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Abstract— In Model Predictive Control, the enforcement of can be enforced. A comparison between soft constrained
hard state constraints can be overly conservative or even and minimum-time approaches in provided [18]. A soft

infeasible, especially in the presence of disturbances. Thwork ; ; ; ;
presents a soft constrained MPC approach that provides clesl- [C](-JSr}stralned method for stochastic MPC is developed in

loop stability even for unstable systems. Two types of soft .
constraints are employed: state constraints along the hazon N contrast to soft constrained MPC, robust MPC methods

are relaxed by the introduction of two different types of slaak  design the control problem for an expected worst-case
variables and the terminal constraint is softened by movinghe  pound on the disturbance in order to ensure constraint
target from the origin to a feasible steady-state. The propsed satisfaction and robust stability, see e.g. [10], [13] for a
method significantly enlarges the region of attraction and - ’ e ' .
preserves the optimal behavior whenever all state constrats ~ OVErVIEW. The results can hlowever_be conservative since the
can be enforced. Asymptotic stability of the nominal system guarantees are only valid if the disturbance never exceeds

under the proposed control law is shown, as well as input-to- the expected bound, requiring a conservative choice of the
state stability of the system under additive disturbances @d considered disturbance set.
the robust stability properties are analyzed.

The proposed method is based on a finite horizon MPC
setup and uses a terminal weight as well as a terminal

Model Predictive Control (MPC) is a control techniqueconstraint. All input constraints are hard constraints and
that is widely applied for the control of constrained system state constraints are softened in two ways. The terminal
The control action is obtained by solving a constraineddinitconstraint is relaxed by allowing the origin to move to any
horizon optimal control problem for the current state of théeasible steady-state. All other state constraints aresefl
plant at each sampling time. In a control system, there at®/ the introduction of two types of slack variables, which is
generally two types of constraints: constraints on therobnt a crucial item for proving stabiliy. Quadratic ard or I
input originating from physical limitations of the actuego penalties for the constraint violations are introducedhia t
and constraints on the states or outputs, which represemnist in order to allow for more flexibility in the problem
desired or critical bounds related e.g. to safety or paeicu formulation. The use of; or I, penalties allows for exact
system specifications. While input constraints can theeefopenalty functions which preserve the optimal MPC behavior
never be exceeded and are considered as hard constraintsenever the state constraints can be enforced.
state or output constraints can usually not be enforced at
all times in practice, e.g. because of disturbances that arewe show that in contrast to existing soft constrained
acting on the system. MPC schemes asymptotic stability of the nominal system in

the absence of disturbances is guaranteed even for unstable

In this work we propose a soft constrained MPC approactystems. The presented approach offers an enlarged refgion o
for linear systems that provides stability even for unsablattraction due to the constraint relaxation that, by chugpsi
systems. Soft constrained MPC approaches are based tha prediction horizon accordingly, can cover any polytopi
the idea that, due to the nature of the state constraintggion of interest up to the maximum stabilizable set for
violation can often be tolerated for short time periodsthe input-constrained system, i.e. all initial states fdrah
Several methods for the development of controllers thahere exists a feasible input at all times such that the state
enforce state constraints when they are feasible and allaenverges to the origin. The robust stability propertiethef
for possible relaxation when they are not have been studi@doposed soft constrained scheme are analyzed and input-to
in the literature, see e.g. [12] for an overview. In [16]state stability under additive disturbances is proven. Anma
a simple stabilizing strategy for infinite horizon MPC isadvantage of the presented method is that, while stabdity i
proposed that can be applied to both stable and unstalitemally guaranteed in a robust invariant set that depends o
systems. The authors in [21] prove stability of infinitethe considered disturbance size, the control law is defined
horizon MPC for systems with eigenvalues in the closedverywhere in the region of interest. In contrast, whengisin
unit disk. In [3] the use of; andi, penalties for constraint a robust MPC method the control law is only defined for a set
violation is compared and it is shown that penalties of tightened constraints that is determined by the consitler
preserve the stability characteristics of the correspundi disturbance size.
hard-constrained problem wherever the state constraintsA numerical example demonstrates the soft constrained

I. INTRODUCTION



procedure and shows that the constraint relaxation erdargef systemazt = A(x) + w, if A(z) + w € S for all
the robust invariant set where stability can be guaranteede S,w € W.
for various disturbance sizes and large disturbances can

tolerated. RePI set that contains every closed Pl setudf = A(z) is

called a maximal Pl set and similarly for the maximal RPI

The outline of the paper is as follows: In Section Il theset'

soft constrained MPC problem is introduced together wih itDefinition 11.4 (Regional ISS [7], [19]). Given an RPI set
properties. Section 1V shows that the proposed control law C R™ with 0 € T, systemz* = A(z) + w is Input-to-

is optimal wherever the state constraints can be enforceState Stable (ISS) i w.r.t. w if there exists aCL-function

Asymptotic stability of the nominal system under the pros3 and ak-function~ such that for all initial states(0) € T

posed control law is then shown in Section V. Section Vhnd for all disturbance sequences= [w;];>o With w; €

analyzes the robustness properties of the proposed schemwe |¢(j, 2(0), w)| < 3(|z(0)], /) +y([[W—1jllsc), Vi >0,

and proves input-to-state stability of the uncertain syste whereg(k, z(0), w) denotes the solution of the system =

under the nominal control law. Finally, the properties andi(x) + w and || w(;_1j/|oc 2 sup{|w(t)|,t > 0} .

advantages of the presented soft constrained MPC approach » ) B
are illustrated using a numerical example. Note that the condition for input-to-state stability redac¢o

that for asymptotic stability ifv = 0.
Il. NOTATION & PRELIMINARIES
A polyhedronis the intersection of a finite number of ~The goal is to regulate the state of the system to the origin
halfspacesP = {z|Az < b} and apolytopeis a bounded Wwhich can be formulated as the following MPC problem
polyhedron. If A € R™*" then A4; € R™ is the vector Pn(z):
formed by thei-th row of A. If b € R™ is a vector therb; is Problem IL5. Py (z) (Nominal MPC problem)

thei-th element ob. Given a sequence = [ug, - -+ , un—_1],

u; denotes thej-th element ofu. If a sequence depends N—1

on a parameter denoted hy(z), uj(z) denotes itsj-th V3 (z) Zmin Vy(z,u) £ Z Ui, ui) + Vi(zn)
element. Ifz € R™ is a vector then|z|2, = 2" Qz and ! i=0

[z]+ = max{0,x} taken elementwise. s.t. xo =z,

A function v : R>o — R is of class K if it is Tit1 = Ax; +Bu;, 1=0,...,.N—1 |
continous, strictly increasing ang0) = 0 [20]. A function (zi,u;) €XxU, i=0,...,.N—1,

B : Rsg x R>o — Rxq is of classKCL if, for each fixed TN e Xy,

t >0, 6(-,t) is of classK, for each fixeds > 0, 3(s,-) is

non-increasing and(s, t) — 0 ast — oo [20]. whereu = [uo,_- . ,l{N—1] denotes Athe input sequence,
the stage cost is defined dgri,u;) = [lzill3) + ||luil%,
Consider the discrete-time linear system Vi(x) £ ||z[|3 is a terminal penalty functiony, R and P
N are symmetric positive definite matrices.
a” = Az + Bu D) X 22| Gz < f,)andU 2 {u | Guu < f.} are

wherez € R™ is the current state and e R™ is the current POIlytopic constraints on the states and inputs af}dC X
control input . The solution of system (1) at sampling timdS & compact terminal target set. Given a control sequence

; . A
k: for the initial statez(0) and a sequence of control inputsU(%) at statez, the associated state trajectoryxgr) =

u is denoted as(k, z(0), u). [0, z1,--- ,zN], Wherezy = z and for eachi, z; =
(i, , u(x)).
While the system may be unstable, it is assumed to satisfy prgplem Py(z) implicitly defines the set of feasible
the following assumption: control sequences(y(r) = {u(z)|u(z) € UV, x(z) €
Assumption 11.1. The pair (A,B) is stabilizable. XN x X} and feasible initial state&y = {z |Uy(z) # 0}.

_ For a given state: € Xy the solution ofPy (z) yields the
A steady-statgz;, u;) of system (1) can be parameterizedyptimal control sequence® (). The implicit optimal MPC

by the parametef € R™ [11]: control law is then given in a receding horizon fashion by
T M, ”
= @ ) 2 uile) ®
with M,, M,, such that((I — A)M, — BM,)0 =0 . Assumption 11.6. In the following it is assumed that;(-)

is a Lyapunov function inXy and X is a Pl set for system
(1) under the control law ¢ (x) = Kx. These conditions are
stated formally as the following two assumptions:

- . ) . Al: X;CX, (A+BRK)X;CX;, KX;CU

Definition 11.3 (Robust positively invariant (RPI) set). A2 P'>0,(A+BK)TP(A+BK)—P = —(Q+KTRK)
A set S C R"™ is a robust positively invariant (RPI) set

Definition 11.2 (Positively invariant (PI) set). A setS C
R™ is a positively invariant (PI) set of system™ = A(z),
if A(x)e Sforallzes.



Theorem I1.7 (Stability under x(x), [13]). If Assumption For a given state € X}, ProblemP?, () results in a convex
I1.6 holds, then the closed-loop system = Az + Bk(x) Second Order Cone Program (SOCP) and its solution yields
is asymptotically stable with region of attractiotiy. the optimal control sequenae®™(x). Note that SOCPs can
be efficiently solved using e.g. interior-point methods. [2]

he implicit optimal soft constrained MPC control law is
then given in a receding horizon fashion by

In order to resolve the feasibility issues described in th
introduction, a standard soft constrained approach isléxre
the state constraints by the introduction of slack variabje
Gwﬂ?i < fm. +¢. The constraint violation is then minimized K5 (2) 2 ud (). (6)
by including a penalty ore; in the MPC cost (see e.g.

[12]). This soft constrained method that is also frequently ProblemP%,(x) is a modification ofPy(z) introducing
used in practice does however not guarantee stability tine following three components:
satisfaction of the constraints even in the nominal case., |n (5h) the terminal constraint is relaxed by allowing

The stability proof for the considered finite horizon MPC  the origin to move to any other feasible steady-state of
scheme uses the optimal MPC cost as a Lyapunov function  system (1), parameterized Byn (2). The terminal state
[13]. The stability proof fails in the soft constrained case then has to lie in an invariant set given B (6).

since through the introduction of the penaltiesepiinto the « In (5d) all state constraints fromto N —1 are softened
cost function, it can no longer be shown that the optimal by means of the slack variables ande;:
cost is a Lyapunov function. By constraint (5i), e, characterizes the minimum

amount of constraint relaxation that is necessary in order

We propose a new soft constrained MPC formulation in {0 include the terminal set’s (6) into the softened state
the next section, which provides optimality and constraint  ¢onstraints.

satisfaction wherever the state constraints can be emforce ¢; represents the additional constraint violation of each
(Section 1V), a stability guarantee in the nominal case  statex; with respect to the state constraints relaxed by
(Section V) and input-to-state stability in the presence of

additive disturbances (Section VI). « Quadratic and, penalties on the slack variables are

included in the cost (4), in order to minimize the

constraint violation and ensure the enforcement of the
state constraints whenever possible./Apenalty on the

[1l. SOFT CONSTRAINEDMPC - PROBLEM SETUP
Consider the following soft constrained MPC problem

Py (2): steady-state is used, minimizing the deviation from the
Problem IIl.1. P% (z) (Soft constrained MPC problem) origin. In addition the cost now penalizes the deviation
from the steady-state instead of the origin.
V() = min Vy(z,u,0,¢€€5) 4)
u,tv,e,eg

.
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X
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subject to xg =x, (5a) e
Tit1 = Az; + Bu; , (5b) _ . .
T T T T Fig. 1.  lllustration of the optimal slack variables (x), €} (z), i =
[z ug ] = [(M,0)" (M,0)"] , (5C) 0,1,2, 3, the terminal sett; (0% (z)) andC; for an initial statex outside
G <fotete (5d) *
Guu < fus (5€) The previously described components are illustrated in
€ >0, (5f)  Figure 1. The set of states, for which there exist$ such
>0 5 thatz € X3(0) is denoted a€’$ and is further explained
° — 59) i Section A, By relaxing the terminal constraint, th
-~ € X3(0) | (5h) in Section IlI-A. By relaxing the terminal constraint, the

soft constrained MPC regulates the state to a feasible
C|\Tl/29||2 < fotes— Fyb (51) steady-state that is simultaneously steered to the origin
while minimizing the violation of the state constraints.
The use of the slack variable, ensures that the terminal
state, which is contained iA’; (¢), will lie inside the state
constraints relaxed by the amountand will not require a
Problem P% (x) implicitly defines the set of feasi- further relaxation of the state constraints. As will be show
ble control sequences(y;(z) = {u(x)|30 : u(x) € in Section V, this allows us to show that the optimal cost
UY,¢(N,z,u(x)) € Xj(0)} and feasible initial states function is still a Lyapunov function and is hence crucial
X3 & {x | U () # 0}. for proving stability of the proposed soft constrained MPC

fori =1[0,---,N — 1], S is a symmetric positive definite
matrix,p € [1,00], € = [eo, ..., en—1], XF(0) is an invariant
ellipse andM, T, 6, F, are defined in the description below.



scheme. B. Slack variables,

] . o ~We now explain the crucial item in the proposed soft
analysis of the two types of soft constraints. €;. €, represents the amount of constraint relaxation that is
In the following sections we will then demonstrate how th%ecessary in order to include the terminal constrédp(@)

introduction of the previously described components adlow;, (8) for a particular value of) into the relaxed state
us to show that: constraints, i.e.

1. k°(z) = k(z) wherever the state constraints can be 59 9
satisfied, i.e. for al: € Xy (Section 1V). Gow < fo + € Vo € X7 (0) ©)

2. The optimal cost functioly" (z) is a Lyapunov func- | emma I11.4. LetQ; be the ellipsoidal Pl set if7). Then
tion and the controlled nominal system is asymptOt'tondition(Q) corresponds to constrair(si)

cally stable (Section V).. . _ . with T = szTf_,lle — T},
3. The system under additive disturbances is ISS (Sec- 17 1
tion V|) c= dlag(GszJ Gm) and Fg = Gmrf,l Tj’_]g .

) . ) Proof. Consider the variable transformatign= T;_’/f(x —

A. Relaxation of the terminal constraint 2o(0)), With x.(6) = —T;Ty26. Then condition (9) is

For the relaxation of the terminal set we employ theequivalent to requiring that the ellipsoigl'y < 6779 is
tracking formulation proposed in [11] where a steady-stateontained in the polytopémTﬁll/Qy < fz—Gzz.(6), which
parameterized by, is introduced as a decision variable intocan be expressed by the following condition [1]
the optimization problem and the cost then penalizes the T 1/2 )
distance to the non-zero steady-state instead of the origi(’pmvaf,le,j)HT Oll2 < foj+ €5 — Gajre(0), Vi,
as \{vell as the of_fset fro_m the non-zero s_teady—state to theg corresponds to (5i). -
origin. The invariant ellipseX’(¢) is obtained from the - o
terminal set for tracking described in [11]. It is defined as: in (5h) represents the additional constraint violation of
the maximal Pl set given by the set of states and stead§ach stater; with respect to the state constraints relaxed by
states and inputs parameterized a)ysuch that the control €s- Leten be the slack variable of the terminal state defined
law u = K (z — x5) +us = Kz + (M, — KM,)0 is feasible bY Gozn < fo + € + en. Sinceaxy € XF(0) it follows

and stabilizes the nominal system in (1). from this and (5d), thaty = 0, which will be necessary
Let for proving that the cost function is a Lyapunov function in
1o Section V.
N T T2 z
Q= {(x’e) ‘ ‘ [TfT,2 Tff:} [4] , = 1} ) IV. OPTIMALITY IN Xy

be the maximal volume ellipsoidal inner approximation of In this sectlor! we can now show that the behavior of
the maximal P! set. the soft constrained control law corresponds to the hard

constrained one, wherever the state constraints can be
Remark 111.2. Note that a maximal volume ellipsoidal inner satisfied. The constraint violatiorss and ¢; are penalized
approximationQ2y can be computed by solving a convexin the cost. Two types of penalty functions are included,
linear matrix inequality (LMI) [1]. quadratic andl,-norm penalties, in order to allow for
flexibility in modeling the soft constraints. While the
guadratic penalty may be preferred for tuning purposes, the
l,-norm is included in order to allow for exact penalties.
It is well-known that, when the weights on thig-norms
are sufficiently large and there exists a feasible solutmon t
the hard-constraint probleffiy (z) then the solution to the
soft constrained problerfiy; (z) corresponds to the solution

This implicitly characterizes the set of all feasible stead
states given byo £ {0 | 3z : Ko + (M, — KM,)0 €
U and (z,0) € Qy, M,0 € U}. For a particular value of
the condition(z, ) € €2y reduces tar € X (6), with

Xp0) 2 Az | (@ —2c(0) Trale —zc(0))  (8)

<OT(TF,T; [ Ty — Ty )0} of the hard-constraint problem [5], [12]. A#,-norm is
_ . also used for penalizing the deviation of the steady-state
with z.(0) = =Ty 1Ty 20. from the origin in order to enforce the origin as the target

Assumption 11l.3. By constructionX’;(¢) is a Pl set for steady-state if it is feasible [4].
system (1) under the control laws(z) = Kz + (M, — ) _ o
K M,)0. It therefore satisfies the following assumption: Consider the following optimization problei;(z), en-

s s forcing all state constraints as hard constraints:
A3: ((A+ BK)z +u,) € X{(0),r5(z) € U Ve € X7(0)

This also characterizes the set of all valag®r which there min Vy (2, u,6, 6’_65) (103)
exists a feasible steady-state, givendy={z | 30 € © : s.t. (5a)- (50) , (10b)
x € X7(0)}, which can be seen as an enlarged terminal set. llesllp =0 (10c)



leill, =0, i=0,....,N—1,
10]l, =0 .

(10d)
(10e)

Note that the optimizer oP” (x) corresponds to the opti-

mizer of Py (x).

Theorem IV.1 (Optimality in X [5]). Consider problem

P4 (z). Let X (z) denote the optimal Lagrange multiplier

corresponding to constrair{lOe)and A\’ (z) the optimal La-
grange multipliers corresponding to the equality consitai
(10d) and (10c) at a given stater € X. Let x*(x) be the
optimal soft constrained control law i(6) and «*(z) the
optimal hard constrained control law i(8). If p; > \*_ ()

andps > A (x) for all z € Xy, thenk®(x) = x*(z) for all

r € Xy.

In order for Vi*(z) to be a Lyapunov function and prove
asymptotic convergence to the origin, we now need to show
thatl(x —z*(z), u§* (z) —us*(x)) = 0 implies that||z|| = 0.

S

Lemma V.2. If at a given statex the optimal solution to
P%,(x) is such that|z — 25*(z)|| = 0, then||z|| = 0.

Proof. We first sketch the proof that is a modification of the
proof of Lemma 3 in [11], which is proven by contradiction
and then extend it to the case considered here.

In the first part of the proof it is shown that for every feasibl
steady-statéx, us) parameterized bg there exists a steady-
state (axs, aus) or af with o« € (0,1) such thatx, €

X3 (o). Therefore the control sequencg (xs) generated
by the lawu; = K (z; — axs) + aus with o = z, is feasible
atz,. Letx, (z,) be the state sequence corresponding o

A lower bound for p; and p, can e.g. be obtained by In the second part of the proof it is shown that, if the
computing the optimal Lagrange multipliers parametricall Current state isc,, then the cost to move taz, applying
for all = € X3. Since this requires the solution of aUa(®s) is in fact smaller than the cost of staying at by
parametric program and can be computationally infeasib@PPlying us over the entire horizon and therefore staying
for large systems, a more conservative bound for all valué$ zs cannot be the optimal solution. It was shown that
of = can be computed by directly upper bounding thé/n (s, ua) + p2flad|| < Vi(zs,us) + p2[|6], whereVy
Lagrange multipliers, see e.g. [4] and the references ithereiS the MPC cost without slack variables in I1.5 ang =

V. NOMINAL STABILITY

After having shown that the soft constrained scheme;f_\i—

[Us, ..., us].

In order to prove that this extends to the soft constrained
approach we need to show that also

V]\s[(xsv U, ab, €q, Es,a) <Vy (zs,us,0,¢€,¢€) Of

1
0 HELQH% + leei,aHp + Hes,au% + lees,aHp

preserves optimality when possible, we now prove that the — y_

resulting optimal control lav*®(x) asymptotically stabilizes
the nominal system in (1) in an enlarged invariant &t.
For this, we first show that the optimal cost functigl” is
a Lyapunov function.

Lemma V.1. Consider ProblemP% () under Assump-

tions 11.1-111.3. Letu®™(z) = [ud*(x), ..., u%_,(x)], 0*(x),
e*(x) = [ef(x),...,e5_1(2)], € be the optimizer o3, (z)
for somez € X%, x**(x) = [z, 27" (x), ..., z5% (z)] the as-

sociated state trajectory ands*(z) = M,0"(x), u*(x)
M, 0*(z) the steady-state defined BYy(x). Then forz™
Az + Bu§*(x)

Sk

o un o (2), K (2 (2) =28 (2)) +ug (o))
(11)

ushit = [u”(z),
is feasible forP% (z*) and

V' (@F) = V' (2) < —l(z — 237 (o), ug" () — ug™(z)) .
(12

Proof. The states and slack variables associated w4t in
(11) arexshinn(z) = [z7*, ..., 2%, (A+BEK) (2% —x3*)+x5]
and espite(x) = [€7, .. ., EN_1 0], €*. Feasibility of ughit(z)
for P% (=) then follows from feasibility ofu®*(z), 6* (x)
at z and positive invariance of the terminal set, = 0
follows from the fact thatry € X7(6*(x)) and together

with the definition of the sequences and Assumptions Il

and 1.3 provides tha/§ (z™, usnitt, 0%, eshitr, €5 ) — V™ (z) <
—l(x — 25(x), ud*(x) — ui*(z)). (12) then follows from
V(@) SV (x, ushit, 0%, eshite, €5).- u

ivo el + pulleslln + llesl + prlleslly

wheree, ande; are the minimum slacks corresponding to
6 and a state sequensg = [z;,...,x;s] andes o ande;
are the minimum slacks correspondingdé and the state
sequencex, (z;) defined by the constraints (5d) and (5i).
This is achieved by the fact thaf ande, , characterize the
state relaxation necessary in order to include the terminal
setsx’} (0) and X'y (af), respectively, into the softened state
constraints. Since; € X5 () and alsar, € X' (ad), ¢; and
€0, fepresenting the extra constraint violation on tope of
ande, o, are zero.

We further have that, , = [c||T"/%ad|s — f. + Fpaf] =
[a(c||TY20)|a — fu + Fo0) — (1 — a)f.]+ < es. Therefore
les.allp < llesllps lles,allE < lles||E, concluding the proofs

These results allow us to prove asymptotic stability of the
closed loop system under the soft constrained control law:

Theorem V.3 (Asymptotic Stability under x*(x)). The
closed loop system™ = Az + Bx®(x) is asymptotically
stable with region of attractiort’y.

Proof. Lemma V.1 together with Lemma V.2 show that
Vi*(z) is a Lyapunov function inXy, i.e. Vi*(zt) —
V¥ (z) < —=v(||z|)), for someK-class functiony andz™ in
(1), thereforelim; .., z(¢t) = 0 and the closed-loop system
'g asymptotically stable. [ ]

The soft constrained formulatid, (x) enlarges the feasi-
ble set compared By (x) sinceXy C X5 and by choosing
the prediction horizon accordingly it can be chosen to cover



any polytopic region of interest, e.g. a known upper bounthethod.

on the state values, up to the maximum stabilizable set for

the input-constrained system. The robust stability properties of the proposed soft con-

strained MPC scheme are analyzed in the following.
Assume that the system is subject to an additive uncer-

tainty:

Corollary V.4. Let gX, with § > 1, be a scaling of the
state constraints and’s, := {xo | Ju; € U: x;41 = Ax; +
Bu;,lim;_.oz; = 0,Vi > 0} the set of all stabilizable
states. There exists a finite prediction horizdhsuch that
X5 2 XN X where w is a bounded disturbance that is contained in a
convex and compact sé¥ C R" that contains the origin.
VI. ROBUST STABILITY PROPERTIES Because of the disturbance, the shifted sequengg in

In practice, model uncertainties or external disturbancdd1) is no longer feasible fdp3; (z™). For allz € A there
cause a deviation from the nominal system dynamics in (1§0es however exist a feasible solutionit§ () and input-
The question is then if the control law that was designet9-state stability can be shown in an RPI s&t C X}(z)
for the nominal system model is still stabilizing for the(see Theorem VI.2). It is given by the robust invariant set
uncertain system, or so-called robustly stable. This issi@r the controlled uncertain systent = Az + Br*(z) +w,
has been studied in the literature, see e.g. [6], [10] anherex*(x) is the optimal soft constrained MPC control law
the references therein. While in general, nominal Mpdn (6):
controllers can have zero robust stability margin, it was s
shown that particularly for linear systems the nominal MPC Av+ Br*(x) +w € dw ¥ w € Xy, w W, (14)
controller often offers robust stability in an RPI set undetn order to show that the uncertain system in (13) is robustly
certain assumptions on the MPC problem setup and forstable under the nominal control law we make use of the
sufficiently small bound on the disturbance size [6], [10]. following result:

2t =Ax+Bu+w , (13)

Another possibility to handle uncertainties is to takeLefmma Vi1 (Constmuny of Vlf’.(m))' Con5|der. thi*Opt"
them explicitly into account using robust MPC schemegmzatlo.n problent’s, (). The optimal value functiohy" (x)
. . . IS continuous ont’y,.
that provide robust stability by changing the problem N
formulation and tightening the constraints, e.g. min-maRroof. The value functionVy (z,u,0,¢,¢5) in (4) and the
MPC or tube-based approaches (see e.g. [10], [13], [14] amdnstraints (5a)-(5i) are convex. Convexity of the optimal
the references herein). cost functionV§*(x) can then be shown using the fact that
The disadvantage of robust MPC methods is however, thafar any convex set F iflRP™L, f(z) = inf{u | (z,u) € F)}
bound on the disturbance size is assumed and the probléma convex function ilRP*! (Theorem 5.3 in [17]) and the
is designed for the worst-case disturbance. If the dishaba fact that the projection of a convex set is convex [17]. The
is then significantly smaller than the worst-case bound faesult then follows from the fact that every convex function
most of the time, the solutions can be highly conservativés continuous on its domain [17]. [

If, on the other hand, the disturbance exceeds the expectﬁqiS allows us to prove ISS of the uncertain system con-
bound, then the robust MPC problem is infeasible angrolled by x*(z) in (6)

cannot provide a control input.
Theorem VI.2 (ISS under x*(x)). The closed loop sys-
When using a nominal MPC scheme, no knowledge otem z+ = Az + Bx®(x) + w is ISS w.rt tow € W with
the size of the uncertainty is required for the computatibn aegion of attractionX)y .

the CO””"”GT and it may even _be able to takg adv_antage OfFaroof. From Lemma V.1, V.2 and VI.1 it follows thaty* (z)
disturbance in the right direction. Conservatism is howeve . . .
a continuous Lyapunov function and hence there exists a

) . i
introduced when analyzing the RPI set, where robuzi_classfunctiomv,Suchthatvjf,*(y)—vjf,*(x)lSUV(H/—

stability of a nominal MPC scheme can be guaranteed, . ok (b
since it is based on a particular bound on the disturbanc S)* as well as akC-class functiony such thatVy"(z™) —
N () < =~(||z]]). It follows from these facts that

size. In the presence of hard constraints, the RPI set may
prohibitively small for the disturbance size of interesheT Vir(xT) — Vr(x)
idea is therefore that by using the proposed soft constlaine  _ /s« A s s% s

. . = + B + -V (Az + B
approach robust stability can be guaranteed in a much N (A W (@) + w) v (Az w (@)
bigger RPI set due to the fact that state constraints can
be relaxed. It is however important to note that, while < |Vy"(Az + Bkr*(z) + w)
stability is formally only guaranteed within the RPI seteth —l(x — 25 (2),u — us*(z))
control law is defined everywhere in a large feasible set _

; - : < ov([lwll) =~ (llll) -

(see Corollary V.4) and may still be stabilizing the uncierta
system for a variety of disturbance signals. Note that no RHAlhen V3*(x) is an 1SS-Lyapunov function and the closed-
sets need to be computed in order to apply the proposémbp system is ISS [7]. [

+ Vi (Az + Br®(z)) — V¥ (2)
— V' (Axz + Brk®(x))|



The uncertain system controlled by the control law resgltin  We now analyze the robustness properties of the example

from the soft constrained MPC problef, (x) is hence system (15) under the soft constrained control law. Figure 3

robustly stable against sufficiently small disturbancesc& shows the size of the RPI sets, for two boundsW, £

the RPI sett)y depends onV, the size of the disturbances {w | ||w||c < @}, for @ € {0.1,0.25}. Note that for a

and the corresponding region for which stability can béube-based approach the feasible set is always a subset of

formally guaranteed depend on the particular system ofy. This demonstrates the advantage of the soft constrained

interest. approach, where stability can be guaranteed in the RPI set
X, .5 2 Xn. In addition, a closed-loop trajectory starting at

VII. z(0) = [20, —1]T under a sequence of extreme disturbances

N UMERICAL EXAMPLE

The presented results are demonstrated in the f0||OWi:gth w(t) = £0.25, t > 0 is shown and demonstrates that

section using a numerical example. All set computatio

e system is stable and does not leave the RPigt,. .

were carried out using the YALMIP toolbox [9] and the
MPT toolbox [8].

Consider the following system:

1.05 1 1
Tit1 = [ 0 1] Tit+ [0.5] Ui -

The system has eigenvalues @t = 1.05, so = 1 and
is hence unstable. The prediction horizon was chosen to
N = 5, the constraints on the states and control inputs
0 ||z)loo < 5 and |jullec < 1, @ = I, R 1 and

(15)

S = I. The terminal cost functioiVy(z) is taken as the
unconstrained infinite horizon optimal value function fbet
nominal system with? = [}-9139 9-249%] and ky(z) = Kz

Fig. 3.

Feasible set and RPI sets fore {0.1,0.25} together with a

is the corresponding optimal LQ controller. The exacglosed-loop trajectory starting at(0) = [20,~1]" under a sequence of

penalty multipliers were chosen t@ = p; = 50 which
was observed to provide optimality ity as defined in
Theorem IV.1.
: . ) (1]

First, the feasible sefy and the terminal seft’; for
the soft constrained approadhy (x) are illustrated and
compared with the feasible séf;(z) and the terminal set
X for the hard constraint probleffw (x) in Figure 2, which
demonstrates that the soft constrained approach sigrtifican [3
enlarges the feasible set. In addition we plot a state set of
interest taken a8X N X,,. It can be seen that for a horizon [4]
of N =5 the set is not included in the feasible sg&f. If
we however prolong the horizon % = 8, then the set of
interest is included inty.

(2]

(5]
(6]

(7]
(8]
El

2f [20]
4l
o [11]
-40 —3‘0 —2‘0 —1‘0 6 1‘0 2‘0 3‘0 4‘0
X,
' [12]
Fig. 2. Feasible and terminal sets for the soft constraippaomch forV = 13

5 in comparison with the feasible and terminal set of the hamdstraint
problem. The state set of intere&X N Xoc can be covered byt

extreme disturbances.
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