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Distributed Receding Horizon Kalman Filter

J. M. Maestre, P. Giselsson and A. Rantzer

Abstract— In this paper a distributed version of the Kalman
filter is proposed. In particular, the estimation problem is
reduced to the optimization of a cost function that depends
on the system dynamics and the latest output measurements
and state estimates which is distributed among the agents by
means of dual decomposition. The techniques presented in the
paper are applied to estimate the position of mobile agents.

I. I NTRODUCTION

In recent years the proliferation of small microcontrollers
with wireless communication capabilities has made possi-
ble the implementation of advanced control and estimation
strategies in a distributed way. As a consequence, there has
been a growing interest of the control community in the
research of distributed systems to face the new challenges
that appear [17], [9]. Issues such as the communicational
burden of the different distributed architectures play a very
important role. For example, the battery life of motes depend
specially on the time the radio is on and on the number of
messages sent [10].

Behind the concept of distributed systems there is a very
basic idea: to divide the overall system into several smaller
subsystems, each governed by a different agent which may or
may not share information with the rest. Examples of these
situations are large scale systems or networked systems such
as traffic, water or power networks [11]. In this situation
it becomes very important to have schemes that allow the
distributed estimation of the state.

The most common approach to estimate the state of
stochastic systems is the Kalman filter [7], developed in
1960 and named after his discoverer. The Kalman filter is
the optimal state estimator for unconstrained linear systems
subject to gaussian state and output noise. It is not possible
to apply directly the centralized Kalman filter to a multiagent
problem unless there is a node in the network that receives
all the information. For example in [14], it can be seen how
a central agent gathers the information from the moving
devices and then distributes the position estimation back to
them. An alternative is to calculate a decentralized version of
the Kalman filter that takes into account the communications
restrictions[6], [14].

In this paper we follow a different approach to solve
the estimation problem in a distributed manner. First, the
Kalman filter is posed as a dynamic programming problem
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[3]. Then, the resulting optimization problem is distributed
among the agents using dual decomposition. This idea has
been successfully applied to distributed control in [12] and
[4]. Given that the observation problem is the dual of the
control problem, it is natural to apply and enhance the
techniques presented in these papers to deal with the state
estimation problem.

In this context, the application of state estimation schemes
to problems in which the state represents the position of an
object is very attractive [1], [6]. The localization of moving
entities, such as robots or people, is important for many
applications. Military applications in which the goal is to
track a target that moves in a distributed sensor environment
are the typical examples. Other examples in which these
techniques play an important role would be smart homes
[8], in which it is basic to know where the inhabitants of the
house are in order to control the heating and the lights and
traffic and speed control. For this reason, they constitute good
applications for the distributed state estimation algorithm that
we present.

The outline of the paper is as follows. In section II
the problem is formulated. Section III explains how dual
decomposition can be used to distribute the problem among
the agents involved. In section IV the techniques presented
in the previous sections are applied in a simulation example.
Finally, conclusions and future work are presented.

II. PROBLEM FORMULATION

In this section we present a moving horizon estimation
strategy that solves approximately the Kalman filter. Let us
consider the following uncertain distributed linear system

xi(τ + 1) = Aiixi(τ) + wi(τ)

yi(τ) =
J∑

j=1

Cijxj(τ) + vi(τ)
(1)

where xi(τ) ∈ R
ni , yi(τ) ∈ R

qi , wi(τ) ∈ R
ni and

vi(τ) ∈ R
qi are the state, measurable output, state noise

and measurement noises of the i-th subbsytem respectively.
The state and measurement noises are characterized by a
normal distribution with zero mean and variancesQi and
Ri respectively; that is,wi(τ) is a N(0, Qi) andvi(τ) is a
N(0, Ri). From a centralized point of view the system is

x(τ + 1) = Ax(τ) + w(τ)
y(τ) = Cx(τ) + v(τ)

(2)



where

x(τ) = [x1(τ) x2(τ) . . . xJ (τ)]
T ∈ R

n

y(τ) = [y1(τ) y2(τ) . . . yJ(τ)]
T ∈ R

q

w(τ) = [w1(τ) w2(τ) . . . wJ(τ)]
T ∈ R

n

v(τ) = [v1(τ) v2(τ) . . . vJ(τ)]
T ∈ R

q

n =
∑

i

ni, q =
∑

i

qi.

Note thatw(τ) is a N(0, Q) with Q = diag(Qi) for i =
1, . . . , J andv(τ) is aN(0, R) with R = diag(Ri) for i =
1, . . . , J .

From the point of view of probability theory, a state
estimator attempts to reconstruct the a posteriori distribution
p(x̂(τ)|Y (0 : τ)), which is the probability that the state
of the system isx̂(τ) given measurementsY (0 : τ) =
{y(0), . . . , y(τ)}. It is also possible to calculate the joint
probability for a trajectory of state values, for example
p(X̂(0 : τ)|Y (0 : τ)). It is clear that if the distribution
can be calculated then it is possible to obtain an estimate
that maximizes it. The purpose of this paper is to build a
distributed version of the Kalman filter, which is the optimal
state estimator for unconstrained, linear systems subjectto
normally distributed state and measurement noise. In this
case, the problem of obtaining an estimate that maximizes
these probability density functions can be reduced to a
dynamical programming problem. See [1] or [13] to obtain
more details. In particular, the maximization ofp(X̂(τ−N :
τ)|Y (τ − N : τ)) is equivalent to the minimization of a
quadratic programming problem that will be presented in
this section, but first let us define the quadratic function:

V N (X̂(τ −N : τ)) =
τ∑

k=τ−N+1

1
2 (y(k)− Cx̂(k))TR−1(y(k)− Cx̂(k))

+
τ−1∑

k=τ−N

1
2 (x̂(k + 1)−Ax̂(k))TQ−1(x̂(k + 1)−Ax̂(k))

+Φ(x̂(τ −N)),
(3)

whereΦ(x̂(τ − N)) is a term to weight the uncertainty of
the first state estimated in the window. Note that, with a
small abuse of notation,V N is a function only ofX̂(τ −
N : τ) because the terms given byy(k) are measurements
whose values are available and not variables that have to be
calculated.

Remark 1: Note that equation (3) can expressed as the
sum of a stage cost for each estimate but the last one, which
value is calculated through the terminal cost. According to
this,

V N (X̂(τ −N : τ)) =
τ∑

k=τ−N+1

l(x̂(k)) + Φ(x̂(τ −N)).

(4)
Remark 2: The terminal cost in equation (3) is com-

monly referred as the arrival cost. This term summarizes
the information not considered in the horizon at timeτ . In
the case that we have, that is, linear model and gaussian
noises, this term would simply becomeΦ(x̂(τ − N)) =

‖x̂(τ −N)−m‖
2
P−1(τ−N) [13], whereP−1(τ −N) is the

inverse of the covariance matrix of the estimation error and
m is the mean ofx(τ −N). Nevertheless, it is not practical
in a distributed dynamic programming problem to keep track
of P−1(τ−N) and approximations are needed. One possible
choice is to use the steady state covariance matrix to weight
the estimation at the beginning of the window. In this paper
the problem will be relaxed assuming thatx(τ − N) takes
the value calculated in its latest estimationx̂(τ − N). This
assumption works well as long as the previous estimates are
correctly estimated. Actually, in the case that the trajectory
of estimated states out of the estimation window were all
exact (which, of course, is highly improbable) then this ap-
proximation would become just an application of Bellman’s
principle of optimality [2].

The optimal estimation for the trajectory of statesX̂∗(0 :
τ) = {x̂∗(0), . . . , x̂∗(τ)} is obtained solving the following
minimization problem

X̂∗(0 : τ) = arg min
X̂(0:τ)

V τ (X̂(0 : τ)) (5)

subject to (2) and takingΦ(x(0)) = ‖x(0)−m(0)‖
2
P−1(0).

This problem is equivalent to the Kalman filter [3] but it has
a major drawback: the computational burden of (5) grows
with τ as more measurements become available. We use an
approximate moving horizon estimation approach [5] to fix
the computational cost. The estimation we make isX̂(τ−N :
τ) = {x̂(τ − N), . . . , x̂(τ)} and can be calculated solving
the following QP problem:

X̂∗(τ −N : τ) = arg min
X̂(τ−N :τ)

V N (X̂(τ −N : τ)) (6)

subject to (2) andx(τ −N) = x̂(τ −N).
Remark 3: Note that the state equation in (2) allows to

determine the noise trajectory once the state trajectory has
been calculated. This relationship can be used in the opposite
way so that the QP problem can also be solved minimizing
with respect the noise trajectoryw(τ −N), .., w(τ − 1).
Taking into account the duality between the control and
observation problem, a possible interpretation for the mini-
mization alternative is that the termwi(τ) is used tocontrol
the estimation.

III. D UAL DECOMPOSITION

The ultimate goal of the paper is to distribute the estima-
tion problem between all the agents present in the system.
Under certain assumptions, in [4] dual decomposition was
used to distribute the optimization problem correspondingto
a MPC controller between several agents. As the problem of
estimation is the dual of the control problem, and we have
reduced the estimation to the optimization of a cost function,
the same methodology will be applied.

It can be seen in equation (1) that the outputs of the
subsystems are coupled through the states. The coupling
term represents the effect of the rest of the subsystems
in the measurements of agenti. We will define di(τ) =



∑

i6=j Cijxj(τ) to denote this effect. This allow to rewrite
the subsystem model as

xi(τ + 1) = Aiixi(τ) + wi(τ)
yi(τ) = Ciixi(τ) − di(τ) + vi(τ)

(7)

subject to the constraintdi(τ) = −
∑

i6=j Cijxj(τ).
Dual decomposition can be used to distribute the cen-

tralized problem (6) between the agents. The introduction
of Lagrange multiplierspi in the cost function allows the
distribution of the cost function (3). First, we define the
Lagrange extended cost function as

V N,p(X̂(τ −N : τ), D(τ −N : τ), P (τ −N : τ)) =
J∑

i=1

{
τ−1∑

k=τ−N

‖x̂i(k + 1)−Ax̂i(k)‖
2
Q

−1

i
(k)

+
τ∑

k=τ−N

‖−Ciix̂i(k) + yi(k) + di(k)‖
2
R

−1

i
(k)

+
τ∑

k=τ−N

pTi (k)(di(k) +
∑

i6=j Cij x̂j(k))}

(8)
wherepi(τ) ∈ R

qi is the lagrange multiplier corresponding
to the constraint induced bydi(τ) ∈ R

qi , which is now
a free variable. Their corresponding centralized vectors are
respectivelyp(τ) = [p1(τ) p2(τ) . . . pJ(τ)]

T ∈ R
q and

d(τ) = [d1(τ) d2(τ) . . . dJ (τ)]
T ∈ R

q. Finally, we
denote the sequences of these vectors in time asP (τ −N :
τ) = {p(τ − N), . . . , p(τ)} andD(τ − N : τ) = {d(τ −
N), . . . , d(τ)}.

If we take Q−1
i (τ) = 0 in 8 we can reduce the two

summations to one. Then, if we rearrange the lagrangian
multipliers it is possible to rewrite the extended cost function
as:

V N,p(X̂(τ −N : τ), D(τ −N : τ), P (τ −N : τ)) =
J∑

i=1

τ∑

k=τ−N

[‖x̂i(k + 1)−Ax̂i(k)‖
2
Q

−1

i
(k)

+ ‖−Ciix̂i(k) + yi(k) + di(k)‖
2
R

−1

i
(k)

+pTi (k)di(k) + x̂i(k)
T
∑

i6=j C
T
jipj(k)]

=
J∑

i=1

V
N,p
i (X̂i(τ −N : τ), Di(τ −N : τ), P (τ −N : τ))

The quadratic problem can be distributed among the agents
because the local extended cost functionsV

N,p
i (X̂i(τ −N :

τ), Di(τ − N : τ), P (τ − N : τ)) are decoupled. From a
centralized point of view the problem that is solved at each
time sample is

max
P (τ−N :τ)

J∑

i=1

min
X̂i(τ −N : τ),
Di(τ −N : τ)

V
N,p
i





X̂i(τ −N : τ),
Di(τ −N : τ),
P (τ −N : τ)





Remark 4: If we define the stage cost at the time sample
k as

li(x̂i(k), di(k)) = ‖−Ciix̂i(k) + yi(k) + di(k)‖
2
R

−1

i
(k)

+ ‖x̂i(k + 1)−Ax̂i(k)‖
2
Q

−1

i
(k)

Then, the extended local cost function can be posed as

V
N,p
i (X̂i(τ −N : τ), P (τ −N : τ)) =

τ∑

k=τ−N

[li(x̂i(k), di(k))

+pTi (k)di(k) + x̂i(k)
T
∑

i6=j C
T
jipj(k)]

The local stage cost can also be extended to include the
terms due to the lagrangian priceslpi (x̂i(k), di(k), P (k)) =
li(x̂i(k), di(k)) + pTi (k)di(k) + x̂i(k)

T
∑

i6=j C
T
jipj(k),

which allows to write the extended local cost function as:

V
N,p
i (τ) =

τ∑

k=τ−N

l
p
i (x̂i(k), di(k), P (k)) (9)

Remark 5: After the introduction of dual variables, and
assuming that the prices of the neighbors are given, it is
possible to interpret the distributed optimization procedure in
economic terms. Each agent behavior can be represented as
a two player game. The first player objective is to minimize
the price-extended stage cost

τ∑

k=τ−N

l
p
i (x̂i(k), di(k), P (k)),

which is composed of three elements that are interpretable
as

l
p
i (x̂i(k), di(k), P (k)) =

li(x̂i(k), di(k))
︸ ︷︷ ︸

local cost

+

neighbor help cost
︷ ︸︸ ︷

pTi (k)di(k) + x̂i(k)
T
∑

i6=j

CT
jipj(k)

︸ ︷︷ ︸

incomes due to required help

.

The second player chooses the pricespi(τ−N), . . . , pi(τ)
to maximize

pTi (k)(di(k) +
∑

i6=j

Cij x̂j(k)).

This game is repeated iteratively. First, an estimate is
calculated according to the given prices. Then, the prices
are updated and the cycle starts again. As a result of
the repeated interaction of both players in each node the
prices evolve until a maximum is reached. The consequence
of this standard Lagrangian optimization procedure is that
the minimum for the cost function (6) is attained and the
constraints are satisfied when the price gradient is zero.

The algorithm that is followed by the agents in the system
can be summarized as:

• Step 1: Each agenti estimates his own current state
trajectory{x̂i(τ −N), x̂i(τ −N +1), .., x̂i(τ)} solving
the optimization problem given in (9) for a set of given
pricespi i = 0, . . . , J .

• Step 2: Once the state trajectory has been calculated
then the prices of agenti are updated by a gradient
step as follows.

pk+1
i (τ) = pki (τ) + γk

i [di(τ) +
∑

i6=j

Cij x̂j(k)] (10)



Convergence of such gradient algorithms has been
proved under different type of assumptions on the step
size sequenceγk

i . See for example [15]. Note that in
order to update the prices the agents must communicate.

• Step 3: If the precision obtained with the estimation is
enough then there is no need to continue iterating. In
the next section precise conditions are given. If enough
precision is not attained and the number of iterationsK

exceeds a given thresholdmaxiter, then the algorithm
also stops. In other case then the process is repeated
from step 1 forK = K + 1.

A. Coordination alternatives for the price update

It can be seen that the calculation of the estimatex̂i(t) for
t = τ−N, . . . , τ is completely decentralized once that prices
are given. Therefore it is mandatory for an agent to keep the
track of its neighbor prices. Nevertheless, in order to update
the prices, coordination among the agents is necessary. The
agents send their estimatesx̂i(τ) to their neighbors so that
equation (10) can be applied. For some systems it could
be desirable not to share the state information with their
neighbors. To avoid the exchange of the state estimates we
propose two alternatives:

• Decentralized approach: The need for the shared in-
formation comes from term

∑

i6=j Cij x̂j(k) in equa-
tion equation (10). According to the dynamics of the
subsystems

∑

j 6=i

Cijxi(τ) = yi(τ) − Ciixi(τ) − vi(τ),

and thus it could be approximated by
∑

j 6=i

Cij x̂i(τ) ≈

yi(τ) − Ciix̂i(τ).
• Market approach: This alternative consists on changing

the way in which prices are updated. To understand
better this approach it is convenient to use the behavior
model that represents each agent as a two player game.
Then, it is possible to think on the centralized problem
as a game with2J players. The objective of the first
player in each node is to minimize his own cost ac-
cording to the given prices. However, the second player
in each node bargains with the the rest of the second
players to maximize (9) with respect to the prices. The
second players can be seen as market makers that fix
the prices of the help services that the agents provide
each other according to the offer and demand of such
services. To do so, a gradient optimization of the cost
function (9) is implemented. Each update is based on
the addition of contributions of the different agents. The
contribution of agenti is

∇pki (τ) =















x̂i(k)
TCT

1ip1(k)
...

x̂i(k)
TCT

i−1,ipi−1(k)
di(k)

x̂i(k)
TCT

i+1,ipi+1(k)
...

x̂i(k)
TCT

JipJ(k)















Theorem 1: The price update mechanism defined in
the market approach provides the same results than the
one presented in equation (10).

Proof:
It is straight forward to check that both methods provide
the same centralized price vector. It is enough to sum
the contribution∇pki (τ) for all i

pk+1(τ) = pk(τ) + γ
∑

i

∇pki (τ).

Then it can be seen that the price for agenti is just

pk+1
i (τ) = pki (τ) + γk

i [di(τ) +
∑

i6=j

Cij x̂j(k)]

�

If we move back to the agents and forget the game
theory interpretation, it can be seen that under the
market approach agents update their prices and also
the prices of their neighbors and therefore there is no
need to exchange the state estimate. All the public
information needed are the prices and their updates. The
estimation of the agents through the different iterations
bring increments or decrements in the prices until
equilibrium prices are reached. However, there is a price
to pay in terms on the amount of model information that
agents have. With this price mechanism it is needed
that agenti has knowledge of the termsCji. In other
words, agents have knowledge of the collateral effects
they induce in their neighbors.
Remark 6: From an economic point of view, the situ-
ation can be interpreted as a market of help services.
The pricepi(τ) is the unit price that agenti has to
pay to his neighbors for them to change their current
contribution to his output. The fact that neighbors of an
agenti change their estimates affects to his price in such
a way that it reflects how costy is for his neighborhood
to help him after the estimate update. On the other hand
helping his neighbors is rewarded in (9). Taking all of
this into account, agents are both service offerers and
demanders. All of them behave selfishly according to
the prices fixed by themarket, that is, the distributed
price mechanism proposed in this approach.
Remark 7: In welfare economics, under certain as-
sumptions such as the absence of externalities in trans-
actions, it is proved that market prices guarantee that,
despite of agents selfish behavior, a Pareto optimum
is achieved [16]. In the optimization problem that we
have, unfortunately we have to deal with the presence
of externalities, taking this term in a wide sense. That
is, decisions taken by agenti also affect other agents.
In order to overcome this problem and still reach a
Pareto optimum while keeping selfish, i.e. decentralized,
behavior in the agents, some modifications have to be
introduced in the market: first, all the agents behave as
price takers as they were in a competitive market when



they really have power to modify the prices and, second,
prices are updated globally according to the proposed
mechanism.

IV. EXAMPLES

The problem of estimating the position of a moving
object can be faced using different approaches. For outdoor
applications in which the precision requirements are low GPS
estimation is the most used choice. Radar measurements help
to improve the quality of the estimation. When it comes to
indoor applications the problem of localization is normally
solved by means of a sensor network. In cases in which low
precision is needed some it may be enough with a network of
presence detectors. If more precision is required then more
sophisticated techniques have to be used. In the case that
the application is executed in a very controlled scenario, it
is possible to use cameras to estimate the position. Infrared
or ultrasonic sensors also provide a greater accuracy than
the presence detectors. In the last years the use of the link
quality between wireless transceivers has been used too for
this kind of applications [8].

A. Application to mobile robot localization

This subsection is based on the simulation scenario pro-
posed in [6].

Let us consider a system consisting a set ofµ = {1, ..,M}
reference nodes or beacons and a setη = {1, .., J} of mobile
devices. In this example we will considerM = 6 beacons
andJ = 8 mobile devices, which are located in the positions
depicted in figure 1.

The goal is to estimate the position of the moving devices.
If the sample time is assumed to be low enough, it is possible
to simplify the dynamics considering that the devices move
at every sample time a bit with respect their position. The
equations for each device are:

xi(τ + 1) = xi(τ) + ∆xi(τ) ∀i ∈ η = {1, .., J}

with xi(0) = x0
i . The beacon position is fixed so that

xi(K + 1) = xi(0) ∀i ∈ µ = {1, ..,M}. The distance
between the nodes and the mobile devices can be calculated
using

d2ij = (xi − xj)
T (xi − xj) ∀i, j ∈ η, µ.

The distance can be linearized around the steady state
positionsxi using a first order Taylor approximation, which
leads to

d2ij = d
2

ij + 2(xi − xj)
T (xi − xj) + 2(xi − xj)

T (xi − xj)

with d
2

ij = d2ij(xi, xj). Now, system variables can be
introduced for all the mobile devices such that:

xi(τ) = xi(τ)− xi ∀i ∈ η

yji(τ) = d2ij − d
2

ij ∀i ∈ η, ∀j ∈ η, µ

Cji = 2(xi − xj) ∀i ∈ η, ∀j ∈ η, µ.

Fig. 1: Initial situation of the devices.

So each moving device’s output provides information
about the distance with respect the other moving devices
and the beacons. If white gaussian additive noise is assumed
in the state and output then each device can be modeled
according to equation (1).

In order to make the situation more realistic it can be
assumed that only devices and beacons within a range can
communicate. Thus a communication radiusρ is defined. In
general two devicesi andj can communicate ifdij < ρ. A
communication graph can be defined to reflect what devices
can communicate at each sample time. The communication
graph at initial time is given by the following matrices:

A
η
0 =















1 1 0 0 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 0 0 1 1 1
0 0 0 1 1 1 1 0
1 0 0 1 1 1 0 0
1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 1















A
µ
0 =















1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 1















where A
η
0(i, j) = 1 if the mobile devicei is able to

communicate with the mobile devicej andA
µ
0 (i, j) = 1 if

the mobile roboti is able to communicate with the beacon
j.

The simulations have been done considering a dynamic
graph, that is, a situation where the movement of the devices
is big enough to guarantee that the communication graph
changes with the relinearization of the system. At each time
in which the system is relinearized it is necessary not only
to update the equations but the information about the last
samples that is kept in the agents. Let us assume that in
time τ there is a change of linearization point of the system.
Then,
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Fig. 2: Robots’ state evolution with noise model mismatch.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

x
1

x 2

 

 
x
est. x

Fig. 3: Robots’ trajectories with noise model mismatch.

xi(t) = x̄i(t) + xi(t)− x̄i(τ) ∀t ∈ [τ −N, τ ]
yi(t) = Ci(τ)x̂i(t) ∀t ∈ [τ −N, τ ]

This change of coordinates in the state estimates and the
outputs allow to compute the distributed problem without
suffering estimation disturbances after the change of lin-
earization point.

The system has been simulated for 40 time samples with
a state noise stronger than the original one. The first 10
samples a centralized Kalman filter is working and the
second 20 the distributed strategy. Int = 20 and t = 30
the system is relinearized. The window size used for the
estimation was 4. In blue it is depicted the real trajectory
and in red the estimation.

The results for the estimation of the position of the mobile
devices can be seen in figure 2.

The overall picture is shown in figure 3. The quality of the
estimation depends on several parameters. For example, the
more iterations are made the better the estimation gets. In
this figure it can be seen that the estimation is very precise
for most agents.

V. CONCLUSIONS

A distributed version of the Kalman filter based on dy-
namic programming has been developed in this paper. The
use of dual decomposition allowed the problem distribution.
In the simulations presented promising results of the future
applications of these techniques are shown.

It will be important for future work some kind of sub-
optimality bounds to determine the precision obtained in the
estimation after a number of iterations. Practical experiments
will be developed too to see how the distributed estimation
works in real application.
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