < py. The
classical Wald's analysis computes the valuesrfpandn;

no = log

One can easily see that sampling will continue as long as

according to the formulas gi\{en in. 2). _ no + t(A(61) — A(6)) ¢ _
Observe that the expressions in Equation (2) are exact B(6,) — B(6y)) < Zﬂﬁ(l) <
if, upon stopping with¢ observations, eitheA(t) = ny or i=1
A(t) = m. However some overshooting of the boundaries m + (A1) — A(%)) (5)
generally occurs. The distribution of the overshooti(@) — B(61) — B(bo))

m andno—A(t), quantify the accuracy of the approxmanonsfOr B(61) — B(f,) > 0: if B(6)) — B(6y) < 0 the
introduced by formulas (2). inequalities would be reversed. Observe tlﬁﬁ.:lx(z‘)

B. Computation of accuracy and decision time for prelS @n integer number. Now lefy(t) be the smallest

assigned thresholds, and 7, : discrete distributions mteger greater than{ro + ¢(A(61) — 4(90))} /(B(6h) —
B(6y)) and let,(t) be the largest integer smaller than
In the previous subsection we have seen how the classm{ +t(A(61) — A(60))} /(B(61) — B(6)). Sampling will

Wald’s analysis provides simple formulas for setting th%ontlnue as long agy(t) < X(t) < 7%1(15) where X (t) =
values ofnyg, n; in order to meet pre-defined requirements o o

on the prObab”'t'eS of error . In th.IS SUbse(_:t'qn we want to 1By conventionN denotes the set of positive integer numbers, Ne=
address the reversed problem: Given a-priori threshglds {1,2,3,...}



Si_, z(i). Now suppose that, for an§/c [7jo(t), 71 (t)] the
probability P[X (t) = ¢] is known. Then we have

71(t)
PIX(t+1)=(H]= > f(l—j;0:)PX(t) = j|H,

J=o(t)

(6)
and
71 (t) 0
prit+1) = Y > PlX(t) = jIHif(r;6;)
J=mo(t) r=m(t)—j+1
n1(t)  Mo(t)—j—1
poi(t+1)= > PX(t) = j|H]f(r; 6:)

()

Starting withP[X'(0) = 1] it is possible to compute recur-
sively all the quantities{p;;(¢)},—, andP[X'(t) = ¢], for
anyt € N, le [ﬁO(t)7ﬁl(t>]v and {pzh(t)}foil

IIl. DECENTRALIZED SPRT:PROBLEM SETUP

The general setting of the hypothesis testing problem we
analyze in this paper is described as follows. Consider a

group of N decision makers which are repeatedly observin%t at

a random variableé of distribution f (z, 8), with the purpose
of choosing between the two hypothesdig : 8 = 6, and
H, : 6 = 0;. Suppose each decision maker is individually
implementing the classic SPRT, reviewed in Section II-A,
with the assumptions that

(i) all the decision makers have the same threshalds
andny;

(i) no-communication is allowed between the decision
makers;

(iii) the probability distributionsf(z, 6y) and f(z,6;) are
known a-priori; and

(iv) the observations taken, conditioned on either hypothe
sis, are independent in time as well as from decision
maker to decision maker.

Once a decision maker arrives at a final local decision, it
communicates it to a fusion center. The fusion center cisllec
the messages it receives keeping track of the number of
decisions in favor ofH, and in favor of H;. A global
decision is provided according to @ out of N counting
rule: roughly speaking as soon as one of the two hypothesis,
say H;, receivesq local decisions in its favor, the fusion
center globally decides in favor df;. We refer to the above
framework as to thg out of N decentralized SPRT

Initialization

. All variables A;, @ € {1,...,N}, and
Count_, Count, are initialized to0, i.e., A;(0) = 0,
ie{l,...,N}, andCount_(0) = Count(0) = 0.

State iteration (Decision Makers): At time ¢ € N, for

eachi, if A;(t —1) € [no,m], thei-th DM performs
three actions in the following order:

(1) DM ¢ takes a new measuremen(t) and computes
the log-likelihood

f(zi(t),61)

Ailt) = log f(zi(t),60) ®)
(2) DM i updates the variabla; by
Ai(t) = As(t — 1) + Xit). )

(3) DM i compares\;(t) with the thresholds), andn;.

In case either\;(t) < no or A;(t) > 11, DM i sends
a message; to the fusion center to communicate its
local decision; specifically

Uiz{

After having send its message thei-th decision maker
stops running its SPRT algorithm.

-1
+1

it A;(t) <o
it Ay(t) > .

e iteration (Fusion Center): If at time ¢t € N the

fusion center has not yet provided a global decision,
then it performs two actions in the following order:

(1) it updates the variable€'ount, and Count_
according toCounty(t) = County(t — 1) + ny(t)
and Count_(t) = Count_(t — 1) + n_(t) where
the variables: (t) andn_(t) denote, respectively, the
number of messages equal td and —1 received by
the fusion center at time

(2) it checks if one of the following two situations is
verified

Count(t) > Count_(t)

(i) { Count(t) > q (10)
.. County (t) < Count_(t
(3) { Counttgt; >q " (11)

If (¢) is verified the fusion center globally decides
in favor of H,, while if (i7) is verified the fusion
center globally decides in favor df,. Once the fusion
center has provided a global decision theut of NV
decentralized SPR¥tops.

We introduce now four notational definitions that will be
useful throughout all the paper. Given a group\dfecision

Next, we formally describe our setup. L&t denote the makers and a positive integar 1 < ¢ < IN/2] + 1, we
size of the group of decision makers anddebbe a positive denote by

integer such that < ¢ < | N/2| + 1. Then theq out of N
decentralized SPRE defined as follows:

Processor states: For each: € {1,..., N}, thei-th DM
stores in memory the variablg; and two pre-assigned
values for the thresholds, and,; the fusion center
stores in memory the variabl&€Sount_ and Count .

(iy T the random variable accounting for the number of

iterations required by the out of N decentralized
SPRTto provide a decision, i.e.,

T = min {¢ : eithercase(10)
or case(11) is satisfied



(i) pi;(t; N,q) the probability of deciding, at time, H;  either Count () > q or Count_(t) > q holds true. Hence

given thatH; is correct, i.e., one of the two conditions in (11) will hold. [ ]
In the rest of the paper we will assume the following two
pi|;(t; N, q) := P [Group of N DMs says properties.

3 _ _ Assumption IlIl.1 The size of the group of DMs, i.€\, is
(iit) pm;n,q @aNdpy;n,q the probability of mis-detection and odd and the integey is such thatl < ¢ < |N/2| + 1.
of false-alarm, respectively, i.e., _
IV. THE ¢q out of NV decentralized SPRTANALYSIS OF

ACCURACY AND DECISION TIME

N
m;N,q +— t7N7 . . .
Pmiloq ;pou( ) The goal of this section is to analyze the accuracy and

N the expected decision time for tlyeout of NV decentralized
DfN.g = Zpuo(t;N q); (13) SPRT The key idea_i_s_ to provide a|j gfficient method to
— compute the probabilitiep;;(t; N,q), i,7 = 0,1. These

(V) E[T|H;, N,q| the average number of iterations re_probabilities, using Equations (13), (14), will also allda
v estimate the accuracy and the expected time.

quired by the algorithm to provide a decision, given™|n gection II-B we illustrated a recursive procedure to
that H; is the correct hypothesis, i.e., calculate the probabilities of giving the right and wrong
oo decision, for the standard SPRT algorithm with only one
. . . decision maker. Intuitively one would expect that it is pess
E[T|H;, N,q| := (N, At N, Q). 1S
7l al =D _(poy(t: N ) + pris(t: N, 0)) ble to compute the probabilitieép,; (t; N, q)},°, , i.j =
(14) 0,1 in an analogous way. Indeed, suppo is a

L . ... random variable of the Koopman-Darmoi-Pitman form
Observe thatp;;(t;1,1) coincides with the probability 5,4 assume that, for a givetpl € N, the probability

p;1;(t) defined in Section 1I-B when only one DM is running P[AL(t) = ¢1,...,AN(t) = fy] is known for any N-
SPRT. For ease of notation we denote jy;(¢) the case tuple (¢1,...,0x) € [io(t), 71 (t)]" , wherejo(t) and i, (t)
when N = ¢ = 1, i.e,, p;;(t;1,1). Moreover, when there are defined as in Section II-B. Then, for any-tuple
is no risk of confusion, we might drop some argument§/s,....0y) € [fo(t+1), 7 (t + 1)}N, one can compute
from the definitions in (ii), (iii), (iv) (e.g. denote; ;(t; N) the probabilityP [Ai (¢t + 1) = /y,..., Ax(t + 1) = {x] ac-
rather tharp; ; (t; N, ¢)). We are now ready to formulate the cording to the formula

t=1

problem we address in this paper. PA(t+1)=01,..., An(t+1) = Ox] = (15)
71(t) 71(t)

Problem 11l.1 Given a group ofV decision makers running Z Z P[A1(t) = j1,...,AN(t) = jn] X

the ¢ out of N decentralized SPRT algorithrto decide  ji=no(t)  in=m0(t)

between two hypothesi®, and H;, with two pre-assigned XP[A(E+1)=0—j1,...,An({t+1) =In — jn]

values for the thresholdg andr;, estimate the probabilities
of mis-detection and of false-alarm of the network, i.e
PmiN,g» Pf:N,q TE€Spectively, and the average number o
iterations required to provide a decision, i.&[T|H;, N, q].

The above formula can be viewed as thedimensional
'Fxtension of the formula in Equation (6). Clearly, proviglin
the correspondingV-dimensional extensions for the formu-
las in Equation (7), one can also calculate the probatslitie

We will focus on the above problem in the next twopol;(t + 1;N,q) andp;;(t + 1; N, g). In this way, starting
Sections, both through theoretical and numerical reswks. from the initial condition [A;(0) = 0,...,An(0) = 0] =
end this Section by stating a desirable stopping property df one can iteratively compute all the elements of the set
the ¢ out of N decentralized SPREIgorithm, whenN is  {7:;(t; N.@)},_,, 4,5 = 0,1. Observe that, following the
odd andl < ¢ < [N/2] + 1. above approach, the number of variables that must be kept
in memory at any time is at Ieast[ﬁ%t) - ﬁ(()t) + 1]%; this
Proposition 1.2 Let N € N be odd and letl < ¢ < quantity increases exponentially with the size of the grotip
|N/2] + 1. Then theq out of N decentralized SPRT DMs and this makes the computational effgort required for the
algorithm provides a decision almost surely. computation of the quantitie§p; ; (t; N, q)},_, , i,5 = 0,1
intractable even for smalN.
Proof: It is well known that the classic SPRT reviewed In what follows we provide a more efficient way of
in Section 1I-A provides a decision almost surely. Since&eomputing the probabilities{pi‘j(t;N, q)}zl,i,j = 0,1,
in the ¢ out of N decentralized SPRTalgorithm each that requires keeping in memory a number of variables which
decision maker run a SPRT algorithm independently from thecales only linearly with the number of DMs. We carry
other decision makers, there exists almost surely-tuple on under the assumption that the quantit{esu(t)}, ie.,
(t1,...,ty) € NV such that the-th decision maker provides the probabilities for the standard SPRT with one DM, are
its decision at time;. Let¢ := max{¢; : 7 € {1,...,N}}. known a-priori. In particular we assume that they have been
Since N is odd, thenCount. (t) # Count_(t). Moreover computed by the procedures illustrated in Section II-B.
sinceq < |N/2] + 1 and Count (t) + Count_(t) = N, Let us start by introducing some useful quantities.



Define the probability functiorv : N x {0,...,¢ — 1} x  while, fort > 2, we have that
{0,...,g — 1} — [0,1] as follows: given a group ofy + s;

decision makersq(t, so, s1) is the probability that pija(t; Ny q) =
H ] . .. -1 ¢g—1
i) all the so+s; decision makers have provided a decision . N
0 up to til?net? and b = <S1 N SO>0<(L‘ — 1,50, 51)B1)1(t, 50, 51)+
(i) considering the variable€ount_ and Count, re- SOZOSFFN/%
stricted to this group ofsy + s; decision makers, N\ _ 1 S\G(t 18
Count_(t) = sp and Count (t) = s;. * Z 2s a(t —1,9)B(t, ). (18)
Define the probability functiom : Nx {q,..., [ N/2]} — -
[0, 1] as follows: given a group dfs decision makersy(t,s) @n
is t_he probability thqt _ B popi (N, q) =
(i) all the 2s decision makers have provided a decision up 1 g-1
to time ¢; and ZZ( N )a(t 1, 50, 51)Bo/1 (L, 50, 1)+
! = - 1,90,°1 320591
(ii) there existst < t such that, considering the variables a0 =0 \S1 150 o
Count_ and Count restricted to this group oV — IN/2]
(s0 + s1) decision makers + Z <2 )a(t —1,8)Bo(t,5). (19
e Count_(7—1) < gandCount (T —1) < g; s=g V8

N Coum’m,__ Coun,tJr(T) zgforallr 7. Proof: The proof that formulas (16) and (17) hold
Define the probability functio,; : Nx{0,...,¢ =1} X e follows trivially form the definition of the quantities
{0,...,¢—1} —[0,1], 5 = 0,1 as follows: given a group of B111(1,0,0) and By (1,0,0).
N- decision makers, ; (¢ is the probability '~ a fac e (18 i
(so+s1) decision makers ;(t, so, 1) is the probability g far as formulas (18) and (19) are concerned, we provide
that the proof only for formula (18), since formula (19) can be
(i) no decision makers have provided a decision up to timgroved in a similar way. We start by providing three useful
t—1; and definitions.
(i) considering the variable€ount_ and Count re- First, let £, denote the event that the decentralized SPRT

stricted to this group ofV — (s +s1) decision makers, jth the q out of N rule provides its decision at timein
Count_(t)+sg < County(t)+s1, andCount (t) > favor of Hj.

q. Second, forsy and s; such thatd < sg,s17 < g — 1, let
In a similar way it is possible to define also the probabditie £, ,, ; denote the event such that
Bojj» 7 =0,1. - (i) there ares, DMs that have decided in favor df, up
Define the probability function g;; : N x to timet — 1;
{g,...[N/2]} — [0,1], j = 0,1 as follows: given a  (jj) there ares; DMs that have decided in favor df; up
group of N — 25 decision makerg, ;(t, s) is the probability to timet — 1;
that (iii) there exist two positive integer numbeg andr;, such
(i) no decision makers have provided a decision up to time  that
t—1; and o So+710<s1+rands; +r; >q.
(i) at time ¢ the number of decision makers providing a « at timet, ro DMs decides in favor off, while r;
decision in favor off; is strictly greater of the number DMs decides in favor off;

of decision makers providing a decision in favordg. Third, for ¢ < s < |N/2], let E,, denote the event such
In a similar way it is possible to define also the probabiditie that '
Boyj» 3 =0, 1'_ . (i) 2s DMs have provided their decision up to time- 1
The 'fp'llowmg Proposﬂ;gn shows how to' compute the balancing their decision, i.e., there exists< t—1 with
probabilities{p;; (t; N, q) },_, , i,j = 0,1, starting from the the properties that, considering the variabfésunt_
above definitions. and Count restricted to thes@s DMs
e Count_(7) < q, Count, (1) < g, for1 <71 <
T —1;
o Count_(71) = County () for 7 <7 <t—1,
o Count_(t—1) = County(t —1) = s.
(ii) at time ¢ the number of DMs providing their decision
in favor H; is strictly greater than the number of DMs
p11(1; N, q) = B111(1,0,0), (16) deciding in favor ofHy.
Observe that

p0|1(1;Na Q) = ﬁ0\1(11070)7 (17) Et - (0<5075L;|<q1E50731’t) U <q§S§LﬁN/2j ES,t) .

Proposition IV.1 (q out of N rule: a closed form expres-
sion) Consider the decentralized SPRT with theout of

N rule for a group of N decision makers. Under Assump-
tion Ill.1 and assuming, without loss of generality, thidf

is the correct hypothesis, then for= 1 we have that

and



Since the eventd, s, + 0 < sg,s51 < ¢ — 1, and E;;, wheres = sg+s; andm = min{j+s; —so—1, N —sg+
g < s < |N/2]| are all disjoint and independent, we cans; — j}.

write that Finally the probability 311 (¢, s) is given by
PE)J= Y  PlEgedt+ >, PB4 (20) N=2s g\
0<s0,51<q—1 q<s<|N/2] Bin(t,s) = > ( ; )piu(t)x (27)

Observe that, according to the definitionsodf — 1, s, $1), _ =t
ot — 1 3 ' (N =25 =5\ —25—i—j
a(t—1,s), Bij(t, s0,51) and By1 (¢, s), provided above, 3 < ; J)p01(t)(l o (8) = o (8)) N2
N i=0

P[Esy syt = a(t—1,sq,81)011(t, s0,s1) (21)
[Eso.o1.] <S1+So) ( 0 £1)Pn(f, 50, 51) wherein = min{j — 1, N — 2s — j}.

and that The expressions fofl; (t, so, s1) and Bou(t,s) are ob-
N - tained by exchanging the roles ofi|;(t) with pg, () in
P[Es ] = <2s) a(t —1,s)B11(t,s). (22) Equations(26) and (27).

Plugging Equations (21) and (22) into Equation (20) con- The proof of the above Proposition is omitted for the lack
cludes the proof of the Theorem. m of space. We refer the interested reader to the document
Formulas, similar to (16), (17), (18) and (19), canavailable atP].
be provided for computing also the probabiliies Now we describe some properties of the above ex-
{pijo(t; N, q)}:i1 ,i=0,1. pressions in order to assess the computational complexity
As far as the probabilities a(t,sg,s1), af(t,s), required by the formulas introduced in Proposition V.1
Bi;(t, s0,51), Bi;(t,s), i,j = 0,1, are concerned, we to compute {pi‘j(t;N,q)}Zl,i,j = 0,1. From Equa-
provide next expressions for calculating them. First wednedions (24), (25), (26) and (27) we observe that
one more auxiliary definition. Let the probability function , (¢ s, s,) is a function of oy (t) andyys (¢);
of decision up to timet, v;); : N — [0,1], be defined as , 4(¢, 5) is a function ofa(t — 1, s0,51), 0 < 50,81 <
foIIows:.«y.“j(t) is the pro_bability that a single DM prqvided q—1, poji(t), pip(t) anda(t — 1,h), ¢ < h < s;
the decisionf/; when Hj; is correct, before or at timg i.e., e Bin(t,s0,51), Bap, i = 0,1, are functions ofpg, (),
t t—1 P11 (t), Yo (t) andyy 1 (t).
Yi; () = Zpuj(t) = Z’mj(t* 1)+ pi;(t).  (23) Moreover from Equation (23) we have that;(t) is a
s=1 s=1 function of v; ; (¢ — 1) andp; ;(t).

Based on the above observations, we deduce that
poj1(t; N,q) andpy1(t; N, q) can be seen as the output of a
dynamical system having th@ N/2| — ¢+ 3)-th dimensional
Jector with components the variableg, (t —1), 11 (t 1),
a(t—1,s),q < h < |N/2]| as states and the two dimensional
vector with componenty;(t), pii(t), as inputs. As a
consequence, it follows that the iterative method we prepos
to compute{p;;(t: N,q)},-, , i,j = 0,1, requires keeping
in memory a number of variables which grows linearly with
the number of decision makers, as opposed to the exponential
growth of the method suggested in (15).

Proposition IV.2 Consider a group ofV DMs, running the

q out of N decentralized SPRT algorithomder Assumption

[11.1. Moreover, without loss of generality, assume tlht is

the correct hypothesis. Then the following statements. hol
First, the probability«(t, so, s1) is given by

attsors) = (M T 0. @

Second the probabilityv(¢, s) satisfies the following re-
cursive relation

a(t,s) = (25)
g—1 g—1 V. NUMERICAL RESULTS
2s 25 — 50 — 51 i o . )
= Z so + 81 s— s X The goal of this section is to provide some numerical
s0=0s1=0 \"0 0 results of the methods we previously described. For il-
x ot =1, s0,51)pg, " (O)py), " () + lustration we consider a discrete random variable of the
5. 96\ /25 — 2N Koopman-Darmoi-Pitman form with a binomial distribution.
+Z <2h>< ; )a(t—Lh)pgllh(t)pilh(t) Specifically, in our numerical examples, we perform the
heq NV N ST following tasks
Third the probability 3, (, so, s1) is given by () we choose a random variabl& with a binomial
B distribution f(x; 6);
T /N-5
Bin(t,so,s1) = > )Pl () (26) (e —e)re if ze{0,1,...,n}
. J f(.’I), 9) - * 1
Jj=a—s1 0 otherwise

i 0 set to ben = 5.

m — .

N—-5—-7\ , N—5—i—j i Hiva i
{E ’ ( >p 1) 1= mpt) —p ) J} wheren is a positive integer number whose value we
=0



(i) we choose two hypothesi# : § = 0.5 — ¢ and H; :

6 = 0.5 + ¢, wheree = 0.05, and we assume that .
H = H, is the correct hypothesis; - N *;;; sri.
(iii) we fix p,, = p; = 0.1 and we set the values of the 3§ FRIIieeri e
thresholdsr, andn, according to Equations (2), i.e., §§°'95 *******
no = log(1/9) andn, = log9; £5
(iv) we compute the probabilities{pw(16)};’21 = ° 08!
{p“j(t,l)}:il, i,j € {0,1}, through the procedure 55 30

qoutofN 5 - 10 15 iy
Number of decision makers

illustrated in Section 11-B;

(v) we consider group of decision makers of odd size witl.
N ranging from1 to 35 and for each such group 1: This figure shows the probability of correct detection
we numerically analyzed theg out of N decentralized when theq out of Nrule is applied on a network of siz¥.
SPRT algorithnfor ¢ € {1,...,|N/2] +1};

(vi) for a given group of decision makers of siZ2é and
for a giveng € {1,...,|N/2] + 1} we compute the
probabilities { p; 1 (¢; N, Q)}Zp i € {0,1} according 20
the procedure illustrated in Proposition IV.1 and Propo
sition 1V.2;

(vi) once we have calculated the probabilities
{pij;(t:N,q)},- . i,j € {0,1}, we compute accuracy
and expected time foy out of N decentralized SPRT 15
algorithm exploiting the following formulas 10

[y
(%))

=
o

Expected number
of observations

goutof N

5 10 1I%umlzjer of decision makers
PlsayH;|H1| = GIAS - .

[sayH| Hi] ;p i 2 2: This figure shows the expected number of observation to
reach a decision when the out of Nrule is applied on a
and network of sizeN.

E[T|H,] = Z(pou(t; N, q) +p1ji(t; N, q))t.
t=1 as the one provided by the majority rule. The majority rule,

The main objective of our numerical examples is to eml" terms of expected time, exhibits performance which are

phasize the tradeoff between accuracy and expected decisfjmost constant a8/ varies.
time as a function of the number of decision makers and of

the ¢ out of N counting rule chosen.The results obtained are , .
reported in Figures 1-5. In this work, we presented a complete analysis of how

Figures 1 and 2 show the probability of correct detectiof 9r0UP 0f DMs can collectively reach a decision about
and the expected decision time as both the groupsizend the correctness of a hypothesis. We presented a numerical

¢ are varied. For clarity of results, we show in Figures 3- smethod that made it possible to completely analyze and
plots for fixed values ofV andg. understand interesting fusion rules of the individuals de-

For a fixed value ofV, the accuracy (evaluated in terms ofiSions. The general formulas we provided, are useful in
probability of deciding in favor of the correct hypothesis) analyzing opnmahty of various aggregatlon rules, 'and how
well the expected time are increasing with.e.,, the greater the group size and the network desired accuracies dictate
the value ofy is, the more accurate and slower the algorithm
is (see Figures 3 and 4). Probability of wrong detection for various q for N = 21

Similarly, for a fixed value of;, the accuracy as well the 0.1 ‘ ‘ ‘ ‘ ‘
expected time are increasing with, i.e., the greater the size
of the group of DMS is, the more accurate and slower th
algorithm is (see Figures 1, 2 and 5). Specifically in Figur
5 we provide a comparison between two particular values «
q, specificallyg = 1 andq = | N/2]| + 1. In these specific
cases we refer to the out of NV rule as thefastestrule 0.02/
if ¢ = 1, as themajority rule if ¢ = |[N/2| + 1. We can
see that, as the size of the group increases, the majorgy rt o 4 64 8 10
provides a remarkable improvement in terms of the accuracy,
while the fastest rule provides a remarkable improvement i: This figure shows the probability of correct detection for
terms of the expected time. The fastest rule improves atso tR Networks of fixed size¥ = 21, asq in theq out of Nrule
accuracy even though this improvement is not as significaftkes valueg € {1,...,11}.

VI. CONCLUSION

o
o
=

0.06

o
o
=

Probability of
wrong detection




Expected number of needed observation for various q for N = 21
T T T T T T T T

16 (6]
.14
3¢
2t 7
35
L9
g’
& 8]
(9]
1 2 3 4 5 g 7 8 9 10 11 [1o]

4: This figure shows the expected number of observations
needed for detection for for a networks of fixed siZés=
21, asq in the q out of Nrule takes valueg € {1,...,11}.

[12]
c Comparison: Fastest vs. Majority
S oy ‘ ‘ ‘
2]
©
23
g o0
85
o=
&5 r v L L L L
5 0
0 Nzt?mber of dsgcision mgﬁers —Fastest rule ]
@ ——Majority rule
S g 2 ! ! T T T
£8
E 2151 :
c 3
5 10 |
8
g0o 5 |
2% 4 \ ‘ : ‘ : ‘
Ll 10 20 30 20 50 %

Number of decision makers

5: This figure shows the probability of correct detection and
the expected number of observations needed for detection
for different networks of various size® € {1,...,31},
where ¢ in the q out of N rule takes one of two values

q € {1,[N/2] + 1}. The plots shows the behavior &6
increases.

the better aggregation rule to be used. In fact, in an earlier
work, we studied in details how two specific aggregation
rules, thefastestand the majority rule, that both belong

to the g out of N aggregation rule. We showed how the
better aggregation rule varies with the network size and
desired network accuracy. Finally interesting extensiohs
this work, include allowing communication between the
various decision makers and allowing different accuracies
between different members of the group.
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