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Abstract— In Model Predictive Control, the enforcement of
hard state constraints can be overly conservative or even
infeasible, especially in the presence of disturbances. This work
presents a soft constrained MPC approach that provides closed-
loop stability even for unstable systems. Two types of soft
constraints are employed: state constraints along the horizon
are relaxed by the introduction of two different types of slack
variables and the terminal constraint is softened by movingthe
target from the origin to a feasible steady-state. The proposed
method significantly enlarges the region of attraction and
preserves the optimal behavior whenever all state constraints
can be enforced. Asymptotic stability of the nominal system
under the proposed control law is shown, as well as input-to-
state stability of the system under additive disturbances and
the robust stability properties are analyzed.

I. I NTRODUCTION

Model Predictive Control (MPC) is a control technique
that is widely applied for the control of constrained systems.
The control action is obtained by solving a constrained finite
horizon optimal control problem for the current state of the
plant at each sampling time. In a control system, there are
generally two types of constraints: constraints on the control
input originating from physical limitations of the actuators
and constraints on the states or outputs, which represent
desired or critical bounds related e.g. to safety or particular
system specifications. While input constraints can therefore
never be exceeded and are considered as hard constraints,
state or output constraints can usually not be enforced at
all times in practice, e.g. because of disturbances that are
acting on the system.

In this work we propose a soft constrained MPC approach
for linear systems that provides stability even for unstable
systems. Soft constrained MPC approaches are based on
the idea that, due to the nature of the state constraints,
violation can often be tolerated for short time periods.
Several methods for the development of controllers that
enforce state constraints when they are feasible and allow
for possible relaxation when they are not have been studied
in the literature, see e.g. [12] for an overview. In [16]
a simple stabilizing strategy for infinite horizon MPC is
proposed that can be applied to both stable and unstable
systems. The authors in [21] prove stability of infinite
horizon MPC for systems with eigenvalues in the closed
unit disk. In [3] the use ofl1 and l2 penalties for constraint
violation is compared and it is shown thatl1 penalties
preserve the stability characteristics of the corresponding
hard-constrained problem wherever the state constraints

can be enforced. A comparison between soft constrained
and minimum-time approaches in provided [18]. A soft
constrained method for stochastic MPC is developed in
[15].
In contrast to soft constrained MPC, robust MPC methods
design the control problem for an expected worst-case
bound on the disturbance in order to ensure constraint
satisfaction and robust stability, see e.g. [10], [13] for an
overview. The results can however be conservative since the
guarantees are only valid if the disturbance never exceeds
the expected bound, requiring a conservative choice of the
considered disturbance set.

The proposed method is based on a finite horizon MPC
setup and uses a terminal weight as well as a terminal
constraint. All input constraints are hard constraints and
state constraints are softened in two ways. The terminal
constraint is relaxed by allowing the origin to move to any
feasible steady-state. All other state constraints are softened
by the introduction of two types of slack variables, which is
a crucial item for proving stabiliy. Quadratic andl1 or l∞
penalties for the constraint violations are introduced in the
cost in order to allow for more flexibility in the problem
formulation. The use ofl1 or l∞ penalties allows for exact
penalty functions which preserve the optimal MPC behavior
whenever the state constraints can be enforced.

We show that in contrast to existing soft constrained
MPC schemes asymptotic stability of the nominal system in
the absence of disturbances is guaranteed even for unstable
systems. The presented approach offers an enlarged region of
attraction due to the constraint relaxation that, by choosing
the prediction horizon accordingly, can cover any polytopic
region of interest up to the maximum stabilizable set for
the input-constrained system, i.e. all initial states for which
there exists a feasible input at all times such that the state
converges to the origin. The robust stability properties ofthe
proposed soft constrained scheme are analyzed and input-to-
state stability under additive disturbances is proven. A main
advantage of the presented method is that, while stability is
formally guaranteed in a robust invariant set that depends on
the considered disturbance size, the control law is defined
everywhere in the region of interest. In contrast, when using
a robust MPC method the control law is only defined for a set
of tightened constraints that is determined by the considered
disturbance size.

A numerical example demonstrates the soft constrained



procedure and shows that the constraint relaxation enlarges
the robust invariant set where stability can be guaranteed
for various disturbance sizes and large disturbances can be
tolerated.

The outline of the paper is as follows: In Section III the
soft constrained MPC problem is introduced together with its
properties. Section IV shows that the proposed control law
is optimal wherever the state constraints can be enforced.
Asymptotic stability of the nominal system under the pro-
posed control law is then shown in Section V. Section VI
analyzes the robustness properties of the proposed scheme
and proves input-to-state stability of the uncertain system
under the nominal control law. Finally, the properties and
advantages of the presented soft constrained MPC approach
are illustrated using a numerical example.

II. N OTATION & PRELIMINARIES

A polyhedron is the intersection of a finite number of
halfspacesP = {x|Ax ≤ b} and apolytopeis a bounded
polyhedron. If A ∈ R

m×n then Ai ∈ R
n is the vector

formed by thei-th row of A. If b ∈ R
m is a vector thenbi is

thei-th element ofb. Given a sequenceu , [u0, · · · , uN−1],
uj denotes thej-th element ofu. If a sequence depends
on a parameter denoted byu(x), uj(x) denotes itsj-th
element. If x ∈ R

n is a vector then‖x‖2
Q = xT Qx and

[x]+ = max{0, x} taken elementwise.
A function γ : R≥0 → R≥0 is of class K if it is
continous, strictly increasing andγ(0) = 0 [20]. A function
β : R≥0 × R≥0 → R≥0 is of classKL if, for each fixed
t ≥ 0, β(·, t) is of classK, for each fixeds ≥ 0, β(s, ·) is
non-increasing andβ(s, t) → 0 as t → ∞ [20].

Consider the discrete-time linear system

x+ = Ax + Bu , (1)

wherex ∈ R
n is the current state andu ∈ R

m is the current
control input . The solution of system (1) at sampling time
k for the initial statex(0) and a sequence of control inputs
u is denoted asφ(k, x(0), u).

While the system may be unstable, it is assumed to satisfy
the following assumption:

Assumption II.1. The pair (A,B) is stabilizable.

A steady-state(xs, us) of system (1) can be parameterized
by the parameterθ ∈ R

nθ [11]:
[

xs

us

]

=

[

Mx

Mu

]

θ , (2)

with Mx, Mu such that((I − A)Mx − BMu)θ = 0 .

Definition II.2 (Positively invariant (PI) set). A set S ⊆
R

n is a positively invariant (PI) set of systemx+ = A(x),
if A(x) ∈ S for all x ∈ S.

Definition II.3 (Robust positively invariant (RPI) set).
A set S ⊆ R

n is a robust positively invariant (RPI) set

of system x+ = A(x) + w, if A(x) + w ∈ S for all
x ∈ S, w ∈ W .

A PI set that contains every closed PI set ofx+ = A(x) is
called a maximal PI set and similarly for the maximal RPI
set.

Definition II.4 (Regional ISS [7], [19]). Given an RPI set
Γ ⊆ R

n with 0 ∈ Γ, systemx+ = A(x) + w is Input-to-
State Stable (ISS) inΓ w.r.t. w if there exists aKL-function
β and aK-functionγ such that for all initial statesx(0) ∈ Γ
and for all disturbance sequencesw , [wj ]j≥0 with wj ∈
W : |φ(j, x(0),w)| ≤ β(|x(0)|, j)+γ(‖w[j−1]‖∞), ∀j ≥ 0,
whereφ(k, x(0), w) denotes the solution of the systemx+ =
A(x) + w and‖w[j−1]‖∞ , sup{|w(t)|, t ≥ 0} .

Note that the condition for input-to-state stability reduces to
that for asymptotic stability ifw = 0.

The goal is to regulate the state of the system to the origin
which can be formulated as the following MPC problem
PN (x):

Problem II.5. PN (x) (Nominal MPC problem)

V ∗
N (x) , min

u
VN (x, u) ,

N−1
∑

i=0

l(xi, ui) + Vf (xN )

s.t. x0 = x ,

xi+1 = Axi + Bui, i = 0, . . . , N − 1 ,

(xi, ui) ∈ X × U, i = 0, . . . , N − 1 ,

xN ∈ Xf ,

where u = [u0, · · · , uN−1] denotes the input sequence,
the stage cost is defined asl(xi, ui) , ‖xi‖

2
Q + ‖ui‖

2
R,

Vf (x) , ‖x‖2
P is a terminal penalty function,Q, R and P

are symmetric positive definite matrices.
X , {x | Gxx ≤ fx} and U , {u | Guu ≤ fu} are

polytopic constraints on the states and inputs andXf ⊆ X

is a compact terminal target set. Given a control sequence
u(x) at statex, the associated state trajectory isx(x) ,

[x0, x1, · · · , xN ], where x0 = x and for eachi, xi =
φ(i, x, u(x)).

Problem PN (x) implicitly defines the set of feasible
control sequencesUN (x) = {u(x) | u(x) ∈ U

N , x(x) ∈
X

N ×Xf} and feasible initial statesXN , {x | UN (x) 6= ∅}.
For a given statex ∈ XN the solution ofPN (x) yields the
optimal control sequenceu∗(x). The implicit optimal MPC
control law is then given in a receding horizon fashion by

κ(x) , u∗
0(x) . (3)

Assumption II.6. In the following it is assumed thatVf (·)
is a Lyapunov function inXf andXf is a PI set for system
(1) under the control lawκf (x) , Kx. These conditions are
stated formally as the following two assumptions:

A1: Xf ⊆ X, (A + BK)Xf ⊆ Xf , KXf ⊆ U

A2: P > 0, (A+BK)TP (A+BK)−P = −(Q+KTRK)



Theorem II.7 (Stability under κ(x), [13]). If Assumption
II.6 holds, then the closed-loop systemx+ = Ax + Bκ(x)
is asymptotically stable with region of attractionXN .

In order to resolve the feasibility issues described in the
introduction, a standard soft constrained approach is to relax
the state constraints by the introduction of slack variables ǫi:
Gxxi ≤ fx + ǫi. The constraint violation is then minimized
by including a penalty onǫi in the MPC cost (see e.g.
[12]). This soft constrained method that is also frequently
used in practice does however not guarantee stability or
satisfaction of the constraints even in the nominal case.
The stability proof for the considered finite horizon MPC
scheme uses the optimal MPC cost as a Lyapunov function
[13]. The stability proof fails in the soft constrained case,
since through the introduction of the penalties onǫi into the
cost function, it can no longer be shown that the optimal
cost is a Lyapunov function.

We propose a new soft constrained MPC formulation in
the next section, which provides optimality and constraint
satisfaction wherever the state constraints can be enforced
(Section IV), a stability guarantee in the nominal case
(Section V) and input-to-state stability in the presence of
additive disturbances (Section VI).

III. SOFT CONSTRAINEDMPC - PROBLEM SETUP

Consider the following soft constrained MPC problem
P

s
N (x):

Problem III.1. P
s
N (x) (Soft constrained MPC problem)

V s∗
N (x) = min

u,θ,ǫ,ǫs

V s
N (x,u, θ, ǫ, ǫs) (4)

V s
N (x,u, θ, ǫ, ǫs) ,

N−1
∑

i=0

l(xi − xs, ui − us) + ‖ǫi‖
2
S

+ρ1‖ǫi‖p + Vf (x − xs) + ‖ǫs‖
2
S + ρ1‖ǫs‖p + ρ2‖θ‖p

subject to x0 = x , (5a)

xi+1 = Axi + Bui , (5b)

[xT
s uT

s ] = [(Mxθ)T (Muθ)T ] , (5c)

Gxxi ≤ fx + ǫs + ǫi , (5d)

Guui ≤ fu , (5e)

ǫi ≥ 0 , (5f)

ǫs ≥ 0 , (5g)

xN ∈ X s
f (θ) , (5h)

c‖T 1/2θ‖2 ≤ fx + ǫs − Fθθ , (5i)

for i = [0, · · · , N − 1], S is a symmetric positive definite
matrix,p ∈ [1,∞], ǫ = [ǫ0, . . . , ǫN−1], X s

f (θ) is an invariant
ellipse andM , T , θ, Fθ are defined in the description below.

Problem P
s
N (x) implicitly defines the set of feasi-

ble control sequencesUs
N (x) = {u(x) | ∃θ : u(x) ∈

U
N , φ(N, x, u(x)) ∈ X s

f (θ)} and feasible initial states
X s

N , {x | Us
N (x) 6= ∅}.

For a given statex ∈ X s
N ProblemP

s
N (x) results in a convex

Second Order Cone Program (SOCP) and its solution yields
the optimal control sequenceus∗(x). Note that SOCPs can
be efficiently solved using e.g. interior-point methods [2].
The implicit optimal soft constrained MPC control law is
then given in a receding horizon fashion by

κs(x) , us∗
0 (x). (6)

ProblemP
s
N(x) is a modification ofPN (x) introducing

the following three components:

• In (5h) the terminal constraint is relaxed by allowing
the origin to move to any other feasible steady-state of
system (1), parameterized byθ in (2). The terminal state
then has to lie in an invariant set given byX s

f (θ).
• In (5d) all state constraints from0 to N−1 are softened

by means of the slack variablesǫs andǫi:
By constraint (5i), ǫs characterizes the minimum
amount of constraint relaxation that is necessary in order
to include the terminal setX s

f (θ) into the softened state
constraints.
ǫi represents the additional constraint violation of each
statexi with respect to the state constraints relaxed by
ǫs.

• Quadratic andlp penalties on the slack variables are
included in the cost (4), in order to minimize the
constraint violation and ensure the enforcement of the
state constraints whenever possible. Anlp penalty on the
steady-state is used, minimizing the deviation from the
origin. In addition the cost now penalizes the deviation
from the steady-state instead of the origin.

ǫ∗s

ǫ∗
1

ǫ∗
2

ǫ∗
3

= 0 Cs
f

X

X s
f
(θ∗(x))

x = x∗

0

x∗

1

x∗

2

x∗

3

ǫ∗
0

Fig. 1. Illustration of the optimal slack variablesǫ∗s(x), ǫ∗i (x), i =
0, 1, 2, 3, the terminal setX s

f
(θ∗(x)) andCs

f
for an initial statex outside

X.

The previously described components are illustrated in
Figure 1. The set of states, for which there exists aθ such
that x ∈ X s

f (θ) is denoted asCs
f and is further explained

in Section III-A. By relaxing the terminal constraint, the
soft constrained MPC regulates the state to a feasible
steady-state that is simultaneously steered to the origin
while minimizing the violation of the state constraints.
The use of the slack variableǫs ensures that the terminal
state, which is contained inX s

f (θ), will lie inside the state
constraints relaxed by the amountǫs and will not require a
further relaxation of the state constraints. As will be shown
in Section V, this allows us to show that the optimal cost
function is still a Lyapunov function and is hence crucial
for proving stability of the proposed soft constrained MPC



scheme.

The remainder of this section is devoted to a detailed
analysis of the two types of soft constraints.
In the following sections we will then demonstrate how the
introduction of the previously described components allows
us to show that:

1. κs(x) = κ(x) wherever the state constraints can be
satisfied, i.e. for allx ∈ XN (Section IV).

2. The optimal cost functionV s∗
N (x) is a Lyapunov func-

tion and the controlled nominal system is asymptoti-
cally stable (Section V).

3. The system under additive disturbances is ISS (Sec-
tion VI).

A. Relaxation of the terminal constraint

For the relaxation of the terminal set we employ the
tracking formulation proposed in [11] where a steady-state,
parameterized byθ, is introduced as a decision variable into
the optimization problem and the cost then penalizes the
distance to the non-zero steady-state instead of the origin
as well as the offset from the non-zero steady-state to the
origin. The invariant ellipseX s

f (θ) is obtained from the
terminal set for tracking described in [11]. It is defined as
the maximal PI set given by the set of states and steady-
states and inputs parameterized byθ, such that the control
law u = K(x−xs)+us = Kx+(Mu −KMx)θ is feasible
and stabilizes the nominal system in (1).
Let

Ωf ,

{

(x, θ)

∣

∣

∣

∣

∥

∥

∥

∥

[

Tf,1 Tf,2

T T
f,2 Tf,3

]1/2

[ x
θ ]

∥

∥

∥

∥

2

≤ 1

}

(7)

be the maximal volume ellipsoidal inner approximation of
the maximal PI set.

Remark III.2. Note that a maximal volume ellipsoidal inner
approximationΩf can be computed by solving a convex
linear matrix inequality (LMI) [1].

This implicitly characterizes the set of all feasible steady-
states given byΘ , {θ | ∃x : Kx + (Mu − KMx)θ ∈
U and (x, θ) ∈ Ωf , Muθ ∈ U}. For a particular value ofθ
the condition(x, θ) ∈ Ωf reduces tox ∈ X s

f (θ), with

X s
f (θ) , {x | (x − xc(θ))

T Tf,1(x − xc(θ)) (8)

≤ θT (T T
f,2T

−1
f,1 Tf,2 − Tf,3)θ}

with xc(θ) = −T−1
f,1Tf,2θ.

Assumption III.3. By constructionX s
f (θ) is a PI set for

system (1) under the control lawκf (x) = Kx + (Mu −
KMx)θ. It therefore satisfies the following assumption:

A3: ((A + BK)x + xs) ∈ X s
f (θ), κf (x) ∈ U ∀x ∈ X s

f (θ)

This also characterizes the set of all valuesx for which there
exists a feasible steady-state, given byCs

f = {x | ∃ θ ∈ Θ :
x ∈ X s

f (θ)}, which can be seen as an enlarged terminal set.

B. Slack variablesǫs

We now explain the crucial item in the proposed soft
constrained scheme, the use of the slack variablesǫs and
ǫi. ǫs represents the amount of constraint relaxation that is
necessary in order to include the terminal constraintX s

f (θ)
in (8) for a particular value ofθ into the relaxed state
constraints, i.e.

Gxx ≤ fx + ǫs ∀x ∈ X s
f (θ) . (9)

Lemma III.4. Let Ωf be the ellipsoidal PI set in(7). Then
condition (9) corresponds to constraint(5i)
with T = T T

f,2T
−1
f,1Tf,2 − Tf,3,

c = diag(GxT−1
f,1 GT

x ) and Fθ = GxT−1
f,1Tf,2 .

Proof. Consider the variable transformationy = T
1/2
f,1 (x −

xc(θ)), with xc(θ) = −T−1
f,1Tf,2θ. Then condition (9) is

equivalent to requiring that the ellipsoidyT y ≤ θT Tθ is
contained in the polytopeGxT

−1/2
f,1 y ≤ fx−Gxxc(θ), which

can be expressed by the following condition [1]

(Gx,jT
−1
f,1GT

x,j)‖T
1/2θ‖2 ≤ fx,j + ǫs,j − Gx,jxc(θ), ∀j ,

and corresponds to (5i). �

ǫi in (5h) represents the additional constraint violation of
each statexi with respect to the state constraints relaxed by
ǫs. Let ǫN be the slack variable of the terminal state defined
by GxxN ≤ fx + ǫs + ǫN . SincexN ∈ X s

f (θ) it follows
from this and (5d), thatǫN = 0, which will be necessary
for proving that the cost function is a Lyapunov function in
Section V.

IV. OPTIMALITY IN XN

In this section we can now show that the behavior of
the soft constrained control law corresponds to the hard
constrained one, wherever the state constraints can be
satisfied. The constraint violationsǫs and ǫi are penalized
in the cost. Two types of penalty functions are included,
quadratic andlp-norm penalties, in order to allow for
flexibility in modeling the soft constraints. While the
quadratic penalty may be preferred for tuning purposes, the
lp-norm is included in order to allow for exact penalties.
It is well-known that, when the weights on thelp-norms
are sufficiently large and there exists a feasible solution to
the hard-constraint problemPN(x) then the solution to the
soft constrained problemPs

N(x) corresponds to the solution
of the hard-constraint problem [5], [12]. Anlp-norm is
also used for penalizing the deviation of the steady-state
from the origin in order to enforce the origin as the target
steady-state if it is feasible [4].

Consider the following optimization problemPh
N(x), en-

forcing all state constraints as hard constraints:

min V s
N (x,u, θ, ǫ, ǫs) (10a)

s.t. (5a)− (5i) , (10b)

‖ǫs‖p = 0 (10c)



‖ǫi‖p = 0, i = 0, . . . , N − 1 , (10d)

‖θ‖p = 0 . (10e)

Note that the optimizer ofPh
N (x) corresponds to the opti-

mizer of PN (x).

Theorem IV.1 (Optimality in XN [5]). Consider problem
P

h
N (x). Let λ∗

ss(x) denote the optimal Lagrange multiplier
corresponding to constraint(10e)andλ∗

ǫ (x) the optimal La-
grange multipliers corresponding to the equality constraints
(10d) and (10c) at a given statex ∈ XN . Let κs(x) be the
optimal soft constrained control law in(6) and κ∗(x) the
optimal hard constrained control law in(3). If ρ1 ≥ λ∗

ss(x)
andρ2 ≥ λ∗

ǫ (x) for all x ∈ XN , thenκs(x) = κ∗(x) for all
x ∈ XN .

A lower bound for ρ1 and ρ2 can e.g. be obtained by
computing the optimal Lagrange multipliers parametrically
for all x ∈ X s

N . Since this requires the solution of a
parametric program and can be computationally infeasible
for large systems, a more conservative bound for all values
of x can be computed by directly upper bounding the
Lagrange multipliers, see e.g. [4] and the references therein.

V. NOMINAL STABILITY

After having shown that the soft constrained scheme
preserves optimality when possible, we now prove that the
resulting optimal control lawκs(x) asymptotically stabilizes
the nominal system in (1) in an enlarged invariant setX s

N .
For this, we first show that the optimal cost functionV s∗

N is
a Lyapunov function.

Lemma V.1. Consider Problem P
s
N (x) under Assump-

tions II.1-III.3. Letus∗(x) = [us∗
0 (x), . . . , us∗

N−1(x)], θ∗(x),
ǫ∗(x) = [ǫ∗0(x), . . . , ǫ∗N−1(x)], ǫ∗s be the optimizer ofPs

N (x)
for somex ∈ X s

N , xs∗(x) = [x, xs∗
1 (x), . . . , xs∗

N (x)] the as-
sociated state trajectory andxs∗

s (x) = Mxθ∗(x), us∗
s (x) =

Muθ∗(x) the steady-state defined byθ∗(x). Then forx+ =
Ax + Bus∗

0 (x)

ushift = [us∗
1 (x), . . . , us∗

N−1(x), K(xs∗
N (x)−xs∗

s (x))+us∗
s (x)]

(11)
is feasible forPs

N(x+) and

V s∗
N (x+) − V s∗

N (x) ≤ −l(x − xs∗
s (x), us∗

0 (x) − us∗
s (x)) .

(12)

Proof. The states and slack variables associated withushift in
(11) arexshift(x) = [xs∗

1 , . . . , xs∗
N , (A+BK)(xs∗

N −xs∗
s )+xs∗

s ]
and ǫshift(x) = [ǫ∗1, . . . , ǫ

∗
N−1, 0], ǫ∗s. Feasibility ofushift(x)

for P
s
N (x+) then follows from feasibility ofus∗(x), θ∗(x)

at x and positive invariance of the terminal set.ǫ∗N = 0
follows from the fact thatxN ∈ X s

f (θ∗(x)) and together
with the definition of the sequences and Assumptions II.6
and III.3 provides thatV s

N (x+, ushift, θ
∗, ǫshift, ǫ

∗
s)−V s∗

N (x) ≤
−l(x − xs∗

s (x), us∗
0 (x) − us∗

s (x)). (12) then follows from
V s∗

N (x+) ≤ V s
N (x+, ushift, θ

∗, ǫshift, ǫ
∗
s). �

In order for V s∗
N (x) to be a Lyapunov function and prove

asymptotic convergence to the origin, we now need to show
that l(x−x∗

s(x), us∗
0 (x)−us∗

s (x)) = 0 implies that‖x‖ = 0.

Lemma V.2. If at a given statex the optimal solution to
P

s
N (x) is such that‖x − xs∗

s (x)‖ = 0, then‖x‖ = 0.

Proof. We first sketch the proof that is a modification of the
proof of Lemma 3 in [11], which is proven by contradiction
and then extend it to the case considered here.
In the first part of the proof it is shown that for every feasible
steady-state(xs, us) parameterized byθ there exists a steady-
state (αxs, αus) or αθ with α ∈ (0, 1) such thatxs ∈
X s

N (αθ). Therefore the control sequenceuα(xs) generated
by the lawui = K(xi−αxs)+αus with x0 = xs is feasible
atxs. Let xα(xs) be the state sequence corresponding touα.
In the second part of the proof it is shown that, if the
current state isxs, then the cost to move toαxs applying
uα(xs) is in fact smaller than the cost of staying atxs by
applying us over the entire horizon and therefore staying
at xs cannot be the optimal solution. It was shown that
VN (xs,uα) + ρ2‖αθ‖ ≤ VN (xs,us) + ρ2‖θ‖, where VN

is the MPC cost without slack variables in II.5 andus =
[us, . . . , us].
In order to prove that this extends to the soft constrained
approach we need to show that also
V s

N (xs,uα, αθ, ǫα, ǫs,α) < V s
N (xs,us, θ, ǫ, ǫs) or

∑N−1
i=0 ‖ǫi,α‖

2
S + ρ1‖ǫi,α‖p + ‖ǫs,α‖

2
S + ρ1‖ǫs,α‖p

≤
∑N−1

i=0 ‖ǫi‖
2
S + ρ1‖ǫi‖p + ‖ǫs‖

2
S + ρ1‖ǫs‖p ,

where ǫs and ǫi are the minimum slacks corresponding to
θ and a state sequencexs = [xs, . . . , xs] and ǫs,α and ǫi,α

are the minimum slacks corresponding toαθ and the state
sequencexα(xs) defined by the constraints (5d) and (5i).
This is achieved by the fact thatǫs andǫs,α characterize the
state relaxation necessary in order to include the terminal
setsX s

N (θ) andX s
N (αθ), respectively, into the softened state

constraints. Sincexs ∈ X s
N (θ) and alsoxs ∈ X s

N (αθ), ǫi and
ǫi,α, representing the extra constraint violation on top ofǫs

andǫs,α, are zero.
We further have thatǫs,α = [c‖T 1/2αθ‖2 − fx + Fθαθ]+ =
[α(c‖T 1/2θ‖2 − fx + Fθθ) − (1 − α)fx]+ ≤ ǫs. Therefore
‖ǫs,α‖p ≤ ‖ǫs‖p, ‖ǫs,α‖

2
S ≤ ‖ǫs‖

2
S , concluding the proof.�

These results allow us to prove asymptotic stability of the
closed loop system under the soft constrained control law:

Theorem V.3 (Asymptotic Stability under κ
s(x)). The

closed loop systemx+ = Ax + Bκs(x) is asymptotically
stable with region of attractionX s

N .

Proof. Lemma V.1 together with Lemma V.2 show that
V s∗

N (x) is a Lyapunov function inX s
N , i.e. V s∗

N (x+) −
V s∗

N (x) ≤ −γ(‖x‖), for someK-class functionγ andx+ in
(1), thereforelimt→∞ x(t) = 0 and the closed-loop system
is asymptotically stable. �

The soft constrained formulationPs
N (x) enlarges the feasi-

ble set compared toPN(x) sinceXN ⊆ X s
N and by choosing

the prediction horizon accordingly it can be chosen to cover



any polytopic region of interest, e.g. a known upper bound
on the state values, up to the maximum stabilizable set for
the input-constrained system.

Corollary V.4. Let βX, with β > 1, be a scaling of the
state constraints andX∞ := {x0 | ∃ui ∈ U : xi+1 = Axi +
Bui, limj→∞ xj = 0, ∀i ≥ 0} the set of all stabilizable
states. There exists a finite prediction horizon̄N such that
X s

N̄
⊇ βX ∩ X∞.

VI. ROBUST STABILITY PROPERTIES

In practice, model uncertainties or external disturbances
cause a deviation from the nominal system dynamics in (1).
The question is then if the control law that was designed
for the nominal system model is still stabilizing for the
uncertain system, or so-called robustly stable. This issue
has been studied in the literature, see e.g. [6], [10] and
the references therein. While in general, nominal MPC
controllers can have zero robust stability margin, it was
shown that particularly for linear systems the nominal MPC
controller often offers robust stability in an RPI set under
certain assumptions on the MPC problem setup and for a
sufficiently small bound on the disturbance size [6], [10].

Another possibility to handle uncertainties is to take
them explicitly into account using robust MPC schemes
that provide robust stability by changing the problem
formulation and tightening the constraints, e.g. min-max
MPC or tube-based approaches (see e.g. [10], [13], [14] and
the references herein).
The disadvantage of robust MPC methods is however, that a
bound on the disturbance size is assumed and the problem
is designed for the worst-case disturbance. If the disturbance
is then significantly smaller than the worst-case bound for
most of the time, the solutions can be highly conservative.
If, on the other hand, the disturbance exceeds the expected
bound, then the robust MPC problem is infeasible and
cannot provide a control input.

When using a nominal MPC scheme, no knowledge on
the size of the uncertainty is required for the computation of
the controller and it may even be able to take advantage of a
disturbance in the right direction. Conservatism is however
introduced when analyzing the RPI set, where robust
stability of a nominal MPC scheme can be guaranteed,
since it is based on a particular bound on the disturbance
size. In the presence of hard constraints, the RPI set may be
prohibitively small for the disturbance size of interest. The
idea is therefore that by using the proposed soft constrained
approach robust stability can be guaranteed in a much
bigger RPI set due to the fact that state constraints can
be relaxed. It is however important to note that, while
stability is formally only guaranteed within the RPI set, the
control law is defined everywhere in a large feasible set
(see Corollary V.4) and may still be stabilizing the uncertain
system for a variety of disturbance signals. Note that no RPI
sets need to be computed in order to apply the proposed

method.

The robust stability properties of the proposed soft con-
strained MPC scheme are analyzed in the following.

Assume that the system is subject to an additive uncer-
tainty:

x+ = Ax + Bu + w , (13)

where w is a bounded disturbance that is contained in a
convex and compact setW ⊂ R

n that contains the origin.
Because of the disturbance, the shifted sequenceushift in

(11) is no longer feasible forPs
N (x+). For all x ∈ X s

N there
does however exist a feasible solution toP

s
N(x) and input-

to-state stability can be shown in an RPI setXW ⊂ X s
f (x)

(see Theorem VI.2). It is given by the robust invariant set
for the controlled uncertain systemx+ = Ax+Bκs(x)+w,
whereκs(x) is the optimal soft constrained MPC control law
in (6):

Ax + Bκs(x) + w ∈ XW ∀ x ∈ XW , w ∈ W . (14)

In order to show that the uncertain system in (13) is robustly
stable under the nominal control law we make use of the
following result:

Lemma VI.1 (Continuity of V
s∗

N
(x)). Consider the opti-

mization problemP
s
N(x). The optimal value functionV s∗

N (x)
is continuous onX s

N .

Proof. The value functionV s
N (x,u, θ, ǫ, ǫs) in (4) and the

constraints (5a)-(5i) are convex. Convexity of the optimal
cost functionV s∗

N (x) can then be shown using the fact that
for any convex set F inRp+1, f(x) = inf{µ | (x, µ) ∈ F )}
is a convex function inRp+1 (Theorem 5.3 in [17]) and the
fact that the projection of a convex set is convex [17]. The
result then follows from the fact that every convex function
is continuous on its domain [17]. �

This allows us to prove ISS of the uncertain system con-
trolled by κs(x) in (6).

Theorem VI.2 (ISS under κ
s(x)). The closed loop sys-

tem x+ = Ax + Bκs(x) + w is ISS w.r.t tow ∈ W with
region of attractionXW .

Proof. From Lemma V.1, V.2 and VI.1 it follows thatV s∗
N (x)

is a continuous Lyapunov function and hence there exists a
K-class functionσV , such that|V s∗

N (y)−V s∗
N (x)| ≤ σV (‖y−

x‖) as well as aK-class functionγ such thatV s∗
N (x+) −

V s∗
N (x) ≤ −γ(‖x‖). It follows from these facts that

V s∗
N (x+) − V s∗

N (x)

= V s∗
N (Ax + Bκs(x) + w) − V s∗

N (Ax + Bκs(x))

+ V s∗
N (Ax + Bκs(x)) − V s∗

N (x)

≤ |V s∗
N (Ax + Bκs(x) + w) − V s∗

N (Ax + Bκs(x))|

− l(x − xs∗
s (x), u − us∗

s (x))

≤ σV (‖w‖) − γ(‖x‖) .

Then V s∗
N (x) is an ISS-Lyapunov function and the closed-

loop system is ISS [7]. �



The uncertain system controlled by the control law resulting
from the soft constrained MPC problemPs

N(x) is hence
robustly stable against sufficiently small disturbances. Since
the RPI setXW depends onW , the size of the disturbances
and the corresponding region for which stability can be
formally guaranteed depend on the particular system of
interest.

VII. N UMERICAL EXAMPLE

The presented results are demonstrated in the following
section using a numerical example. All set computations
were carried out using the YALMIP toolbox [9] and the
MPT toolbox [8].

Consider the following system:

xi+1 =

[

1.05 1
0 1

]

xi +

[

1
0.5

]

ui . (15)

The system has eigenvalues ats1 = 1.05, s2 = 1 and
is hence unstable. The prediction horizon was chosen to
N = 5, the constraints on the states and control inputs
to ‖x‖∞ ≤ 5 and ‖u‖∞ ≤ 1, Q = I, R = 1 and
S = I. The terminal cost functionVf (x) is taken as the
unconstrained infinite horizon optimal value function for the
nominal system withP = [ 1.9119 0.2499

0.2499 2.6510 ] and κf (x) = Kx

is the corresponding optimal LQ controller. The exact
penalty multipliers were chosen toρ1 = ρ2 = 50 which
was observed to provide optimality inXN as defined in
Theorem IV.1.

First, the feasible setX s
5 and the terminal setX s

f for
the soft constrained approachPs

N (x) are illustrated and
compared with the feasible setX5(x) and the terminal set
Xf for the hard constraint problemPN(x) in Figure 2, which
demonstrates that the soft constrained approach significantly
enlarges the feasible set. In addition we plot a state set of
interest taken as2X∩X∞. It can be seen that for a horizon
of N = 5 the set is not included in the feasible setX s

5 . If
we however prolong the horizon toN = 8, then the set of
interest is included inX s

8 .
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Fig. 2. Feasible and terminal sets for the soft constrained approach forN =
5 in comparison with the feasible and terminal set of the hard constraint
problem. The state set of interest2X ∩ X∞ can be covered byX s

8
.

We now analyze the robustness properties of the example
system (15) under the soft constrained control law. Figure 3
shows the size of the RPI setsXW for two boundsWw̄ ,

{w | ‖w‖∞ ≤ w̄}, for w̄ ∈ {0.1, 0.25}. Note that for a
tube-based approach the feasible set is always a subset of
XN . This demonstrates the advantage of the soft constrained
approach, where stability can be guaranteed in the RPI set
XW0.25

⊇ XN . In addition, a closed-loop trajectory starting at
x(0) = [20,−1]T under a sequence of extreme disturbances
with w(t) = ±0.25, t ≥ 0 is shown and demonstrates that
the system is stable and does not leave the RPI setXW0.25

.
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Fig. 3. Feasible set and RPI sets forw̄ ∈ {0.1, 0.25} together with a
closed-loop trajectory starting atx(0) = [20,−1]T under a sequence of
extreme disturbances.
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