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Control of large 1D networks of double integrator agents: role of

heterogeneity and asymmetry on stability margin

He Hao and Prabir Barooah

Abstract

We consider the distributed control of a network of heterogeneous agents with double integrator dynamics to

maintain a rigid formation in 1D Euclidean space. The control signal at each vehicle is allowed to use relative

position and velocity with its two nearest neighbors. Most of the work on this problem, though extensive, has been

limited to homogeneous networks, in which agents have identical mass and controller, and symmetric control, in

which information from front and back neighbors are weighted equally. We examine the effect of heterogeneity and

asymmetry on the closed loop stability margin, which is measured by the real part of the least stable pole of the

closed-loop system. By using a PDE (partial differential equation) approximation in the limit of large number of

vehicles, we show that heterogeneity has little effect while asymmetry has a significant effect on the stability margin.

When control is symmetric, the stability margin decays to0 asO(1/N2), whereN is the number of agents, even

when the agents are heterogeneous in their masses and control gains. In contrast, we show that arbitrarily small

amount of asymmetry in the velocity feedback gains can improve the decay of the stability margin toO(1/N). Poor

design of such asymmetry makes the closed loop unstable for sufficiently largeN . Moreover, if there is equal amount

of asymmetry in both position and velocity feedback gains, the stability margin of the network can be bounded away

from 0, uniformly in N . This results thus eliminates the degradation of closed-loop stability margin with increasing

N , but its sensitivity to external disturbances becomes muchworse than symmetric control. Numerical computations

are provided to corroborate the analysis.

I. I NTRODUCTION

In this paper we examine the closed loop dynamics of a networkconsisting ofN interacting agents arranged in a

line, where the agents are modeled as double integrators andeach agent interacts with its two nearest neighbors (one

on either side) through its local control action. This is a problem that is of primary interest to formation control

applications, especially to platoons of vehicles, where the vehicles are modeled as point masses. An extensive

literature exists on 1-D automated platoons; see [2]–[7] and references therein. In the vehicular platoon problem,

the formation try to track a desired trajectory while maintaining a rigid formation geometry. The desired trajectory
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of the entire vehicular platoon is given in terms of trajectory of a fictitious reference vehicle, and the desired

formation geometry is specified in terms of constant inter-vehicle spacings.

Although significant amount of research has been conducted on robustness-to-disturbance and stability issues of

double integrator networks with decentralized control, most investigations consider the homogeneous case in which

each agent has the same mass and employs the same controller (exceptions include [8]–[10]). In addition, only

symmetric control laws are considered in which the information from both the neighboring agents are weighted

equally, with [7], [11] being exceptions. Khatiret. al. proposes heterogeneous control gains to improve string

stability (sensitivity to disturbance) at the expense of control gains increasing without bound asN increases [8].

Middletonet. al.considers both unidirectional and bidirectional control,and concludes heterogeneity has little effect

on the string stability under certain conditions on the highfrequency behavior and integral absolute error [10]. On

the other hand, [11] examines the effect of asymmetry (but not heterogeneity) on the response of the platoon as

a result of sinusoidal disturbances in the lead vehicle, andconcludes the asymmetry makes sensitivity to such

disturbances worse.

In this paper we analyze the case when the agents areheterogeneousin their masses and control laws used,

and also allow asymmetry in the use of front and back information. A decentralizedbidirectional control law is

considered that uses only relative position and relative velocity information from the nearest neighbors. We examine

the effect of heterogeneity and asymmetry on the stability margin of the closed loop, which is measured by the

absolute value of the real part of the least stable pole. The stability margin determines the decay rate of initial

formation keeping errors. Such errors arise from poor initial arrangement of the agents. The main result of the

paper is that in a decentralized bidirectional control strategy, heterogeneity has little effect on the stability margin

of the overall closed loop, while even small asymmetry can have a significant impact. In particular, we show that

in the symmetric case, the stability margin decays to0 asO(1/N2), whereN is the number of agents. We also

show that the asymptotic scaling trend of stability margin is not changed by agent-to-agent heterogeneity as long

as the control gains do not have front-back asymmetry. On theother hand, arbitrary small amount of asymmetry

in the way the local controllers use front and back information can improve the stability margin by a considerable

amount. When each agent weighs the relative velocity information from its front neighbor more heavily than the

one behind it, the stability margin scaling trend can be improved fromO(1/N2) to O(1/N). In contrast, if more

weight is given to the relative velocity information with the neighbor behind it, the closed loop becomes unstable

if N is sufficiently large. In addition, when there is equal amount of asymmetry in position and velocity feedback

gains, the closed-loop is exponential stable for arbitraryfiniteN , and the stability margin can be uniformly bounded

with the size of the network. This result makes it possible todesign the control gains so that the stability margin of

the system satisfies a pre-specified value irrespective of how many vehicles are in the formation. However, in this

special case, the sensitivity to disturbance becomes much worse than symmetric control. In contrast, with judicious

asymmetry in velocity feedback alone improves the sensitivity to external disturbance.

In this paper, we propose a PDE approximation to the coupled system of ODEs that model the closed loop

dynamics of the network. This is inspired by the work [7] thatexamined stability margin of 1-D vehicular platoons



in a similar framework. Compared to [7], this paper makes twonovel contributions. First, we consider heterogeneous

agents (the mass and control gains vary from agent to agent),whereas [7] consider only homogeneous agents.

Secondly, [7] considered the scenario in which the desired trajectory of the platoon was one with a constant

velocity, and moreover, every agent knew this desired velocity. In contrast, the control law we consider requires

agents to know only the desired inter-agent separation; theoverall trajectory information is made available only

to agent1. This makes the model more applicable to practical formation control applications. It was shown in [7]

for the homogeneous formation that asymmetry in the position feedback can improve the stability margin from

O(1/N2) to O(1/N) while the absolute velocity feedback gain did not affect theasymptotic trend. In contrast, we

show in this paper that with relative position and relative velocity feedback, asymmetry in the velocity feedback gain

alone and in both position and velocity feedback gains are very important. The stability margin can be improved

considerably by a judicious choice of asymmetry.

Although the PDE approximation is valid only in the limitN → ∞, numerical comparisons with the original state-

space model shows that the PDE model provides accurate results even for smallN (5 to 10). PDE approximation

is quite common in many-particle systems analysis in statistical physics and traffic-dynamics (see the article [12]

for an extensive review.). The usefulness of PDE approximation in analyzing multi-agent coordination problems

has been recognized also by researchers the controls community; see [7], [13]–[15] for examples. A similar but

distinct framework based on partialdifferenceequations has been developed by Ferrari-Trecateet. al. [16].

The rest of this paper is organized as follows. Section II presents the problem statement and the main results of

this paper. Section III describes the PDE model of the network of agents. Analysis and control design results together

with their numerical corroboration appear in Sections IV and V, respectively. The paper ends with a summary in

Section VI.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem statement

We consider the formation control ofN heterogeneous agents which are moving in 1D Euclidean space, as

shown in Figure 1 (a). The position and mass of each agent are denoted bypi andmi respectively. The mass of

each agent is bounded,|mi −m0|/m0 ≤ δ for all i, wherem0 > 0 andδ ∈ [0, 1) are constants. The dynamics of

each agent are modeled as a double integrator:

mip̈i = ui, (1)

whereui is the control input (acceleration or deceleration command). This is a commonly used model for vehicle

dynamics in studying vehicular formations, which results from feedback linearization of actual non-linear vehicle

dynamics [3], [17].

The desired trajectory of the formation is given in terms of afictitious reference agent with index0 whose

trajectory is denoted byp∗0(t). Since we are interested in translational maneuvers of the formation, we assume the
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Fig. 1. Desired geometry of a network withN agents and1 ”reference agent”, which are moving in 1D Euclidean space. The filled agent in

the front of the network represents the reference agent, it is denoted by ”0”. (a) is the original graph of the network in thep coordinate and (b)

is the redrawn graph of the same network in thep̃ coordinate.

desired trajectory is a constant-velocity type, i.e.p∗0(t) = v0t+c0 for some constantsv0 andc0. The information on

the desired trajectory of the network is provided only to agent 1. The desired geometry of the formation is specified

by the desired gaps∆i−1,i for i = 1, . . . , N , where∆i−1,i is the desired value ofpi−1(t) − pi(t). The control

objective is to maintain a rigid formation, i.e., to make neighboring agents maintain their pre-specified desired gaps

and to make agent1 follow its desired trajectoryp∗0(t) −∆0,1. Since we are only interested in maintaining rigid

formations that do not change shape over time,∆i−1,i’s are positive constants.

In this paper, we consider the followingdecentralizedcontrol law, whereby the control action at thei-th agent

depends on i) therelative position measurementsii) the relative velocity measurementswith its immediate neighbors

in the formation:

ui =− kfi (pi − pi−1 +∆i−1,i)− kbi (pi − pi+1 −∆i,i+1)− bfi (ṗi − ṗi−1)− bbi(ṗi − ṗi+1), (2)

wherei = {1, . . . , N−1}, kf(.), k
b
(.) are the front and back position gains andbf(.), b

b
(.) are the front and back velocity

gains respectively. For the agent with indexN which does not have an agent behind it, the control law is slightly

different:

uN =− kfN (pN − pN−1 +∆N−1,N )− bfN (ṗN − ṗN−1). (3)

Each agenti knows the desired gaps∆i−1,i and∆i,i+1, while only agent1 knows the desired trajectoryp∗0(t) of

the fictitious reference agent.

Combining the open loop dynamics (1) with the control law (2), we get

mip̈i =− kfi (pi − pi−1 +∆i−1,i)− kbi (pi − pi+1 −∆i,i+1)− bfi (ṗi − ṗi−1)− bbi(ṗi − ṗi+1), (4)

where i ∈ {1, . . . , N − 1}. The dynamics of theN -th agent are obtained by combining (1) and (3), which are

slightly different from (4). The desired trajectory of thei-th agent isp∗i (t) =: p∗0(t)−∆0,i = p∗0(t)−
∑i

j=1 ∆j−1,j .

To facilitate analysis, we define the following tracking error:

p̃i := pi − p∗i ⇒ ˙̃pi = ṗi − ṗ∗i . (5)

Substituting (5) into (4), and usingp∗i−1(t)− p∗i (t) = ∆i−1,i, we get

mi
¨̃pi = −kfi (p̃i − p̃i−1)− kbi (p̃i − p̃i+1)− bfi (

˙̃pi − ˙̃pi−1)− bbi( ˙̃pi − ˙̃pi+1). (6)



By defining the stateψ := [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]T , the closed loop dynamics of the network can now be

written compactly from (6) as:

ψ̇ = Aψ (7)

whereA is the closed-loop state matrix and we have used the fact thatp̃0(t) = ˙̃p0(t) ≡ 0 since the trajectory of

the reference agent is equal to its desired trajectory.

B. Main results

The first two results rely on the analysis of the following PDE(partial differential equation) model of the network,

which is seen as a continuum approximation of the closed-loop dynamics (6). The details of derivation of the PDE

model are given in Section III. The PDE is given by

m(x)
∂2p̃(x, t)

∂t2
=
(kf−b(x)

N

∂

∂x
+
kf+b(x)

2N2

∂2

∂x2
+
bf−b(x)

N

∂2

∂x∂t
+
bf+b(x)

2N2

∂3

∂x2∂t

)

p̃(x, t), (8)

with boundary condition:

p̃(1, t) = 0,
∂p̃

∂x
(0, t) = 0, (9)

wherekf−b(x), kf+b(x), bf−b(x) andbf+b(x) are defined as follows:

kf+b(x) := kf(x) + kb(x), kf−b(x) := kf (x)− kb(x),

bf+b(x) := bf(x) + bb(x), bf−b(x) := bf(x) − bb(x),

and m(x), kf (x), kb(x), bf (x), bb(x) are respectively the continuum approximation ofmi, k
f
i , k

b
i , b

f
i , b

b
i of each

agent with the following stipulation:

kf or b
i = kf or b(x)|x=N−i

N
, bf or b

i = bf or b(x)|x=N−i
N
, mi = m(x)|x=N−i

N
. (10)

We formally define symmetric control and stability margin before stating the first main result, i.e. the role of

heterogeneity on the stability margin of the network.

Definition 1: The control law (2) issymmetricif each agent uses the same front and back control gains:kfi = kbi

andbfi = bbi , for all i ∈ {1, 2, . . . , N − 1}. �

Definition 2: The stability margin of a closed-loop system, which is denoted byS, is the absolute value of the

real part of the least stable pole. �

Theorem 1:Consider the PDE model (8) of the network with boundary condition (9), where the mass and the

control gain profiles satisfy|m(x)−m0|/m0 ≤ δ, |k(·)(x)− k0|/k0 ≤ δ and|b(·)(x)− b0|/b0 ≤ δ for all x ∈ [0, 1]

wherem0, k0 and b0 are positive constants, andδ ∈ [0, 1) denotes the percent of heterogeneity. With symmetric

control, the stability marginS of the network satisfies the following:

(1− 2δ)
π2b0
8m0

1

N2
≤ S ≤ (1 + 2δ)

π2b0
8m0

1

N2
, (11)

whenδ ≪ 1. �



The result above is also provable for an arbitraryδ < 1 (not necessarily small) when the position gain is

proportional to the velocity gain using standard results ofSturm-Liouville theory [18, Chapter 5]. For that case,

the result is given in the following lemma and its proof is given in the end of the Appendix.

Lemma 1:Consider the PDE model (8) of the network with boundary condition (9). Let the mass and the control

gains satisfy0 < mmin ≤ m(x) ≤ mmax, 0 < bmin ≤ bf(x) = bb(x) = b(x) ≤ bmax andkf (x) = kb(x) = k(x) =

ρb(x) for all x ∈ [0, 1], wheremmin,mmax, bmin, bmax andρ are positive constants. The stability marginS of the

network satisfies the following:

π2bmin

8mmax

1

N2
≤ S ≤ π2bmax

8mmin

1

N2
. �

The main implication of the result above is thatheterogeneity of masses and control gains plays no role in the

asymptotic trend of the stability margin withN as long as the control gains are symmetric. Note that theO(1/N2)

decay of the stability margin described above has been shownfor homogeneous platoons (all agents have the same

mass and use the same control gains) independently in [19], although the dynamics of the last vehicle are slightly

different from ours. A similar result for homogeneous platoons with relative position and absolute velocity feedback

was also established in [7].

The second main result of this work is that the stability margin can be greatly improved by introducing front-back

asymmetry in thevelocity-feedback gains. We call the resulting designmistuning-based design because it relies on

small changes from the nominal symmetric gainb0. In addition, a poor choice of such asymmetry can also make

the closed loop unstable. Since heterogeneity is seen to have little effect, and for ease of analysis, we letmi = m0

in the sequel.

Theorem 2:For anN -agent network with PDE model (8) and boundary condition (9). Let m(x) = m0 for all

x ∈ [0, 1], consider the problem of maximizing the stability margin bychoosing the control gains with the constraint

|b(.)(x) − b0|/b0 ≤ ε, whereε is a positive constant, andk(f)(x) = k(b)(x) = k0. If ε ≪ 1, the optimal velocity

gains are

bf (x) = (1 + ε)b0, bb(x) = (1− ε)b0, (12)

which result in the stability margin

S =
εb0
m0

1

N
+O(

1

N2
) = O(

1

N
). (13)

The formula is asymptotic in the sense that it holds for largeN and smallε. In contrast, for the following choice

of asymmetry

bf(x) = (1− ε)b0 bb(x) = (1 + ε)b0, (14)

whereε≪ 1 is an small positive constant, the closed loop becomes unstable for sufficiently largeN . �

The theorem says that with arbitrary small change in the front-back asymmetry, so that velocity information from

the front is weighted more heavily than the one from the back,the stability margin can be improved significantly

over symmetric control. On the other hand, if velocity information from the back is weighted more heavily than



that from the front, the closed loop will become unstable if the network is large enough. It is interesting to note

that the optimal gains turn out to be homogeneous, which again indicates that heterogeneity has little effect on the

stability margin.

The astute reader may inquire at this point what are the effects of introducing asymmetry in the position-feedback

gains while keeping velocity gains symmetric, or introducing asymmetry in both position and velocity feedback

gains. It turns out when equal asymmetry in both position andvelocity feedback gains are introduced, the closed

loop is exponentially stable for arbitraryN . Moreover, the stability margin scaling trend can be uniformly bounded

below inN when more weights are given to the information from its frontneighbor. We state the result in the next

theorem.

Theorem 3:For anN -agent network with PDE model (8) and boundary condition (9). Let m(x) = m0 for all

x ∈ [0, 1]. With the following asymmetry in controlkf (x) = (1 + ε)k0, kb(x) = (1 − ε)k0, bf (x) = (1 + ε)b0,

bb(x) = (1 − ε)b0, whereε is the amount of asymmetry satisfyingε ∈ (0, 1), the stability margin of the network

can be uniformly bounded below as follows:

S ≥ min
{b0ε

2

2
,
k0
b0

}

= O(1). �

This asymmetric design therefore makes the resulting control law highly scalable; it eliminates the degradation

of closed-loop stability margin with increasingN . It is now possible to design the control gains so that the stability

margin of the system satisfies a pre-specified value irrespective of how many vehicles are in the formation. The result

above is for equal amount of asymmetry in the position feedback and velocity feedback gains. This constraint of

equal asymmetry in position and velocity feedback is imposed in order to make the analysis tractable. The analysis

of the stability margin in the following cases are open problems: (i) unequal asymmetry in position and velocity

feedback, (ii) velocity feedback gains are kept at their nominal symmetric values and asymmetry is introduced in

the position feedback gains only.

III. PDE MODEL OF THE CLOSED-LOOP DYNAMICS

In this paper, all the analysis and design is performed usinga PDE model, whose results are validated by numerical

computations using the state-space model (7). We now derivea continuum approximation of the coupled-ODEs (6)

in the limit of largeN , by following the steps involved in a finite-difference discretization in reverse. We define

kf+b
i := kfi + kbi , kf−b

i := kfi − kbi ,

bf+b
i := bfi + bfi , bf−b

i := bfi − bbi .

Substituting these into (6), we have

mi
¨̃pi =− kf+b

i + kf−b
i

2
(p̃i − p̃i−1)−

kf+b
i − kf−b

i

2
(p̃i − p̃i+1)

− bf+b
i + bf−b

i

2
( ˙̃pi − ˙̃pi−1)−

bf+b
i − bf−b

i

2
( ˙̃pi − ˙̃pi+1). (15)



To facilitate analysis, we redraw the graph of the 1D network, so that each vehicle in the new graph is drawn in

the interval[0, 1], irrespective of the number of agents. Thei-th agent in the “original” graph, is now drawn at

position (N − i)/N in the new graph. Figure 1 shows an example.

The starting point for the PDE derivation is to consider a function p̃(x, t) : [0, 1]× [0, ∞) → R that satisfies:

p̃i(t) = p̃(x, t)|x=(N−i)/N , (16)

such that functions that are defined at discrete pointsi will be approximated by functions that are defined everywhere

in [0, 1]. The original functions are thought of as samples of their continuous approximations. We formally introduce

the following scalar functionskf (x), kb(x), bf (x), bb(x) andm(x) : [0, 1] → R defined according to the stipulation:

kf or b
i = kf or b(x)|x=N−i

N
, bf or b

i = bf or b(x)|x=N−i
N
, mi = m(x)|x=N−i

N
. (17)

In addition, we define functionskf+b(x), kf−b(x), bf+b(x), bf−b(x) : [0, 1]D → R as

kf+b(x) := kf(x) + kb(x), kf−b(x) := kf (x)− kb(x),

bf+b(x) := bf(x) + bb(x), bf−b(x) := bf(x) − bb(x).

Due to (17), these satisfy

kf+b
i = kf+b(x)|x=(N−i)/N , kf−b

i = kf−b(x)|x=(N−i)/N

bf+b
i = bf+b(x)|x=(N−i)/N , bf−b

i = bf−b(x)|x=(N−i)/N .

To obtain a PDE model from (15), we first rewrite it as

mi
¨̃pi =

kf−b
i

N

(p̃i−1 − p̃i+1)

2(1/N)
+
kf+b
i

2N2

(p̃i−1 − 2p̃i + p̃i+1)

1/N2

+
bf−b
i

N

( ˙̃pi−1 − ˙̃pi+1)

2(1/N)
+
bf+b
i

2N2

( ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1)

1/N2
. (18)

Using the following finite difference approximations:
[ p̃i−1 − p̃i+1

2(1/N)

]

=
[∂p̃(x, t)

∂x

]

x=(N−i)/N
,
[ p̃i−1 − 2p̃i + p̃i+1

1/N2

]

=
[∂2p̃(x, t)

∂x2

]

x=(N−i)/N
,

[ ˙̃pi−1 − ˙̃pi+1

2(1/N)

]

=
[∂2p̃(x, t)

∂x∂t

]

x=(N−i)/N
,
[ ˙̃pi−1 − 2 ˙̃pi + ˙̃pi+1

1/N2

]

=
[∂3p̃(x, t)

∂x2∂t

]

x=(N−i)/N
.

For largeN , Eq. (18) can be seen as a finite difference discretization ofthe following PDE:

m(x)
∂2p̃(x, t)

∂t2
=
(kf−b(x)

N

∂

∂x
+
kf+b(x)

2N2

∂2

∂x2
+
bf−b(x)

N

∂2

∂x∂t
+
bf+b(x)

2N2

∂3

∂x2∂t

)

p̃(x, t).

The boundary conditions of the above PDE depend on the arrangement of reference agent in the redrawn graph of

the network. For our case, the boundary condition is of Dirichlet type atx = 1 where the reference agent is, and

of Neumann type atx = 0:

p̃(1, t) = 0,
∂p̃

∂x
(0, t) = 0.



IV. ROLE OF HETEROGENEITY ON STABILITY MARGIN

The starting point of our analysis is the investigation of the homogeneous and symmetric case:mi = m0, k
(·)
i =

k0, b
(·)
i = b0 for some positive constantsm0, k0, b0, wherei ∈ {1, . . . , N}. The analysis leading to the proof of

Theorem 1 is carried out using the PDE model derived in the previous section. In the homogeneous and symmetric

control case, using the notation introduced earlier, we get

m(x) = m0, kf+b(x) = 2k0, kf−b(x) = 0, bf+b(x) = 2b0, bf−b(x) = 0.

The PDE (8) simplifies to:

m0
∂2p̃(x, t)

∂t2
=

k0
N2

∂2p̃(x, t)

∂x2
+

b0
N2

∂3p̃(x, t)

∂x2∂t
. (19)

This is wave equation with Kelvin-Voigt damping. Due to the linearity and homogeneity of the above PDE and

boundary conditions, we are able to apply the method of separation of variables. We assume a solution of the form

p̃(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t). Substituting it into PDE (19), we obtain the following time-domain ODE

m0
d2hℓ(t)

dt2
+
b0λℓ
N2

dhℓ(t)

dt
+
k0λℓ
N2

hℓ(t) = 0, (20)

whereλℓ solves the following boundary value problem

d2φℓ(x)

dx2
+ λℓφℓ(x) = 0, (21)

with the following boundary condition, which comes from (9):

dφℓ
dx

(0) = 0, φℓ(1) = 0. (22)

Following straightforward algebra, the eigenvalues and eigenfunction of the above boundary value problem is given

by (see [18] for a BVP example)

λℓ = π2 (2ℓ− 1)2

4
, φℓ(x) = cos(

2ℓ− 1

2
πx), ℓ = 1, 2, · · · . (23)

Take Laplace transform to both sides of the (20) with respectto the time variablet, we obtain the characteristic

equation of the PDE (19):

m0s
2 +

b0λℓ
N2

s+
k0λℓ
N2

= 0.

The eigenvalues of the PDE (19) are now given by

s±ℓ = − λℓb0
2m0N2

± 1

2m0N

√

λ2ℓb
2
0

N2
− 4λℓm0k0 (24)

For smallℓ and largeN so thatN > (2ℓ − 1)πb0/(4
√
m0k0), the discriminant is negative, making the real part

of the eigenvalues equal to−λℓb0/(2m0N
2). The least stable eigenvalue, the one closest to the imaginary axis, is

obtained withℓ = 1:

s±1 = −π
2b0

8m0

1

N2
+ ℑ ⇒ S := |Real(s±1 )| =

π2b0
8m0N2

, (25)

whereℑ is an imaginary number.



We are now ready to present the proof of Theorem 1.

Proof of Theorem 1.Recall that in case of symmetric control we have

kfi = kbi , bfi = bbi , ∀i ∈ {1, · · · , N}.

In this case, using the notation introduced earlier, we have

kf−b(x) = 0, bf−b(x) = 0,

The PDE (8) is simplified to:

m(x)
∂2p̃(x, t)

∂t2
=
kf+b(x)

2N2

∂2p̃(x, t)

∂x2
+
bf+b(x)

2N2

∂3p̃(x, t)

∂x2∂t
, (26)

The proof proceeds by a perturbation method. To be consistent with the bounds of the mass and control gains of

each agent, let

m(x) = m0 + δm̃(x), m̃(x) ∈ [−m0,m0]

kf+b(x) = 2k0 + δk̃(x), k̃(x) ∈ [−2k0, 2k0]

bf+b(x) = 2b0 + δb̃(x), b̃(x) ∈ [−2b0, 2b0].

whereδ is a small positive number, denoting the amount of heterogeneity andm̃(x), k̃(x), b̃(x) are the perturbation

profiles. Take Laplace transform to both sides of PDE (26) with respect tot, we have

m(x)s2η =
kf+b(x)

2N2

∂2η

∂x2
+
bf+b(x)

2N2
s
∂2η

∂x2
, (27)

Let the perturbed eigenvalue bes = sℓ = s
(0)
ℓ + δs

(δ)
ℓ , the Laplace transform of̃p(x, t) be η = η(0) + δη(δ), where

s
(0)
ℓ andη(0) correspond to the unperturbed PDE (19), i.e.

m0(s
(0))2η(0) =

k0
N2

∂2η(0)

∂x2
+

b0
N2

s(0)
∂2η(0)

∂x2
. (28)

Eq. (24) provides the formula fors(0)ℓ (actually,s±ℓ ), andη(0) is the solution to above equation, which is given by

η(0) =
∑∞

ℓ=1 η
(0)
ℓ =

∑∞

ℓ=1 φℓ(x)Hℓ(s), whereHℓ(s) is the Laplace transform ofh(t) given in (20). Plugging the

expressions forsℓ andη into (27), and doing anO(1) balance leads to the eigenvalue equation for the unperturbed

PDE, which is exactly Eq. (28):

Pη(0) = 0, whereP :=

(

m0(s
(0)
ℓ )2 − b0s

(0)
ℓ + k0
N2

∂2

∂x2

)

Next we do anO(δ) balance, which leads to:

Pη(δ) =
(

− 2m0s
(0)
ℓ s

(δ)
ℓ η(0) − m̃(x)(s

(0)
ℓ )

2
η(0) +

k̃(x)

2N2

∂2η(0)

∂x2
+ s

(0)
ℓ

b̃(x)

2N2

∂2η(0)

∂x2
+ s

(δ)
ℓ

b0
N2

∂2η(0)

∂x2

)

=: R

For a solutionη(δ) to exist,R must lie in the range space of the operatorP . SinceP is self-adjoint, its range space

is orthogonal to its null space. Thus, we have,

< R, η
(0)
ℓ >= 0 (29)



whereφℓ is also theℓth basis vector of the null space of operatorP . We now have the following equation:
∫ 1

0

(

− 2m0s
(0)
ℓ s

(δ)
ℓ η(0) − m̃(x)(s

(0)
ℓ )

2
η(0) +

k̃(x)

2N2

∂2η(0)

∂x2
+ s

(0)
ℓ

b̃(x)

2N2

∂2η(0)

∂x2
+ s

(δ)
ℓ

b0
N2

∂2η(0)

∂x2

)

η
(0)
ℓ dx = 0.

Following straightforward manipulations, we got:

s
(δ)
ℓ =

b0λℓ
m2

0N
2

∫ 1

0

m̃(x)(φℓ(x))
2dx− λℓ

2m0N2

∫ 1

0

b̃(x)(φℓ(x))
2dx+ ℑ, (30)

whereℑ is an imaginary number whenN is large (N > (2ℓ− 1)πb0/(4
√
m0k0)). Using this, and substituting the

equation above intosℓ = s
(0)
ℓ +δs

(δ)
ℓ +O(δ2), and settingℓ = 1, we obtain the stability margin of the heterogeneous

network:

S =
b0π

2

8m0N2
− δ

b0π
2

4m2
0N

2

∫ 1

0

m̃(x) cos2
(π

2
x
)

dx + δ
π2

8m0N2

∫ 1

0

b̃(x) cos2
(π

2
x
)

dx+O(δ2).

Plugging the bounds|m̃(x)| ≤ m0 and |b̃(x)| ≤ 2b0 , we obtain the desired result.

A. Numerical comparison

We now present numerical computations that corroborates the PDE-based analysis. We consider the following

mass and control gain profile:

kfi = kbi = 1 + 0.2 sin(2π(N − i)/N),

bfi = bbi = 0.5 + 0.1 sin(2π(N − i)/N),

mi = 1 + 0.2 sin(2π(N − i)/N). (31)

In the associated PDE model (26), this corresponds tokf (x) = kb(x) = 1 + 0.2 sin(2πx), bf (x) = bb(x) =

0.5 + 0.1 sin(2πx), m(x) = 1 + 0.2 sin(2πx). The eigenvalues of the PDE, that are computed numerically using a

Galerkin method with Fourier basis, are compared with that of the state space model to check how well the PDE

model captures the closed loop dynamics. Figure 2 depicts the comparison of eigenvalues of the state-space model

and the PDE model. It shows the eigenvalues of the state-space model is accurately approximated by the PDE

model, especially the ones close to the imaginary axis. We see from Figure 3 that the closed-loop stability margin

of the controlled formation is well captured by the PDE model. In addition, the plot corroborates the predicted

bound (11).

V. ROLE OF ASYMMETRY ON STABILITY MARGIN

In this paper, we consider two scenarios of asymmetric control, we will first present the results when there is

asymmetry in the velocity feedback alone (Theorem 2). The results when there is equal asymmetry in both position

and velocity feedback will follow immediately (Theorem 3).
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A. Asymmetric velocity feedback

With symmetric control, one obtains anO( 1
N2 ) scaling law for the stability margin because the coefficientof

the ∂3

∂x2∂t term in the PDE (26) isO( 1
N2 ) and the coefficient of the∂2

∂x∂t term is0. Any asymmetry between the

forward and the backward velocity gains will lead to non-zero bf−b(x) and a presence ofO( 1
N ) term as coefficient

of ∂2

∂x∂t . By a judicious choice of asymmetry, there is thus a potential to improve the stability margin fromO( 1
N2 )

to O( 1
N ). A poor choice of control asymmetry may lead to instability,as we’ll show in the sequel.

We begin by considering the forward and backward feedback gain profiles

kf (x) = kb(x) = k0, bf (x) = b0 + εb̃f(x), bb(x) = b0 + εb̃b(x), (32)

whereε > 0 is a small parameter signifying the percent of asymmetry andb̃f(x), b̃b(x) are functions defined over

[0, 1] that capture velocity gain perturbation from the nominal value b0. Define

b̃s(x) := b̃f(x) + b̃b(x), b̃m(x) := b̃f (x)− b̃b(x). (33)

Due to the definition ofkf+b, kf−b, bf+b andbf−b, we have

kf+b(x) = 2k0, kf−b(x) = 0,

bf+b(x) = 2b0 + εb̃s(x), bf−b(x) = εb̃m(x).

The PDE (8) with homogeneous massm0 now becomes

m0
∂2p̃(x, t)

∂t2
=
( k0
N2

∂2

∂x2
+

b0
N2

∂3

∂x2∂t

)

p̃(x, t) + ε
( b̃s(x)

2N2

∂3

∂x2∂t
+
b̃m(x)

N

∂2

∂x∂t

)

p̃(x, t). (34)

We now study the problem of how does the choice of the perturbations b̃s(x) and b̃m(x) (within limits so that

the gainsbf (x) and bb(x) are within pre-specified bounds) affect the stability margin. An answer to this question

also helps in designing beneficial perturbations to improvethe stability margin. The following result is used in the

subsequent analysis.

Theorem 4:Consider the eigenvalue problem of the PDE (34) with mixed Dirichlet and Neumann boundary

condition (9). The least stable eigenvalue is given by the following formula that is valid forε≪ 1 and largeN :

s1 = s
(0)
1 − ε

π

4m0N

∫ 1

0

b̃m(x) sin
(

πx
)

dx− ε
π2

8m0N2

∫ 1

0

b̃s(x) cos2
(π

2
x
)

dx+O(ε2) + ℑ (35)

wheres(0)1 is the least stable eigenvalue of the unperturbed PDE (19) with the same boundary conditions andℑ is

an imaginary number whenN is large (N > πb0/(4
√
m0k0)). �

The proof of Theorem 4 is given in the Appendix. Now we are ready to prove Theorem 2.

Proof of Theorem 2.It follows from Theorem 4 that to minimize the least stable eigenvalue, one needs to choose

only b̃m(x) carefully. The reason is the second term involvingb̃s(x) has theO(1/N2) trend. Therefore, we choose

b̃s(x) ≡ 0.

This means that the perturbations to the “front” and “back” velocity gains satisfy:

b̃f(x) = −b̃b(x) ⇔ b̃m(x) = 2b̃f(x).



The most beneficial gains can now be readily obtained from Theorem 4. To minimize the least stable eigenvalue with

b̃s(x) ≡ 0, we should choosẽbm(x) to make the integral
∫ 1

0 b̃
m(x) sin(πx)dx as large as possible, which is achieved

by settingb̃m(x) to be the largest possible value everywhere in the interval[0, 1]. The constraint|b(·)i − b0|/b0 ≤ ε

translates tob0(1 − ε) ≤ b(·)(x) ≤ b0(1 + ε), which means‖b̃f‖∞ ≤ b0 and‖b̃b‖∞ ≤ b0. With the choice of̃bs

made above, we therefore have the constraint‖b̃m‖ ≤ 2b0. The solution to the optimization problem is therefore

obtained by choosing̃bm(x) = 2b0 ∀x ∈ [0, 1]. This gives us the optimal gains

b̃f(x) = b0, b̃b(x) = −b0, ⇒ bf (x) = b0(1 + ε), bb(x) = b0(1− ε).

The least stable eigenvalue is obtained from Theorem (4):

s+1 = s(0) − εb0
m0N

− 0 +O(ε2) + ℑ.

Sinces(0) is the least stable eigenvalue for the symmetric PDE, we knowfrom Theorem 1 thats(0) = O(1/N2).

Therefore, it follows from the equation above that the stability margin is S = Re(s+1 ) = εb0
m0N

+ O( 1
N2 ). This

proves the first statement of the theorem.

To prove the second statement, the control gain designbfi = (1−ε)b0 andbbi = (1+ε)b0 becomesbf (x) = (1−ε)b0
andbb(x) = (1 + ε)b0. With this choice, it follows from Theorem (4) that

s+1 = s(0) +
εb0
m0N

− 0 +O(ε2) + ℑ.

Sinces(0) = O(1/N2), the second term, which isO(1/N), will dominate for largeN . Since this term is positive,

the second statement is proved.

B. Asymmetric position and velocity feedback with equal amount of asymmetry

When there is equal asymmetry in the position and velocity feedback, we consider the following homogeneous

and asymmetric control gains:

kf (x) = (1 + ε)k0, kb(x) = (1− ε)k0,

bf(x) = (1 + ε)b0, bb(x) = (1− ε)b0, (36)

whereε is the amount of asymmetry satisfyingε ∈ (0, 1).

Proof of Theorem 3.The PDE model with the control gains specified in (36) becomes

m0
∂2p̃(x, t)

∂t2
=

2εk0
N

∂p̃(x, t)

∂x
+

k0
N2

∂2p̃(x, t)

∂x2
+

2εb0
N

∂2p̃(x, t)

∂x∂t
+

b0
N2

∂3p̃(x, t)

∂x2∂t
, (37)

By the method of separation of variables, we assume a solution of the formp̃(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t). Substituting

it into PDE (37), we obtain the following time-domain ODE

d2hℓ(t)

dt2
+ b0

dhℓ(t)

dt
+ k0λℓhℓ(t) = 0, (38)

whereλℓ solves the following boundary value problem

Łφℓ(x) = 0, Ł :=
d2

dx2
+ 2εN

d

dx
+ λℓN

2, (39)



with the following boundary condition, which comes from (9):

dφℓ
dx

(0) = 0, φℓ(1) = 0. (40)

Taking Laplace transform of both sides of (38) with respect to the time variablet, we have the following characteristic

equation for the PDE model

s2 + b0λℓs+ k0λℓ = 0. (41)

We now solve the boundary value problem (39)-(40). We first multiply both sides of (39) bye2εNxN2, we obtain

the standard Sturm-Liouville eigenvalue problem

d

dx

(

e2εNx dφℓ(x)

dx

)

+ λ
(ε)
ℓ N2e2εNxφℓ(x) = 0. (42)

According to Sturm-Liouville Theory, all the eigenvalues are real and have the following orderingλ1 < λ2 < · · · ,
see [18]. To solve the boundary value problem (39)-(40), we assume solution of the form,φℓ(x) = erx, then we

obtain the following equation

r2 + 2εNr + λℓN
2 = 0, ⇒ r = −εN ±N

√

ε2 − λℓ. (43)

Depending on the discriminant in the above equation, there are three cases to analyze:

1) λℓ < ε2, the eigenfunction has the following formφℓ(x) = c1e
(−εN+N

√
ε2−λℓ)x + c2e

(−εN−N
√

ε2−λℓ)x,

wherec1, c2 are some constants. Applying the boundary condition (40), it’s straightforward to see that, for

non-trivial eigenfunctionsφℓ(x) to exit, the following equation must be satisfied(εN −N
√
ε2 − λℓ)/(εN +

N
√
ε2 − λℓ) = e2N

√
ε2−λℓ . For positiveε, this leads to a contradiction, so there is no eigenvalue forthis

case.

2) λℓ = ε2, the eigenfunctionφℓ(x) has the following form

φℓ(x) = c1e
−εNx + c2xe

−εNx.

Again, applying the boundary condition (40), for non-trivial eigenfunctionsφℓ(x) to exit, we have the following

εN = −1, which implies there is no eigenvalue for this case either.

3) λℓ > ε2, the eigenfunction has the following formφℓ(x) = e−εNx(c1 cos(N
√
λℓ − ε2x)+c2 sin(N

√
λℓ − ε2x)).

Applying the boundary condition (40), for non-trivial eigenfunctionsφℓ(x) to exit, the eigenvaluesλℓ must

satisfy λℓ = ε2 +
a2

ℓ

N2 where aℓ solves the transcendental equation−aℓ/(εN) = tan(aℓ). A graphical

representation of the functionstanx and−x/εN with respect tox shows thataℓ ∈ ( (2ℓ−1)π
2 , ℓπ).

From case 3), we see thata1 ∈ (π/2, π), and λ1 → ε2 from above asN → ∞, i.e. infN λ1 = ε2. For each

ℓ ∈ {1, 2, · · · }, the two roots of the characteristic equations (41) are given by

s±ℓ =
−b0λℓ ±

√

b20λ
2
ℓ − 4k0λℓ

2
. (44)

Depending on the discriminant in (44), there are two cases toanalyze:



1) If λ1 ≥ 4k0/b
2
0, then the discriminant in (44) for eachℓ is non-negative, theless stableeigenvalue can be

written as

s+ℓ = −λℓb0 −
√

(λℓb0)2 − 4λℓk0
2

= − 2k0

b0 +
√

b20 − 4k0/λℓ
.

The least stable eigenvalue is achieved by settingλℓ = λ∞. Sinceλℓ → ∞ asℓ→ ∞, we have the stability

margin

S = |Re(s+1 )| ≥
2k0

b0 +
√

b20 − 0
=
k0
b0
.

2) Otherwise, the discriminant in (44) is indeterministic,i.e. it’s negative for smallℓ and positive for largeℓ is

non-positive. For thoseℓ’s which make the discriminant negative, the least stable eigenvalue among them is

given by

s±1 = −λ1b0
2

+ ℑ.

whereℑ is an imaginary number. For thoseℓ’s which make the discriminant non-positive, we have from Case

1) that the least stable eigenvalue among them is given by

s+1 = − 2k0

b0 +
√

b20 − 4k0/λ∞

The stability margin is given by taking the minimum of absolute value of the real part of the above two

eigenvalues,

S ≥ min
{b0λ1

2
,
k0
b0

}

.

Combining the above two cases, and using the fact thatλ1 ≥ ε2, we obtain that the stability margin can be bounded

below as follows

S ≥ min
{ b0ε

2

2
,
k0
b0

}

.

This concludes the proof.

C. Numerical comparison of stability margin

Figure 4 depicts the numerically obtained stability margins for both the PDE and state-space models (SSM) with

symmetric and asymmetric control gains. The figure shows that 1) the stability margin of the PDE model matches

that of the state-space model accurately, even for small values ofN ; 2) the stability margin with asymmetric velocity

feedback shows large improvement over the symmetric case even though the velocity gains differ from their nominal

values only by±10%. The improvement is particularly noticeable for large values ofN , while being significant

even for small values ofN ; 3) With equal amount of asymmetry in both the position and velocity feedback, the

stability margin can be uniformly bounded away from0, which eliminates the degradation of stability margin with

increasingN ; 4) the asymptotic formulae given in Theorem 2 and Theorem 3 are quire accurate.
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Fig. 4. Stability margin improvement by asymmetric control. The mass of each agent used ism0 = 1. The nominal control gains arek0 = 1,

b0 = 0.5. The asymmetric control gains used are the ones given in Theorem 2 and Theorem 3 respectively, and the amount of asymmetryis

ε = 0.1. The legends “SSM” and “PDE” stand for the stability margin computed from the state-space model and the PDE model, respectively.

Numerical validation that poor choice of asymmetry in control gains can lead to instability is shown in Figure 5.

Note that the real part of these eigenvalues are positive andEq. (14) also makes an accurate prediction.

D. Sensitivity to external disturbances

When external disturbances are present, we model the dynamics of vehiclei by p̈i = ¨̃pi = ui + wi, wherewi

is the external disturbance acting on the vehicle and the mass of each vehicle is assumed to bem0 = 1. Each

component of the disturbance is assumed to be independent. Then the closed-loop dynamics of the formation is

given by

ψ̇ = Aψ +Bw, B = IN ⊗





0

1



 , (45)

whereψ := [p̃1, ˙̃p1, p̃2, ˙̃p2, · · · , p̃N , ˙̃pN ]T is the state vector,w := [w1, w2, . . . , wN ]T is the vector of disturbances

andIN is theN ×N identity matrix. We consider the vector of errorse := [p̃1, . . . , p̃N ]T as the outputs:

e = Cψ, C = IN ⊗ [0, 1].

TheH∞ norm of the transfer functionGwe from the disturbancew to the errorse is a measure of the closed-loop’s

sensitivity to external disturbance.
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Figure 6 depicts theH∞ norm ofGwe as a function ofN . It’s surprising to see that with equal asymmetry in

position and velocity feedback, theH∞ norm of Gwe blows up for largeN . However, for asymmetric velocity

feedback control , the norm is improved comparing to the symmetric control case. Therefore, in the sense of

sensitivity to external disturbances, the asymmetric velocity feedback control exceeds symmetric control, which in

turn exceeds asymmetric position and velocity feedback control with equal asymmetry. This results implies that

asymmetric velocity feedback is the best choice for large stability margin and better sensitivity to disturbances.

Remark 1:This result with equal asymmetry in the position and velocity feedback is similar to Veerman’s

result (see [11]), in which he consider the amplitude of the last agent in the network when only the reference

agent experiences a harmonic disturbance. He concludes that this disturbance is amplified exponentially inN as

it propagates through the network when there is equal asymmetry in both position and velocity feedback and the

growth is linear inN for symmetric control. Our result is a complementary result, we show that when there is

only asymmetry in velocity feedback, the disturbance amplification factor can be decreased, compared to symmetric

control, which is superior to asymmetric position and velocity feedback control. Analysis of these trends is beyond

the scope of this work, and will be undertaken in future work.

VI. SUMMARY

We studied the role of heterogeneity and control asymmetry on the stability margin of a large 1D network

of double-integrator agents. The control is in a distributed sense that the control signal at every agent depends
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is assumed homogeneous and is given bym0 = 1. The nominal control gains used arek0 = 1, b0 = 0.5. The asymmetric control gains are

given in Theorem 2 (asymmetric velocity) and Theorem 3 (asymmetric position and velocity) respectively. The amount of asymmetry used is

ε = 0.1. Norms are computed using the Control Systems Toolbox in MATLAB c©.

on the relative position and velocity measurements from itstwo nearest neighbors (one one either side). It is

shown that heterogeneity does not effect how the stability margin scales withN , the number of agents, whereas

asymmetry plays a significant role. As long as control is symmetric, meaning information on relative position

and velocity from both neighbors are weighed equally, agent-to-agent heterogeneity does not change theO(1/N2)

scaling of stability margin. If front-back asymmetry is introduced in the control gains, even by an arbitrarily small

amount, the stability margin can be improved toO(1/N) with asymmetric velocity feedback. The stability margin

can be even improved toO(1) if there is equal amount of asymmetry in the position and velocity feedback.

However, from the perspective of sensitivity to disturbances, numerical simulation shows that asymmetric position

and velocity feedback has much worse performance than asymmetric velocity feedback, and asymmetric velocity

feedback exceeds symmetric control. Therefore, the asymmetric velocity feedback scheme provides a best way to

achieve the goal of larger stability margin and better sensitivity to external disturbances. The scenarios with unequal

asymmetry in position and velocity feedback and asymmetricposition feedbacks are open problems.
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APPENDIX

Proof of Theorem 4.The proof proceeds by a perturbation method. Let the eigenvalues and Laplace transformation

of p̃(x, t) for the perturbed PDE (34) besℓ = s
(0)
ℓ + εs

(ε)
ℓ , η = η(0) + εη(ε) respectively, wheres(0)ℓ andη(0) are

corresponding to the unperturbed PDE (19). Taking a Laplacetransform of PDE (34), plugging in the expressions

for sℓ andη, and doing anO(ε) balance, which leads to:

Pη(ε) = s
(0)
ℓ

b̃m(x)

N

dη(0)

dx
+ s

(0)
ℓ

b̃s(x)

2N2

d2η(0)

dx2
− 2m0s

(0)
ℓ s

(ε)
ℓ η(0) + s

(ε)
ℓ

b0
N2

d2η(0)

dx2
=: R

For a solutionη(ε) to exist,R must lie in the range space of the self-adjoint operatorP . Thus, we have,

< R, η
(0)
ℓ >= 0

We now have the following equation:
∫ 1

0

(

s
(0)
ℓ

b̃m(x)

N

dη(0)

dx
+ s

(0)
ℓ

b̃s(x)

2N2

d2η(0)

dx2
− 2m0s

(0)
ℓ s

(ε)
ℓ η(0) + s

(ε)
ℓ

b0
N2

d2η(0)

dx2

)

η
(0)
ℓ dx = 0



Following straightforward manipulations, we get:

m0(s
(0)
ℓ +

b0λℓ
2m0N2

)s
(ε)
ℓ =− s

(0)
ℓ

(2ℓ− 1)π

4N

∫ 1

0

b̃m(x) sin
(

(2ℓ− 1)πx
)

dx

− s
(0)
ℓ

(2ℓ− 1)2π2

8N2

∫ 1

0

b̃s(x) cos2
( (2ℓ− 1)π

2
x
)

dx. (46)

Substituting the equation above intosℓ = s
(0)
ℓ + εs

(ε)
ℓ , and setℓ = 1, we complete the proof.

Proof of Lemma 1.With the profiles and control gains given in Lemma 1, the PDE (8) simplifies to:

m(x)
∂2p̃(x, t)

∂t2
=
ρb(x)

N2

∂2p̃(x, t)

∂x2
+
b(x)

N2

∂3p̃(x, t)

∂x2∂t
, (47)

wheremmin ≤ m(x) ≤ mmax, bmin ≤ b(x) ≤ bmax. Due to the linearity and homogeneity of the above PDE and

boundary conditions, we are able to apply the method of separation of variables. We assume solution of the form

p̃(x, t) =
∑∞

ℓ=1 φℓ(x)hℓ(t). Substituting the solution into (47) and dividing both sides byφℓ(x)hℓ(s), we obtain:

h′′ℓ (t)
ρ
N2hℓ(t) +

1
N2h(t)

=
φ′′ℓ (x)

m(x)φℓ(x)/b(x)
(48)

Since each side of the above equation is independent from theother, so it’s necessary for both sides equal to the

same constant−λℓ. Then we have two separate equations:

h′′ℓ (t) +
λℓ
N2

h′ℓ(t) +
ρλℓ
N2

hℓ(t) = 0, (49)

φ′′(x) + λℓ
m(x)

b(x)
φ(x) = 0. (50)

The spatial part solves the following regular Sturm-Liouville eigenvalue problem

φ′′(x) + λℓ
m(x)

b(x)
φ(x) = 0,

dφ(0)

dx
= φ(1) = 0. (51)

The Rayleigh quotient is given by

λℓ =

∫ 1

0 (dφ(x)/dx)
2dx

∫ 1

0
φ2(x)m(x)/b(x)dx

. (52)

Sincemmin ≤ m(x) ≤ mmax, bmin ≤ b(x) ≤ bmax, we have thatmmin

bmax

≤ m(x)/b(x) ≤ mmax

bmin

. Plugging the lower

and upper bounds form(x)/b(s), we have the following relation:

bmin

mmax

∫ 1

0 (dφ(x)/dx)
2dx

∫ 1

0 φ
2(x)dx

≤ λℓ ≤
bmax

mmin

∫ 1

0 (dφ(x)/dx)
2dx

∫ 1

0 φ
2(x)dx

Since we know the eigenvaluēλℓ corresponding to Rayleigh quotient
∫

1

0
(dφ(x)/dx)2dx
∫

1

0
φ2(x)dx

is the eigenvalue obtained

from (51) withm(x)/b(x) = 1. And λ̄ℓ is given by

λ̄ℓ =
(2ℓ− 1)2π2

4
(53)

whereℓ is the wave number,ℓ = 1, 2, · · · .



It is straight forward to see that the least eigenvalueλ̄ℓ is obtain by settingℓ = 1, i.e. λ̄1 = π2/4. So we have the

following bounds for the least eigenvalue ofλℓ.

bminπ
2

4mmax
≤ λ1 ≤ bmaxπ

2

4mmin
(54)

Take Laplace transform to both sides of (50), we obtain the following characteristic equation for the PDE model (47).

s2 +
λℓ
N2

s+
ρλℓ
N2

= 0.

Its eigenvalues turn out to be the roots of the above equation,

s±ℓ :=
−λℓ/N2 ±

√

λ2ℓ/N
4 − 4ρλℓ/N2

2
. (55)

We call s±ℓ the ℓ-th pair of eigenvalues. The discriminant D in (55) is given by:

D :=λ2ℓ/N
4 − 4ρλℓ/N

2.

For largeN and smallℓ, D is negative. So both the eigenvalues in (55) are complex, then the stability margin is

only determined by the real parts ofs±ℓ . It follows from (55) that the least stable eigenvalue (the ones closest to the

imaginary axis) among them is the one that is obtained by minimizing λℓ over ℓ. Then, this minimum is achieved

at ℓ = 1, and the real part is obtained

Real(s±1 ) = − λ1
2N2

.

Following the definition of stability marginS := |Real(s±1 )| as well as the bounds forλ1 given by (54), we

complete the proof.
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