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Robust Helicopter Stabilization in the Face of Wind Disturbance

Kumeresan A. Danapalasingam, John-Josef Leth, Anders la Cour-Harbo and Morten Bisgaard

Abstract— When a helicopter is required to hover with mini-
mum deviations from a desired position without measurements
of an affecting persistent wind disturbance, a robustly stabi-
lizing control action is vital. In this paper, the stabilization of
the position and translational velocity of a nonlinear helicopter
model affected by a wind disturbance is addressed. The wind
disturbance is assumed to be a sum of a fixed number of
sinusoids with unknown amplitudes, frequencies and phases. An
estimate of the disturbance is introduced to be adapted using
state measurements for control purposes. A nonlinear controller
is then designed based on nonlinear adaptive output regulations
and robust stabilization of a chain of integrators by a saturated
feedback. Simulation results show the effectiveness of the
control design in the stabilization of helicopter motion and the
built-in robustness of the controller in handling parameter and
model uncertainties.

I. INTRODUCTION

Autonomous helicopters are highly agile and has six
degree of freedom maneuverability making them a favourite
candidate for a wide range of practical applications including
agriculture, cinematography, inspection, surveillance, search
and rescue, reconnaissance, etc. For certain tasks the ability
of a helicopter to follow a given state reference is crucial
for a successful outcome; for instance when hovering over
a ship for rescue operations or when flying close to power
lines or wind turbines for inspections. In windy conditions
this becomes a significant challenge for any pilot and hence
an autopilot capable of accounting effectively for the wind
disturbance is a realistic alternative. In this work, the authors
present a control design for longitudinal, lateral, and vertical
helicopter stabilization in the presence of a wind disturbance,
with intrinsic robustness property in handling parameter and
model uncertainties.

Firstly, some previous works are reviewed. In [10], a
feedback-feedforward proportional differential (PD) con-
troller is developed for heave motion control. With the
assistance of a gust estimator, the controller is reported to
be able to handle the influence from horizontal gusts. The
effects of rotary gusts in forward and downward velocity of
a helicopter is addressed in [6]. It is shown that via a state
feedback law, the rotary gust rejection problem is always
solvable. In a work by Wang et al., a multi-mode linear
control stategy is designed for unmanned helicopters in the
presence of model uncertainties, atmospheric disturbances
and handling qualities requirements [9].
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In the present work, assuming that all the state vari-
ables (position, attitude and derivatives hereof) are available
for measurements, a control strategy combining nonlinear
adaptive regulation and robust stabilization of a chain of
integrators by a saturated feedback is carried out (see for
instance, [1], [2] and [3]). Guided by a control solution
for vertical trajectory tracking presented in [3] and [4], the
design technique presented therein is extended here where
a robust longitudinal, lateral and vertical stabilizer capable
of compensating for parameter and model uncertainties is
developed for helicopter stabilization in the presence of wind
disturbance in all three axes.

In the next section, mathematical model governing a
model helicopter and a problem statement are given. This is
followed by Section III which cover the vertical, longitudinal
and lateral stabilization. After the presentation of simulation
results in Section IV, conclusion and future works are dis-
cussed in Section V.

II. PRELIMINARIES

In this section, mathematical model of a helicopter will be
described after which the problem statement will be given.

A. Helicopter Model

The motion of the center of mass of a helicopter is
expressed in an inertial coordinate frame Fi as

Mp̈i = Rf b,

where M is the mass and pi = [x, y, z]> ∈ R3 is the position
of the center of mass of the helicopter with respect to the
origin of Fi. The rotation matrix R is parametrized in terms
of unit quaternions q = (q0, q) ∈ S4 where q0 and q =
[q1, q2, q3]> denote the scalar and the vector parts of the
quaternion respectively (see Appendix A.2 in [3]). With the
overall control inputs given by main and tail rotor thrusts, TM
and TT respectively, and longitudinal and lateral main rotor
tip path plane tilt angles, a and b respectively, a simplified
resultant external force f b in a body-fixed coordinate frame
Fb is taken as

f b =

 0
0
−TM

+RT

 0
0
Mg

+RT

dxdy
dz

 , (1)

where dx, dy , dz are wind disturbances that affect the
helicopter motion in x, y and z axis respectively. Assuming
that the tilt angles a and b are small, the following equations
of motion can be derived,

ẍ =
−(2q1q3 + 2q0q2)TM

M
+
dx
M

(2)



ÿ =
−(2q2q3 − 2q0q1)TM

M
+
dy
M

(3)

z̈ =
−(1− 2q2

1 − 2q2
2)TM

M
+ g +

dz
M
. (4)

Also,

Jω̇b = −S(ωb)Jωb + τ b, q̇ =
1

2

[
−qT

q0I + S(q)

]
ωb,

where S(·) is a skew symmetric matrix, ωb ∈ R3 represents
the angular velocity in Fb and J is the inertia matrix.
The external torques τ b expressed in Fb are given by the
following equation

τ b =

τf1τf2
τf3

+

 RM
MM +MT

NM

 , (5)

where τf1 , τf2 , τf3 are moments generated by the main
and tail rotors and RM , MM , NM , MT are moments of
the aerodynamic forces [5]. With some approximations a
compact torque equation is obtained,

τ b = A(TM )v +B(TM ), v := [a, b, TT ]>, (6)

where A(TM ) and B(TM ) are a matrix and a vector whose
entries are functions of TM and the above mentioned pa-
rameters. Since one of the objectives of the controller to be
designed is to handle parameter uncertainties, all nominal
values of the helicopter parameters are collected in µ0 with
its additive uncertainties µ∆ ranging in a compact set. Also,
M = M0+M∆, J = J0+J∆, A(TM ) = A0(TM )+A∆(TM )
and B(TM ) = B0(TM ) +B∆(TM ).

B. Problem Statement

The objective of the controller is to stabilize a helicopter
affected by a disturbance d = [dx, dy, dz]

> in the presence
of parameter and model uncertainties. The disturbance that
affects the acceleration of the helicopter is modeled to be in
the following form,

dj =

N∑
i=1

Aji cos(Ωit+ ϕji),

with unknown amplitude Aji, phase ϕji and frequency Ωi,
for j = x, y, z and i = 1, . . . , N . It can be shown that
the disturbance is generated by the following linear time-
invariant exosystem,

ẇj = S(%)wj

dj = RS2(%)wj , j = x, y, z, (7)

where wj ∈ R2N , % = [Ω1, . . . ,ΩN ]>, S(%) =
diag

(
H(Ω1), . . . ,H(ΩN )

)
with

H(Ωi) =

[
0 Ωi
−Ωi 0

]
, i = 1, . . . , N,

and R =
[
[1 0], . . . , [1 0]

]
is a 1×2N matrix (see [3], pp. 89-

90). It is assumed that the frequencies Ωi belong to a compact
set. To note, the initial conditions wj(0) of the exosystems

represent the amplitudes and phases of the disturbance. In
the next section, it will be clear how the representation of
the disturbance in such a form can be advantageous in the
development of an internal model for stabilizing control input
generation.

III. CONTROLLER DESIGN

The control design is divided into two parts. In the
first part, a stabilizing TM is constructed for the vertical
dynamics. This is then used together with virtual controls q1

and q2 for longitudinal and lateral stabilization.

A. Stabilization of Vertical Dynamics

With reference to the vertical dynamics (4) given above,
to counter the nominal effect of the gravity, the following
preliminary control law is chosen,

TM =
gM0 + u

1− satc(2q2
1 + 2q2

2)
, (8)

where satc(s) := sign(s) min{|s|, c} is a saturation function
with 0 < c < 1. This yields

z̈ = −ψ
z
c (q)u

M
+ g
(
1− M0

M
ψzc (q)

)
+
dz
M
,

where

ψzc (q) =
1− 2q2

1 − 2q2
2

1− satc(2q2
1 + 2q2

2)

and u is an input to be designed.
If q(t) is small enough such that ψzc (q) = 1, then a

feedforward u needed for vertical stabilization is

cu(wz, µ, %) = gM∆ + dz.

Note that if in steady-state the control cu(wz, µ, %) is
achieved, zero z acceleration will be produced. Since
cu(wz, µ, %) depends on M∆ ∈ µ and dz which is a function
of % and wz(0), it can be only implemented with an internal
model. Hence, the desired control is rewritten as an output
of a linear system

∂τz
∂wz

S(%)w = Φ(%)τz(wz, µ)

cu(wz, µ, %) = Γ(%)τz(wz, µ), (9)

where

τz(wz, µ) =

[
gM∆

wz

]
, Φ(%) =

[
0 0
0 S(%)

]
,

Γ(%) =
[
1 Γ2(%)

]
,

and

Γ2(%) =
[
−Ω2

1 0 −Ω2
2 0 . . . −Ω2

N 0
]
.

It has been shown in Lemma 3.3.1 in [3] that there exist
controllable matrix pair (F,G) with dimensions (2N + 1)×
(2N+1) and (2N+1)×1 respectively, a unique 1×(2N+1)
vector Ψ% = [1 Ψ2,%] and a (2N+1)×(2N+1) nonsingular
matrix T% such that Φ(%) = T−1

% (F+GΨ%)T%, Γ(%) = Ψ%T%



and
∂τ̄z
∂wz

S(%)w = (F +GΨ%)τ̄z(wz, µ, %)

cu(wz, µ, %) = Ψ%τ̄z(wz, µ, %), (10)

where τ̄z(wz, µ, %) = T%τz(wz, µ).

Because cu(wz, µ, %) depends on unknown parameters and
unmeasurable state wz , the control is chosen as u = uim +
ust which consists of an internal model control uim and a
stabilizing control ust. Thus the controller can be taken as

ξ̇z = (F +GΨ̂)ξz + gstz

u = Ψ̂ξz + ust, (11)

with the update law

˙̂
Ψ2 = γξTz2(ż + k1z)− [tasd(Ψ̂2)]>

where gstz = Gust +FGM0ż, ust = k2(ż+k1z) for k1, k2 >
0, ξz = [ξz1 ξz2]> with ξz1 ∈ R, ξz2 ∈ R2N , Ψ̂ = [1 Ψ̂2]
with a 1× 2N row vector Ψ̂2 , γ > 0 and tasd(·) is a dead-
zone function with d > max2N

i=1

(
|(Ψ2,%)i|

)
. Defining

η =

[
η1

η2

]
=

[
η1

Ψ̃T
2

]
, with η1 =

χz
ζ

 ,
where the change of coordinates are set as

χ := ξz − τ̄z(wz, µ, %) +GMż

Ψ̃2 := Ψ̂2 −Ψ2,%

ζ := ż + k1z,

the following equations are obtained,

η̇1 =
(
A+A1

(
ψzc (q)− 1

))
η1

−
( 1

M
b+B

(
ψzc (q)− 1

))
ξ>z2η2 −Bρ

η̇2 = γξx2b
T η1 − tasd(η2 + Ψ2,%), (12)

where ρ =
(
ψzc (q)− 1

)(
gM0 + Ψ%τ̄z(w, µ, %)

)
,

A =

 F k1FGM4 −FGM∆

0 −k1 1
− 1
MΨ% −k1(Ψ%G+ k1) (Ψ%G+ k1 − 1

M k2)

 ,

A1 =

−GΨ% −GΨ%GMk1 GΨ%GM −Gk2

0 0 0
− 1
MΨ% −k1Ψ%G (Ψ%G− 1

M k2)

 ,
b =

0
0
1

 and B =

G0
1
M

 .
Using the same arguments as in Proposition 3.3.2 in [3], it
can be shown that there exists k∗2 > 0 such that if k2 > k∗2 ,
A is a Hurwitz matrix. Subsequently when q is small enough
such that ψzc (q) = 1, Proposition 3.4.2 guarantees that if the
initial states of the exosystems belongs to a compact set W
defined therein, then system (12) is globally asymptotically
and locally exponentially stable. Note that even though the

system equations are different than that of in [3] due to the
addition of a disturbance and a different vertical control, the
two propositions still apply.

It is only natural now to ensure that the condition ψzc (q) =
1 can be achieved in finite time. Setting

v = A0(TM )−1
(
ṽ −B0(TM )

)
yields the torque equation

τ b(ṽ) = L(TM )ṽ + ∆(TM ),

where ṽ is an additional control input to be determined,
L(TM ) = I+A∆(TM )A−1

0 (TM ) and ∆(TM ) = B∆(TM )−
A∆(TM )A−1

0 (TM )B0(TM ). Dropping the superscript b in
ωb, choose

ṽ = KP

(
η1 −KD(ω − ωd)

)
,

where KP ,KD > 0 are design parameters,

η1 := qr − q and (13)
qr = q∗ + qd. (14)

The expressions for the desired angular velocity ωd and
desired quaternions qr will be given in the next subsection.
In Appendix A, the existence of a Lyapunov function for the
attitude dynamical system is shown. This condition is a key
element in the proof of Proposition 5.7.1 in [3]. Consequently
for the problem in hand, it could be stated that for any
T ∗ > 0, there exist K∗D > 0, λ∗3(KD) > 0, K∗d(KD) > 0
and K∗P (KD) > 0, such that for all positive KD ≤ K∗D,
λ3 ≤ λ∗3(KD), Kd ≤ K∗d(KD) and KP ≥ K∗P (KD),
the trajectory of the attitude dynamical system is bounded,
q0(t) > ε for arbitrary 0 < ε < 1, t > 0 and ψzc (q(t)) = 1
for all t ≥ T ∗, with initial conditions (q(0), ω(0)) ∈ Q×Ω,
where Q and Ω are compact sets (cf. Prop. 5.7.1 and see
definition of Q in [3]).

B. Stabilization of Longitudinal and Lateral Dynamics

Now, we will show that with an appropriate selection
of design parameters, virtual controls q1 and q2 can be
manipulated to produce horizontal stability. The control law
(8) that has been designed for vertical stabilization also
appears in the longitudinal (2) and lateral (3) dynamics. The
numerator of (8) can be expanded as

gM0 + u = gM + dz + yz(z, w),

where yz(z, w) = Ψ̃τ̄z(w, µ, %) + (Ψ̃ + Ψ%)(χ − GMż) +
k2(ż + k1z) and z = η. Subsequently, (2) and (3) can be
written as

ẍ =
−d̃(q, t)q2 +m(q, t)q1q3 + nx(q)yz(z, w)

M
+
dx
M

ÿ =
d̃(q, t)q1 +m(q, t)q2q3 + ny(q)yz(z, w)

M
+
dy
M
,

where

d̃(q, t) =
2(gM + dz)q0

1− satc(2q2
1 + 2q2

2)
,



m(q, t) = − 2(gM + dz)

1− satc(2q2
1 + 2q2

2)
,

nx(q) =
−(2q1q3 + 2q0q2)

1− satc(2q2
1 + 2q2

2)
,

ny(q) =
−(2q2q3 − 2q0q1)

1− satc(2q2
1 + 2q2

2)
.

Introducing the bank of integrators η̇x = x, η̇y = y and
η̇q = q3, the following new state variables are defined

ζ1 :=

[
ηy
ηx

]
ζ2 :=

[
y
x

]
+ λ1σ(

K1

λ1
ζ1)

ζ3 :=

 ẏẋ
ηq

+ P1λ2σ(
K2

λ2
ζ2),

where

P1 =

1 0
0 1
0 0

 and P2 =

1 0 0
0 −1 0
0 0 1

 .
By adopting the following ’nested saturated’ control law

q∗ = −P2λ3σ(
K3

λ3
ζ3), (15)

where the function σ(·) is a vector-valued saturation function
of suitable dimension and, Ki and λi, i = 1, 2, 3 are design
parameters, the time derivatives can be written as

ζ̇1 = −λ1σ(
K1

λ1
ζ1) + ζ2

ζ̇2 = −λ2σ(
K2

λ2
ζ2) + P0ζ3 +K1σ

′(
K1

λ1
ζ1)ζ̇1

Mζ̇3 = −D̃(t)P2λ3σ(
K3

λ3
ζ3) + D̃(t)qd

+MK2P1σ
′(
K2

λ2
ζ2)ζ̇2 − D̃(t)η1 + p+ d,

(16)

where

D̃(t) =

 d̃(q, t) m(q, t)q3 0

m(q, t)q3 −d̃(q, t) 0
0 0 M

 , d =

dydx
0


and p =

ny(q)yz(z, w)
nx(q)yz(z, w)

0

 .
Note that if one can set qd = −D̃−1(t)d, the disturbance
d can be completely eliminated from subsystem (16) and
shown to be input-to-state stable (ISS) with restrictions on
the inputs (η1, p) and linear asymptotic gains (see Lem. 5.7.4
in [3]). However, since D̃ is a function of uncertain M and
unknown d, it is not entirely possible to have such a qd. As
a result, the following is proposed,

qd = −KdD̃
−1
0 (t)d̂, (17)

where Kd > 0 is another design parameter, d̂ = [d̂y, d̂x, 0]>

is a disturbance estimate to be adapted and

D̃−1
0 (t) =

 d̃0(q, t) m0(q, t)q3 0

m0(q, t)q3 −d̃0(q, t) 0
0 0 1

M0

 , (18)

with

d̃0(q, t) =
1− satc(2q2

1 + 2q2
2)

2(q2
0 + q2

3)(gM0 + Ψ̂2ξz2)
,

m0(q, t) = − 1− satc(2q2
1 + 2q2

2)

2(q2
0 + q2

3)(gM0 + Ψ̂2ξz2)
.

It is important to notice at this point that a constraint on dz
should be imposed. To have TM > 0 (see (8) and (9)) and to
avoid singularities in (18), it is required that |dz(t)| < gM
for all t > 0. Note that from (7), (9), (10) and (11), d̂ can
be taken as

d̂ = KdPeξ + P τ̄ + P̃2ξ2, (19)

where

P =

Ψ% 0
0 Ψ%

0 0

 , P̃2 =

Ψ̃2 0

0 Ψ̃2

0 0

 , eξ =

[
eξy
eξx

]
,

τ̄ =

[
τ̄y
τ̄x

]
, ξ2 =

[
ξy2

ξx2

]
,

and

eξi =
ξi − τ̄i
Kd

, (20)

with ξi = [ξi1, ξi2]>, for i = x, y. To note, eξ is governed
by

ėξ = KdF̃ eξ + G̃P̃2ξ2 + gst, (21)

where

F̃ =

[
F +GΨ% 0

0 F +GΨ%

]
, G̃ =

[
G 0
0 G

]
and

gst = k4G̃

[
ẏ
ẋ

]
+ k4k3G̃

[
y
x

]
, k3, k4 > 0. (22)

Now in addition to (13), set

η2 := ω − ωd −
1

KD
η1

η3 := P3η1 − eξ,

where

P3 =


1 0 0
0 1 0
0 0 1
0 0 0
...

...
...





is a (4N + 2)× 3 matrix and

ωd = Qdq̇d (23)

with

Qd =
2

ε

ε2 + q2
d1 qd1qd2 −εqd2

qd1qd2 ε2 + q2
d2 εqd1

εqd2 −εqd1 ε2

 ,
keeping in mind that qd = [qd1, qd2]>. Taking the time
derivatives,

η̇1 = −1

2

(
q0I + S(q)

)
(η2 +

1

KD
η1 + ωd) + q̇r

Jη̇2 = −S(ω)J(η2 +
1

KD
η1 + ωd)−KPKDL(TM )η2

− 1

KD
Jη̇1 + ∆(TM )− Jω̇d

η̇3 = P3η̇1 −KdF̃ eξ − G̃P̃2ξ2 − gst. (24)

We will now study the stability of feedback intercon-
nection of subsystems (16) and (24). Subsystem (16) is
a system with state (ζ1, ζ2, ζ3) and inputs (η1, η3, p, d, τ̄),
while subsystem (24) is a system with state (η1, η2, η3) and
inputs (yζ0, yζ1, Iη1, Iη2, Iη3). Let ML, MU and dL, dU

be such that for all t > 0, ML ≤ M ≤ MU and 0 <
dL ≤ d̃(q, t) ≤ dU respectively. Additionally, assume that
q0(t) > ε > 0, ‖ω‖ ≤ mω , ‖ωd‖ ≤ mωd , ‖D̃−1

0 d̂‖ ≤ mqd ,
‖Qd‖ ≤ mQd and ‖eξ‖ ≤ meξ for all t > 0 and some
positive mω , mωd , mqd , mQd and meξ . With that in mind,
the following proposition is stated.

Proposition 1: Let KD be fixed and let K∗i and λ∗i , i =
1, 2, 3, be such that the following inequalities are satisfied

λ∗2
K∗2

<
λ∗1
4
,

λ∗3
K∗3

<
λ∗2
4
, 4K∗1λ

∗
1 <

λ∗2
4
,

4K∗2λ
∗
2 <

dL

MU

λ∗3
8
, 24

K∗1
K∗2

<
1

6

and 24
K∗2
K∗3

<
1

6

dL

dU
ML

MU
.

Moreover let Rη1, Rη2 and Rη3 be arbitrary positive
numbers. Then, there exist positive numbers K∗P , K∗d , ε∗,
Rζ1, Rζ2, Rζ3, γζ1, γζ2, γζ3, γη1, γη2 and γη3 such
that, taking λi = εi−1λ∗i and Ki = εK∗i , i = 1, 2, 3,
for all KP ≥ K∗P , Kd ≤ K∗d and 0 < ε ≤ ε∗,
the feedback interconnection of subsystems (16) and (24)
is ISS without restrictions on the initial state, restric-
tions (ε2Rζ1, ε

2Rζ2, ε
2Rζ3, Rη2, Rη1, Rη3) on the inputs

(p, d, τ̄ , Iη1, Iη2, Iη3) and linear asymptotic gains; in partic-
ular, if ‖p‖∞ < ε2Rζ1, ‖d‖∞ < ε2Rζ2, ‖τ̄‖∞ < ε2Rζ3,
‖Iη1‖∞ < Rη1, ‖Iη2‖∞ < Rη2 and ‖Iη3‖∞ < Rη3, then
(ζ1(t), ζ2(t), ζ3(t), η1(t), η2(t), η3(t)) satisfies the following
asymptotic bound

‖(ζ1, ζ2, ζ3, η1, η2, η3)‖a ≤
max

{
γζ1‖p‖a, γζ2‖d‖a, γζ3‖τ̄‖a,

γη1‖Iη1‖a,
γη2

KP
‖Iη2‖a, γη3‖Iη3‖a

}
,

where ‖ · ‖∞ and ‖ · ‖a denote the L∞ norm and asymptotic
L∞ norm respectively [8].

Proof: The proof of Proposition 1 involves showing that
the two subsystems are ISS separately, and that the composed
system satisfies the small gain theorem (see for instance, [2]).
In this paper however, only subsystem (24) is shown to be
ISS and hence the following lemma is presented.

Lemma 1: Let KD be fixed and assume that q0(t) > ε >
0 and L(TM (t)) ≥ l1, for all t ≥ 0. There exist positive
numbers λ̄∗3, K̄∗3 (KD), K̄∗P (KD), K̄∗d(KD,K3) and rζ0, rζ1,
rI1, rI2, rI3 such that, for all λ3 ≤ λ̄∗3, K3 ≤ K̄∗3 (KD),
KP ≥ K̄∗P (KD) and Kd ≤ K̄∗d(KD,K3), system (24) is
ISS, without restrictions on the initial state and on the inputs
(yζ0, yζ1, Iη1, Iη2, Iη3) and with linear asymptotic gains; in
particular, for all bounded inputs yζ0, yζ1, Iη1, Iη2 and Iη3,
the state (η1, η2, η3) satisfies the asymptotic bound

‖(η1, η2, η3)‖a ≤ max
{
rζ0‖yζ0‖a, rζ1‖yζ1‖a,

rI1‖Iη1‖a,
rI2
KP
‖Iη2‖a, rI3‖Iη3‖a

}
.

Proof: See Appendix B.
Note that using the same arguments as in [3] and [4],

subsystem (16) can be shown to be ISS without restrictions
on the initial state, restrictions on the inputs and with linear
asymptotic gains. Subsequently, also based on discussion
therein, since the feedback interconnection of subsystems
(16) and (24) can be proven to satisfy all the conditions of the
small gain theorem, the proof of Proposition 1 is completed.

Recall that earlier in the vertical dynamics stabilization,
KP is required to be arbitrarily large while λ3 and Kd

are needed to be arbitrarily small, which is also part of
the requirements for longitudinal and lateral dynamics sta-
bilization as suggested by Proposition 1. To be noted, only
restrictions on inputs (p, Iη1, Iη2, Iη3) can be always fulfilled
in finite time as p(t) is asymptotically vanishing (since
yz(z, w) is) and, Rη1, Rη2 and Rη3 can be chosen arbitrarily
large. Consequently, only for sufficiently small magnitude of
disturbance, for any initial conditions w(0) ∈ W , z(0) ∈ Z ,
(x(0), ẋ(0), y(0), ẏ(0)) ∈ R4, (q(0), ω(0)) ∈ Q × Ω with
q0(0) > 0, by choosing KP and Kd sufficiently large and
small respectively,

lim
t→∞

‖(x(t), ẋ(t), y(t), ẏ(t))‖ ≤ RS(‖d‖a), and

lim
t→∞

‖(z(t), ż(t))‖ = 0,

where Z is a compact set and RS is a class K function (see
[2] for the definition of a class K function).

IV. SIMULATION RESULTS

Hover flight of an autonomous helicopter equipped with
the proposed autopilot and influenced by a wind disturbance
is simulated. The designed controller that makes a stable
hover possible can be summarized as follows,
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Fig. 1. Wind disturbance

1) Vertical dynamics stabilizer

ξ̇z = (F +GΨ̂)ξz + k2G(ż + k1z) + FGM0ż

(25)
˙̂
Ψ2 = γξTz2(ż + k1z)

TM =
gM0 + Ψ̂ξz + k2(ż + k1z)

1− satc(2q2
1 + 2q2

2)
(26)

2) Longitudinal and lateral dynamics stabilizer

η̇x = x

η̇y = y

η̇q = q3

ξ̇x = (F +GΨ̂)ξx + k4G(ẋ+ k3x) (27)
ξ̇y = (F +GΨ̂)ξy + k4G(ẏ + k3y) (28)

d̂x = Ψ̂ξx

d̂y = Ψ̂ξy

v = A0(TM )−1
(
KP (qr − q)−KPKD(ω − ωd)

−B0(TM )
)
,

where ωd is given by (23) and qr is as defined by (14),
with q∗ and qd given by (15) and (17) respectively.

The simulation results presented here are based on a
model of a small autonomous helicopter from [7]. To
test the robustness property of the controller, parameter
uncertainties are taken up to 30% of the nominal values.
Even though the controller is designed based on simplified
force and torque equations as described by (1) and (6)
respectively, the helicopter model assumes full torque,
(5) and full force equations. The wind disturbance shown
in Fig. 1 is presented to the helicopter as a persistently
acting external force generated by a 8-dimensional
neutrally stable exosystem with % = (1, 1.5, 0.1, 10),
wx(0) = (20, 1, 4, 0,−1800, 0,−0.1,−0.02),
wy(0) = (10, 2, 10, 2, 1500, 0, 0.1, 0) and wz(0) =
(5, 0, 1, 0, 2000, 0, 0.01, 0.01). To further challenge the
controller, only 4-dimensional internal models (27), (28)
and (25) are used. Positions of the helicopter in the face of
the wind disturbance without (γ = 0) and with disturbance
adaptation are given in Fig. 2 and 3 respectively.
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Fig. 2. Position when disturbance adaptation is turned off.
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Fig. 3. Position when disturbance adaptation is turned on.

Without disturbance adaptation, while the controller fails
to stabilize the x and y positions, z does converge fairly close
to zero as could be seen in Fig. 2. Apparently, TM is still
capable of acting as a vertical stabilizer to a certain degree
although the disturbance adaptation is turned off due to the
presence of other terms in (26). The importance of informa-
tion on the disturbance to the longitudinal/lateral stabilizer is
demonstrated in Fig. 3. Now that the disturbance adaptation
is turned on, z converges to zero and, x and y converge
to a small neighbourhood of the origin as guaranteed by
Proposition 1.

V. CONCLUSIONS AND FUTURE WORKS

A robust controller for helicopter stabilization to reject
wind disturbance is presented. The wind disturbance affect-
ing the helicopter is assumed to be a function of time of
a fixed structure with unknown parameters. By designing
an internal model that estimates the disturbance, a control
design is carried out for longitudinal, lateral and vertical
dynamics stabilization. Despite the presence of helicopter
parameter and model uncertainties, simulation results clearly
demonstrates the effectiveness of the control technique. As
future works, indoor and outdoor flights are to be carried
out to test the feasibility of the proposed controller. That
gives an immediate challenge caused by the presence of servo
dynamics and limitations on wind disturbance that could be
handled.



APPENDIX

A. Appendix A

Defining ω̃ := ω + K̄Dq where K̄D := 1
KD

, the chosen
control law becomes

ṽ = KP qr −
KP

K̄D
ω̃ +

KP

K̄D
ωd.

Consider a Lyapunov function candidate

V (q0, ω̃) =
1− q0

q0 − ε
+

1

2
ω̃>Jω̃

defined on the open set (ε, 1]× R3. Thus,

V̇ = − (1− ε)
2(q0 − ε)2

K̄D‖q‖2

+ω̃>
( (1− ε)

2(q0 − ε)2
I − K̄2

DS(q)J − K̄2
D

2
q0J
)
q

+ω̃>
(
K̄DS(q)J − KP

K̄D
L(TM ) +

K̄D

2
q0J

+
K̄D

2
JS(q)

)
ω̃ +KP ω̃

>L(TM )qr

+
KP

K̄D
ω̃>L(TM )ωd + ω̃>∆(TM ).

It is shown in [3], that a T ∗ > 0 can be chosen such that
if ψzc (q(t)) = 1 for all t ≥ T ∗, then 2l1I ≤ L(TM (t)) +
LT (TM (t)), ‖L(TM (t))‖ ≤ l2 and ‖∆(TM (t))‖ ≤ δ for all
t > 0. Since ‖q∗‖ ≤

√
3λ3, ‖qd‖ ≤ Kdmqd and ‖ωd‖ ≤

Kdmωd ,

V̇ ≤ −K̄D
(1− ε)

2(q0 − ε)2
‖q‖2 + (2K̄Dc2 −

KP

K̄D
l1)‖ω̃‖2

+
(
a3 +

3

2
K̄2
Dc2 +KP l2(

√
3λ3 +Kdmqd) + δ

+
KP

K̄D
Kdl2mωd

)
‖ω̃‖,

where 0 < c1 ≤ ‖J‖ ≤ c2 and, a1, a2 and a3 are as defined
in [3]. To show that V̇ can be made negative definite, it is
desired to have

(2K̄Dc2 −
KP

K̄D
l1)‖ω̃‖2 +

(
a3 +

3

2
K̄2
Dc2

+KP l2(
√

3λ3 +Kdmqd) + δ +
KP

K̄D
Kdl2mωd

)
‖ω̃‖

≤ −K̄D
1− ε

4
c2‖w̃‖2.

Rearranging,

KP

K̄D

(
l1a1 −

√
3λ3K̄Dl2 −Kd(K̄Dmqd +mωd)l2

)
≥

(
a3 +

3

2
K̄2
Dc2 + δ

)
+ K̄Dc2

(9− ε
4

)
a2.

If λ3 ≤ λ∗3(KD), Kd ≤ K∗d(KD) and KP ≥ K∗P (KD),
where

λ∗3(KD) =
l1a1

4
√

3K̄Dl2
, K∗d(KD) =

l1a1

4(K̄Dmqd +mωd)l2
,

K∗P (KD) =
3c2
a1l1

K̄3
D +

(9− ε)a2c2
2a1l1

K̄2
D +

2(a3 + δ)

a1l1
K̄D,

then

V̇ (q0, ω̃) < −K̄D
1− ε

2

( ‖q‖2

(q0 − ε)2
+
c2
2
‖ω̃‖2

)
for a fixed K̄D ≥ K̄∗D and all (q0, ω̃) ∈ S , where K̄∗D and
S is a positive number and a compact set respectively as
defined in [3].

B. Appendix B
Define an ISS-Lyapunov function candidate

V (η1, η2, η3) = η>1 η1 + 1
2η
>
2 Jη2 + η>3 η3. From (19)-

(24) and taking gst = k4G̃(ζ̇2 −K1σ
′(K1

λ1
ζ1)ζ̇1 + k3ζ̇1), the

time derivative of V (η1, η2, η3) can be written as

V̇ ≤
(
`1 + δ0(

`4 + `7
2

+ 2) + `5
δ1
2

)
‖η1‖2

+
(
`2 + `4

1

2δ0
+ `6

1

2δ2
+
δ3
2

(
1

KD
‖J‖+ `8 +

1)
)
‖η2‖2 +

(
`3 + `5

1

2δ1
+ δ2(

`6 + `9
2

+ 2)
)

‖η3‖2 +
( 1

δ0
+

1

2KDδ3
‖J‖+

1

δ2

)
‖yζ0‖2

+
1

2

( `7
δ0

+
`8
δ3

+
`9
δ2

)
‖yζ1‖2 +

1

δ0
‖Iη1‖2

+
1

2δ3
‖Iη2‖2 +

1

δ2
‖Iη3‖2, where

yζ0 = −K3P2σ
′(
K3

λ3
ζ3)
(
− 1

M
D̃(t)P2λ3σ(

K3

λ3
ζ3) +

K2P1σ
′(
K2

λ2
ζ2)ζ̇2 +

p

M
+

d

M
− Kd

M
LdG4τ̄

)
,

yζ1 = G̃(ζ̇2 −K1σ
′(
K1

λ1
ζ1)ζ̇1 + k3ζ̇1),

Iη1 = −Kd

(
I − 1

2

(
q0I + S(q)

)
Qd

)
(G6τ̄ + D̃−1

0 P ˙̄τ),

Iη2 = Kd

(
S(ω)JQd +

1

KD
J
(
I − 1

2

(
q0I + S(q)

)
Qd

))
(G6τ̄ + D̃−1

0 P ˙̄τ) + ∆− Jω̇d,

Iη3 = Kd

(
− 1

2KD
P3

(
q0I + S(q)

)
−KdP3

(
I − 1

2(
q0I + S(q)

)
Qd

)
G5P3 +K3P3Q0 −KdG7P3

)
P4eξ −KdP3

(
I − 1

2

(
q0I + S(q)

)
Qd

)
(G6τ̄ +

D̃−1
0 P ˙̄τ)−KdG̃P̃2P6τ̄ and

Q0(t) =
1

M
P2σ

′(
K3

λ3
ζ3)
(
D̃ +KdLdG4P3

)
,

Q1(t) =
1

M
P2σ

′(
K3

λ3
ζ3)LdG4,

Ld(t) = I + D̃∆(t)D̃−1
0 (t),

G0(t) = PG7, G1(t) = P̃2P6G7 + ˙̃P2P6,

G2(t) = (KdPG̃P̃2 + ˙̃P2)P6 + P̃2P6G7,

G3(t) = KdP + P̃2P6, G4(t) = P + P̃2P6,



G5(t) = ˙̃D−1
0 G4 + D̃−1

0 (KdG0 +G1),

G6(t) = ˙̃D−1
0 G4 + D̃−1

0 G2, G7(t) = F̃ + G̃P̃2P6.

Note that

P5 =


0 1 0 0 0
0 0 1 0 0 . . .
0 0 0 1 0

...
. . .

 and P6 =

[
P5 0
0 P5

]

is a 4N × (4N + 2) matrix and a R2N+1 → R2N projection
matrix respectively. In addition, for all t ≥ 0, ‖Qi(t)‖ ≤ mi

and ‖Gj(t)‖ ≤ gj for some mi > 0, i = 0, 1 and gj >
0, j = 0 . . . 7 respectively. The arbitrary positive numbers
δ0, δ1, δ2 and δ3 are obtained from Young’s inequalities and

`1 := − ε

KD
+
√

3
λ3

KD
+ 2K3m0 +

Kd

(mqd

KD
+ 2(1 +mQd)g5

)
`2 := −KPKDl1 + (mω +

1

KD
)‖J‖

`3 := − ε

KD
+
√

3
λ3

KD
+ 2K3m0 +Kd

(mqd +meξ

KD
+

2K3m1 + 4g7 + 4(1 +mQd)g5

)
`4 :=

(mω

KD
+

1

K2
D

+
K3

KD
m0 +Kd

(
mωmQd +

1 +mQd

KD

)
g5

)
‖J‖+ 2

`5 := 2Kd

(
(1 +mQd)g5 +K3m1

)
`6 := Kd

(
(mωmQd +

1 +mQd

KD
)g5 +

K3

KD
m1

)
‖J‖+ 2

`7 := 2k4Kd(1 +mQd)mD̃0
g3

`8 := k4Kd

(
mωmQd +

1 +mQd

KD

)
mD̃0

g3‖J‖

`9 := 2k4Kd

(
1 + (1 +mQd)mD̃0

g3

)
.

Set now

λ̄∗3 =
ε

5
√

3
, K̄∗3 (KD) =

ε

10KDm0
,

K̄∗d(KD,K3) = min
{
K̄∗d1(KD,K3), K̄∗d2(KD,K3)

}
,

where

K̄∗d1(KD,K3) =
ε

5KD

(mqd
KD

+ 3(1 +mQd)g5 +K3m1

) ,
K̄∗d2(KD,K3) =

ε

5KD

(mqd+meξ
KD

+ 5(1 +mQd)g5 + 3K3m1 + 4g7

) .
Next, fix

δ0 =
2ε

5KD(`4 + `7 + 4)
, δ1 = 1,

δ2 =
2ε

5KD(`6 + `9 + 4)
,

δ3 =
`1KPKD

1
KD
‖J‖+ `8 + 1

.

Moreover let,

`∗4(KD) :=
(mω

KD
+

1

K2
D

+
K̄∗3
KD

m0 + K̄∗d
(
mωmQd

+
1 +mQd

KD

)
g5

)
‖J‖+ 2

`∗6(KD) := K̄∗d
(
(mωmQd +

1 +mQd

KD
)g5 +

K̄∗3
KD

m1

)
‖J‖+ 2

`∗7(k4) := 2k4K̄
∗
d(1 +mQd)mD̃0

g3

`∗8(k4,KD) := k4K̄
∗
d

(
mωmQd +

1 +mQd

KD

)
mD̃0

g3‖J‖

`∗9(k4) := 2k4K̄
∗
d

(
1 + (1 +mQd)mD̃0

g3

)
δ∗0(k4,KD) :=

2ε

5KD(`∗4 + `∗7 + 4)

δ∗2(k4,KD) :=
2ε

5KD(`∗6 + `∗9 + 4)

δ∗3(k4,KD) :=
`1KPKD

1
KD
‖J‖+ `∗8 + 1

.

It can shown that there exist K̄∗P > 0 such that for all
KP ≥ K̄∗P 1

KD
and for all λ3 ≤ λ̄∗3, K3 ≤ K̄∗3 and Kd ≤ K̄∗d ,

V̇ ≤ − ε

5KD

(
‖η1‖2 + ‖η2‖2 + ‖η3‖2

)
+
( 1

δ∗0
+

1

2KDδ∗3

‖J‖+
1

δ∗2

)
‖yζ0‖2 +

1

2

( `∗7
δ∗0

+
`∗8
δ∗3

+
`∗9
δ∗2

)
‖yζ1‖2 +

1

δ∗0
‖Iη1‖2 +

1

2δ∗3
‖Iη2‖2 +

1

δ∗2
‖Iη3‖2.

Hence, subsystem (24) is ISS (see for instance, [2]).
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