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We consider the problem of deriving optimal marketing policies for the spread of innovations in a social
network. We seek to compute policies that account for i) endogenous network influences, ii) the presence
of competitive firms, that also wish to influence the network, and iii) possible uncertainties in the network
model. Contrary to prior work in optimal advertising, which also accounts for network influences, we assume
a dynamical model of preferences and we compute optimal policies for either a finite or infinite horizon.
The optimal policies are related to and extend priorly introduced notions of centrality measures usually
considered in sociology. We also compute robust optimal policies for the case of misspecified dynamics or
uncertainties which can be modeled as external disturbances of the nominal dynamics. We show that the
optimization exhibits a certainty equivalence property, i.e., the optimal values of the control variables are
the same as if there were no uncertainty. Finally, we investigate the scenario where a competitive firm also
tries to influence the network. In this case, robust optimal solutions are computed in the form of i) Nash

and Stackelberg solutions, and ii) max-min solutions.

Key words: Dynamic programming/optimal control: Applications, Marketing: Advertising and media,
Games/group decisions: Differential, Networks/graphs: Applications
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1. Introduction

This paper is concerned with the derivation of optimal marketing strategies in a social network of
customers whose preferences are affected by both their neighbors’ preferences and the incentives
provided through advertising. Similar questions appear in different formulations, for example, the
adoption of dominant strategies in a network of strategic players Ellison (1993), Young (2001),
Jackson and Watts (2002), the convergence of beliefs in a social network Golub and Jackson (2007)
or the influence of word-of-mouth communication in the adoption of new products Alkemade and

Castaldi (2005), Dubey et al. (2006). In all these formulations, the question remains the same,
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that is: what is the group of agents that we should target so that the mazimum cascade of further
influences results?

This work is closely related to the literature on optimal advertising starting with Vidale and Wolfe
(1957) in a monopoly framework and it has been extended to differential games in oligopolies, a
detailed survey of which can be found in Jorgensen and Zaccour (2004). The main objective of this
line of work, as very well stated in Sethi (1977), is to set up an optimal control problem to determine
the optimal rate of advertising expenditures over time in a way that mazimizes the net profit of the
firm. To this end, prior work has focused on i) the derivation of dynamic models which capture
the sales response to advertising, and ii) the computation of an optimal policy of advertising as a
function of the sales.

Those models which capture the effect of advertising on sales are usually described by means of
a differential or difference equation which describes the evolution of the state (sales rate or market
share) as a function of the state and the advertising expenditures. We will assume that firms have
some way of knowing or estimating the dynamics of sales response to advertising. The estimation
of these dynamics will not be part of this work. Moreover, several sales-to-advertising models are
also a function of other properties, such as price or quality, which will not be considered here.

Prior sales-to-advertising models usually capture the following phenomena: i) advertising effects
persist over the current period but diminish with time Vidale and Wolfe (1957), ii) marginal adver-
tising effects diminish or remain constant with the size of advertising Leitmann and Schmitendorf
(1978), iii) advertising effects diminish with the size of sales Vidale and Wolfe (1957), Case (1979),
Deal (1979), iv) advertising effects diminish with the size of competitive advertising Deal and Zionts
(1973), Case (1979), Erickson (1985, 1992), Chintagunta and Vilcassim (1992), Fruchter and Kalish
(1997), and v) advertising effects are affected by word-of-mouth communication (or excess advertis-
ing) Jorgensen (1982).

Depending on the formulation of sales response to advertising, models have also been categorized
in: i) sales response models (where the state is the rate of sales) Vidale and Wolfe (1957), ii) market

share models (where the state is the share of the market) Case (1979), iii) diffusion models (which
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capture the market growth) Bass (1969), and iv) goodwill models (which capture the evolution of
advertising capital) Nerlove and Arrow (1962).

Our model is also related to those models. It exhibits diminishing returns with time in the absence
of advertising effort, constant marginal returns with the size of advertising, and diminishing returns
with the size of competitive advertising. It extends traditional advertising models by also considering
the effect of word-of-mouth communication through a metwork of interactions similarly to Alke-
made and Castaldi (2005), Dubey et al. (2006). However, the analysis here is not restricted to the
equilibrium state of the evolution of preferences. Instead, the dynamics of network effects become
part of the optimization. Using this model, we are able to derive analytically optimal advertising
strategies which are related to and extend priorly introduced notions of centrality measures usually
considered in sociology Bonacich (1987).

Due to the inclusion of network interactions in the derivation of the optimal marketing strategy,
this work is also related to the diffusion of innovations and cascading phenomena in social networks
Domingos and Richardson (2001), Richardson and Domingos (2002), Goldenberg et al. (2001),
Kempe et al. (2003). In such models, each customer may purchase the marketed product with
a probability that depends on the neighbors’ probabilities of purchasing the product. Then, the
optimal marketing plan can be derived based on the expected increase in profit that this marketing
plan incurs. Of course, the computation of such optimal marketing plan will depend on the amount
of influence each customer has on its neighbors, a notion that is usually termed as the network value
of a customer Richardson and Domingos (2002). Several other models of interactions have been
proposed including the linear threshold model motivated by Schelling (1978), Granovetter (1978),
where nodes become activated if the number of activated neighbors exceeds a threshold. Another
model of interactions is the independent cascade model of Goldenberg et al. (2001), where, once a
node is activated, it is given the chance to activate its neighbors, while its success depends on a
probability distribution which is independent for each node. One characteristic of these models is
the computational complexity of computing the set of nodes that, if targeted, will incur the largest

possible influence in the network of customers. Furthermore, it is assumed that there is a unique
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seller who is trying to influence the network, ignoring this way the potential effect that a competitive
seller may have on its sales.

Due to the complexity resulting from the inclusion of network interactions, the computation of
the optimal policy of a firm might be challenging. For example, Kempe et al. (2003) deals with the
algorithmic question posed by Domingos and Richardson (2001) on how we should select the set
of nodes that will cause the largest possible influence in the population. In fact, an approximation
algorithm is proposed, based on the submodularity property of the influence function and in the
context of the linear threshold model of Schelling (1978), Granovetter (1978) and the independent
cascade model of Goldenberg et al. (2001), that computes the optimal set of nodes with a perfor-
mance guarantee of 63%. A similar algorithmic approximation is derived by Bharathi et al. (2007)
for the computation of best responses in the presence of multiple firms (innovations) under the
framework of Goldenberg et al. (2001).

For the study of competition when multiple firms are present, a game theoretic model is proposed
by Goyal and Kearns (2011). According to this model, two firms are competing for the diffusion
of innovations in a given network, where diffusion follows a form of threshold dynamics similar to
Granovetter (1978). Goyal and Kearns (2011) is dealing with the computation of upper bounds
of the price of anarchy, and how network structure may amplify the initial budget differences. A
similar network diffusion model has also been considered by Fazeli and Jadbabaie (2012), where
nodes update their preferences upon arrival of a Poisson clock and according to the payoffs received
by playing a coordination game with their neighbors. Furthermore, Nash equilibria are computed
for the strategic interaction between the two firms assuming the smallest possible adoption for each
strategy.

This paper is also concerned with the computation of optimal marketing policies in the presence
of word-of-mouth communication (due to the network structure) and multiple firms. Its contribu-
tion, which distinguishes it from prior literature, lies in the combination of three important factors

i) dynamic network effects in the formation of preferences which are included in the optimization,
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ii) misspecifications/uncertainties in the assumed model of evolution of preferences, and iii) uncer-
tainty in the intentions of a competitive firm that also tries to influence the network. Although
network influences in the formation of preferences are present in several models, the optimization is
usually performed at steady-state, e.g., Goyal and Kearns (2011) or Fazeli and Jadbabaie (2012).
Here, instead the dynamics of preferences become part of the optimization. Furthermore, although
uncertainties due to the presence of a competitive firm might be taken into account in several mod-
els, we would like to also compute optimal marketing policies under the presence of uncertainties
in the network structure. Usually stochastic extensions of existing models have been considered,
e.g., Sethi (1983), Prasad and Sethi (2004). In this paper, we would like to consider uncertainties
that can incorporate possible unmodeled dynamics. Under these perturbed dynamics, we formulate
a max-min optimization to compute an optimal policy which is robust to a class of norm-bounded
uncertainties. We show that the optimization exhibits a certainty equivalence property, that is, the
optimal values of the control variables are the same as if there were no uncertainty.

Finally, we investigate the possibility that a competitive firm also tries to influence the network,
introducing a second form of uncertainty. In this case, and when the objective of the competitive
firm is to maximize its sales, the strategy of the competitive firm may not be known. We will
either assume that i) the competitive firm is a competitive fridge which tries to enter the market,
introducing a notion of sequential optimization (expressed by a Stackelberg solution), or ii) both
firms have the ability of simultaneous play (expressed by a Nash solution). Under these scenarios, we
provide a complete characterization of open-loop Nash and Stackelberg solutions. These solutions are
also a subset of closed-loop (or Markovian) Nash solutions. A complete characterization of the set of
closed-loop Nash solutions is going beyond the scope of this paper, since it is highly case-dependent,
i.e., it depends on the class of policies which will be considered reasonable for the scenario of interest.
However, the proposed framework can easily be utilized to provide closed-loop Nash solutions for a
specified class of policies. Finally, we investigate the scenario where firms are also uncertain about

the objectives of the competitor, which can be formulated as a max-min optimization.
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The remainder of the paper is organized as follows. Section 2 describes the problem under consid-
eration. Section 3 discusses some necessary background on dynamic programming. Section 4 derives
finite- and infinite-horizon optimal policies in a monopoly under unperturbed and perturbed prefer-
ences’ update. Section 5 computes Stackelberg and Nash solutions in a duopoly. Finally, Section 6
presents concluding remarks.

Notation: For any vector x € R", where z; is its ith entry,

|z| denotes its Euclidean norm,

|x|00 £ maX{|'1"l|> cey |$n|}7

— max;

(z) = max{0, 21, Tg, ..., T, },
— max; (z) = max{{O,xl,xg, ez \NUS maxg(a:)} 1> 1,

— for some a >0, sat (z;a) 2 (y1, Y2, ..., Yn) such that

a T2«
vi=<r, O<z<a, 1=12,..n

2. Problem Description
2.1. Evolution of preferences

The problem considers a pair of firms £ = {a,b} and a finite set of customers or nodes 7 =
{1,2,...,n}.! We will denote a firm by ¢ € £ and a customer by i € Z. Although we assume that
nodes represent customers, we may also consider the case where a node ¢ € Z represents a group
of customers with similar characteristics. Nodes are connected through a directed network whose
links are described by a row stochastic matrix W.? The matrix W captures how nodes’ proclivities
towards the product of either firm a or firm b are affected by its neighbors.

Let x, >0 be the proclivity of node i towards buying the product of firm ¢ € {a,b} at time F,
and zf, £ (z{,, 2%, ..., x!, ) ER7 be the vector of proclivities over the whole network. We will refer
to this vector as the state of firm ¢ and we will denote by S C R" the corresponding set of states.

Firm ¢ € L is able to influence the proclivity of node ¢ € 7T towards its product by marketing its

product to node i, e.g., by offering discounts or warranties. Let uf w > 0 denote the amount of funds
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that firm ¢ spends on marketing its product to node i at time k, and uf, = (uf ,,ub ,, ..., u, ;) €R%
be the vector of funds firm ¢ spends over the set of nodes Z. We will refer to this quantity as the
control of firm ¢. We will assume that the amount of funds each firm can spend at any given time
cannot be larger than M*, i.e.,
> uf, <M* forall k=0,1, ... (1)
ez
Let C* CR" denote the resulting constraint set of controls.
The specific relation between the controls and the states is motivated by the work of Dubey
et al. (2006), Friedkin (2001) on social influence network theory and it is described by the following
difference equation:

Ty = OWap + (I — O)p(uy,u; ") (2)

which provides the proclivity of node ¢ at time k41 as a convex combination of i) a weighted average
of the proclivities of the neighbors and ii) the external influence caused by both own and competitive

advertising. The notation —¢ denotes the complementary set £\¢. The matrix © satisfies:
@:dlag{91,92,,9n}, O§91<1, Viel. (3)

The constraint (3) has a natural interpretation since it implies that there is no node that com-
pletely ignores external influence. Furthermore, in the absence of external influence, it also models

diminishing returns with time. We will simplify notation by rewriting the dynamics in the form:
Tjopr = Ay + Bo(ug, uy"), (4)

where A2 OW and B2 I — 0. Variations of this nominal model will also be considered later on in
this paper when firms are uncertain about the accuracy of the model.

The function ¢ :C* x C~* —[0,1] x ... x [0, ], for some «; >0, i € Z, maps the control vectors
of both firms to a vector of influences over the set of nodes Z. It is assumed to be nonnegative and
bounded above. We will refer to this function as the influence function. We would like function ¢

to also satisfy:
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ASSUMPTION 1. The influence function ¢ :C* x C~% —[0,a;] x ... x [0, v,,], for some o; >0, i €Z,
15 such that:

L i(ug,ui) 20, if wgy > uiy;

2. ;(ul,u; ) =0, if ufk < u:,f
That is, a customer would be influenced towards either one of the firms depending on the relative

size of their advertising. One candidate function which satisfies the above property is:

@i(ui,uié) ésat(uf U”f,()éz) (5)

for some a; >0,1=1,2,....,.n

We will refer to the above model as duopoly. When, instead, uz_,f =0forallteZ and £=0,1,...,
we will refer to this model as monopoly.

The proposed update of preferences exhibits constant marginal returns with the size of own adver-
tising and diminishing returns with the size of competitive advertising, which is due to the definition
of the influence function. It also exhibits diminishing returns with time, due to the definition of the
matrix ©. Finally, it models the effect of word-of-mouth (or excess) advertising due to the assumed

network of connections.

2.2. Objective

The utility of firm ¢ € £ at time k is defined as:
9@y, uy,) = V(zg) — C(uy) (6)

where we assume that the reward is linear with the proclivities of the nodes, i.e., V(z}) =vTz}, for
some vector v € R}, and the cost is linear with the funds spent on advertising, i.e., C(ul) = cTuf,
for some c € R} .

For some discount factor 3 € (0,1), the objective of firm ¢ has the following form

N—
7512%2 {J ¢ éj\}linooz g(xy, xk))} (7)

k=0
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over the set of infinite sequences of policies IT¢ with elements 7 = (uf, u{, ...) where pf is a function
from the set of states S to the set of controls C. The above optimization is subject to the dynamics
(4). Later on, we are also going to consider variations of this optimization, especially when dynamics
(4) are perturbed and robust optimal policies need to be derived.

For the remainder of the paper, the proposed advertising model characterized by the dynamics

(4) and the utility function (6) will be denoted by 1.

2.3. Assumptions and preliminaries

For the remainder of the paper, we are going to consider the following assumptions:
ASSUMPTION 2. BvTB —cT > 0.

That is, fv;(1 —0;) —¢; >0, i=1,2,...,n, i.e., for every unit of advertising effort, the discounted
return of each node is strictly greater than the corresponding cost. This is a reasonable assumption
and it is also related to the existence of a non-degenerate solution to the optimization problems

considered herein.
ASSUMPTION 3. af > M/ for alli€Z and L€ L.

This assumption implies that each node’s capacity of getting influenced through advertising is larger
than the advertising power of each firm. This is not a necessary assumption for the existence of
solutions, however, it simplifies the following analysis. The derivation of the corresponding solutions
in case Assumption 3 does not hold is also straightforward and qualitatively remains identical.

In the presentation of the model, we have implicitly assumed that the evolution of preferences is
governed by identical dynamics for both firms. This assumption allows for a cleaner presentation of
the analysis, however, as it will become obvious later, it does not change qualitatively the solutions.

We also assume that the utility functions of both firms are of the same form. This implies that
benefits and costs are materialized as a function of the proclivities and investments similarly for
both firms. This is a reasonable assumption, however, the following analysis can be easily modified

to include the case of different utility functions.
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Note, finally, that the proposed dynamics (4) constitute a linear time-invariant system with
bounded inputs. It is straightforward to show that the above system is input-output stable in the
sense that there exist nonnegative constants ¢, 6 such that the solution to the difference equation,
denoted z(k,zo,u), satisfies |2(k, o, u)| <+ 0||ul|o, Where ||ul|o = sup{|uy|: k€ Z,}. This is due
to the fact that W is a row stochastic matrix and © satisfies the constraint (3). The constraint
(3) on matrix © also implies the controllability (cf., Kailath (1980)) of the system (A, B), simply

because rank(B) =rank(l —©) =n.

2.4. Alternative models and discussion

The dynamics (4) are based on the assumption that agents are bounded rational, since their prefer-
ences are a weighted average of neighbors’ preferences. Full rationality instead may not necessarily
lead to better models due to the resulting computational complexity. A similar model in the con-
text of evolution of preferences without external influence has also been considered by Friedkin
and Johnsen (1999), Golub and Jackson (2007) to study the diffusion of innovations and norms in
a social network. This model has also been related to alternative measures of centrality Bonacich
(1987), Friedkin (1991).

In this paper, we modified the model used by Friedkin and Johnsen (1999), Golub and Jackson
(2007) to include the possibility of an external control influence (4), e.g., due to advertising effects.
The proposed model bears similarities with several previously introduced advertising models, e.g.,
the goodwill models of Nerlove and Arrow (1962), new product diffusion models Bass (1969) or
extensions of the Vidale-Wolfe model Vidale and Wolfe (1957). In the following subsections we

discuss some of the similarities and differences between these models with the proposed 9.

2.4.1. Comparison with goodwill models Advertising goodwill models (see, e.g., (Jorgensen
and Zaccour 2004, Section 3.5)) capture the evolution of the advertising capital. For example, the
advertising goodwill model introduced in the seminal paper Nerlove and Arrow (1962) assumes the
following dynamics

G(t) =u(t) — 6G(t), (8a)
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where G/(t) represents the advertising capital. The main difference with the proposed model 9 is
that the latter includes directly the interpersonal influences through the assumed communication
network, thus modeling a form of word-of-mouth communication. Note also that the control input
or advertising effort w influences directly the advertising capital. Similar is the assumption in 91,
where the advertising effort directly influences the preferences of all nodes. This is not necessarily
the case in other advertising models, where the advertising effort only applies to the undecided part
of the population.

The dynamics (8a) can also be modified to include the possibility of multiple firms, e.g., the
models in Fershtman (1984), Chintagunta (1993). For example, the model considered in Chintagunta

(1993) assumes

Gi(t) = /ui(t) = 6G(t), Gi(0)=Gy >0, i€{l,2}, (8b)

and the sales rate z; (similarly to the proposed vector of proclivities) depends on the advertising
capital of both firms, i.e., z; = x;(G1,Gs), where 0z;/0G,; >0 and dx;/0G; <0 for i # j.

Note that the square root of the control input in (8b), which has also been used in other advertising
models (see, e.g., Case (1979)), captures diminishing marginal returns with the size of advertising
effort. Alternatively, diminishing marginal returns can also be modeled indirectly by considering a
squared cost in the utility function. For example, in Deal (1979) the term u? is considered instead in
the cost function, or in Gould (1970) more general non-linear functions of u; are considered which
are convex increasing. In 91, instead, diminishing/constant marginal returns with the advertising
effort are modeled indirectly by assuming the saturation effect in the influence function.

A squared cost term in the utility function could also have been included in the proposed model
M. For example, an alternative utility function that incorporates diminishing marginal returns with

the size of advertising could be:
T
g(wh,up) =v a) — (uf;) Cus, 9)

where C' £ diag(c), i.e., C is a diagonal matrix where the diagonal entries coincide with the entries of
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the vector c. Some of the nice analytical properties of 9 are also shared by the above quadratic cost

function (9), such as the forthcoming analytical solution of the monopoly optimization problem.

2.4.2. Comparison with market-share response models The goodwill advertising models
and the proposed model 9 differ from market-share response models emanating from the model of
Vidale-Wolfe, Vidale and Wolfe (1957). An extension of this model to a duopoly has been considered

by Deal and Zionts (1973):
i.i: (1—.Ti—.’lfj)ui—(5i.’lfi, IEZ(O) = T;0, (10&)

for all 4,7 € {1,2}, i # j, and for some constants {J;}. A small modification Deal et al. (1979) can

also account for excess advertising effects due to word-of-mouth influences in the population, e.g.,
By = (1= — 25)u; — 0w + i (u; — uy) (zi +x5),  2:(0) =340, (10b)

for all 7,7 € {1,2}, i # j, and for constants {e;}, where the last term represents the word-of-mouth
switching from j to .

Contrary to both 9T and the goodwill advertising models, where the advertising effort applies
directly to the whole population, in the market-share response generalizations of Vidale-Wolfe’s
model Vidale and Wolfe (1957), the control applies only to the undecided part of the population.
The last term of the dynamics (10b), which models excess advertising, applies to the decided part of
the market and models transfers due to excess of advertising. This term also resembles the influence
function ¢ considered in 9, where the influence on a node depends only on the excess part of the
advertising efforts at that node.

Note, however, that a small modification of 9 can account for behaviors that are present in the
market-share models Vidale and Wolfe (1957). For example, if we instead consider the influence
function:

@i(up,up ‘) £ diag (a1 — 2 %) v’ — diag (a1 — 2f) u ™, (11)

then the advertising efforts of either firm applies only on the part of the market which is either
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undecided or has different preferences. When we assume the alternative dynamics with the influ-
ence function (11), then an analytical derivation of a closed-form solution, even for the monopoly
framework, is not feasible any more. In the forthcoming analysis, we will only consider the initially
proposed influence function which provides closed-form solutions, however future work may include
alternative forms of the influence function that may accept only numerical solutions.

Similar remarks also hold for the models emanating from the Lanchaster model of combat, such
as the models of Kimball (1957), Erickson (1985, 1992), Chintagunta and Vilcassim (1992), Fruchter
and Kalish (1997). The main difference of Lanchester models with the Vidale-Wolfe models is that
in the latter ones the effect of competitive advertising onto the market share is indirectly included
(through the undecided portion of the market). Instead, in the Lanchester models, the effect of
competitive advertising is directly included in the dynamics of market share.

This discussion reveals the flexibility of the proposed model 91 to incorporate alternative behaviors
or modeling ideas which have already been discussed in prior literature. In several cases though, it is
desirable that a sales-to-advertising model also provides closed-form solutions. The proposed model
M and its extensions herein exhibit most of the observed phenomena of sales-to-advertising models
and, as we will discuss later, it provides attractive closed-form expressions of optimal strategies

under several scenarios.

3. Dynamic Programming Background

The notation and part of the analysis in this section follows Bertsekas and Shreve (1978).

3.1. The dynamic programming algorithm

Denote by J the set of all extended real-valued functions of the form J:S — R*, defined on the
state space S and taking values on the extended real line R* = [—o0, +00].

For some time horizon N € N, consider the generic finite-horizon optimization problem:

max{JN,w(wo) éE{Q(MH Zﬁ’“g(%#k,wk)}} (12)

mell
k=0
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over any admissible policy 7 = {po, ft1, ..., ix—1} € I, where p;, € M for all k, and M is the set of
functions from the set of states S to the set of controls C. Furthermore, g(xy) defines the cost at
the final stage, which depends only on the final state x .

The above optimization is subject to the system dynamics z,; = f(xg, up, wy), where {wy}
denotes a noise sequence taking values in a measurable space (W,§). Denote Jy(z) the optimal
value of the N-stage objective function. Finally, assume that |g(z,u,w)| < oo, for all x € S, u €C,
and w e W.

For any function J € 7, define the following function

(TJ)(x) & max E{g(z,u,w)+ BJ(f(z,u,w))}, x€S.

ueC(x)

Note that (T7'J)(-) is the optimal value function for the one stage problem that has stage cost g and
terminal cost GJ.

Also, we will denote by T* the composition of the mapping T with itself & times; i.e., for all
k=1,2,..., we write

(T*J)(z) = (T(T*J))(z), z€S.

For convenience, we also write (T°.J)(z) = J(x).

Similarly, for any function J € J and any policy pu:S — C, we denote:

(T, J)(x) = E{g(x, p(x),w) + BT (f (z, (), w))}. (13)

Again, T,,J may be viewed as the cost function associated with the policy p for the one-stage
problem that has stage cost g and terminal cost G.J.

The dynamic programming algorithm (DP) is the following algorithm; for any k=1,..., N
compute

Ji(2) = (T Je-1) (), (14)

with initial condition Jy(z) = g(x). The last step of the DP algorithm provides the N-stage value,

JN(.’I?), rES.
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Define

H(z,u,J)= E{g(x,u,w)+ BJ(f(z,u,w))}. (15)

ASSUMPTION 4. The above sequence {J;.} C J is a non-decreasing sequence satisfying H(x,u, J;) <
o0, and

lim H(z,u,Jy) :H(:L‘,u,klim Ji),

k—o0

forallz €S and ueC.

The above assumption excludes problems where exchangeability of expectation with the limit is
not possible. This assumption is satisfied when we consider a monotonously increasing sequence
of functions {J;} in J and also the functions J, are measurable with respect to the probability
measure under consideration. This will be due to the Lebesgue’s Increasing Convergence Theorem

(cf., Jones (1993)).

PROPOSITION 1 (Optimality of DP). Let Assumption J hold, and assume that Jy. .(z) < oo for

allzeS, nell, and k=1,2,..,N. Then, J3, =T (Jy).

Proof.  See Proposition 3.1 in Bertsekas and Shreve (1978). O

3.2. Infinite horizon problems

Consider now the infinite horizon optimization problem:
N-1
_ k
rpgﬁc{Jﬂ(xo)JvlggoE{;oﬂ g(xk,uk(xk),wk)}}, (16)
over any admissible infinite policy m = {uo, ft1,...} and subject to the system dynamics x4, =
f(z,u,w). Let also define the optimal value of this problem as J*(z) £ sup, . J-(z).

The following is a condition on the optimal stationary policy.

PROPOSITION 2 (Optimal stationary policy). Consider the infinite horizon optimization prob-
lem of (16) and assume that Jo(z) < H(z,u,Jy) for all x € S and u € C where Jo(x)=g(x). Then,

the optimal value of the infinite horizon optimization problem is J*(x) =limy_» Jn(x), where Jy(x)
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is the N-th stage value of the dynamic programming algorithm. Let also Assumption 4 hold. Then,

a stationary policy m* = (u*, u*,...) € Il is optimal if and only if

Proof.  See Proposition 5.5 in Bertsekas and Shreve (1978). [
4. Optimal Policy in Monopoly

In this section, we compute the optimal policy of a firm when there is no competitive firm, and also
the dynamics are either a) unperturbed, or b) perturbed. Since we consider a single firm, we will

skip the superscript £ for the remainder of this section.

4.1. Unperturbed dynamics

The dynamics we consider in this section are described by (4) with u;* =0, i.e.,
Tpy1 = Az + Bo(ug) 2 f(zr, ug). (18)

In the remainder of this section, we compute the optimal policy for the 1) finite-horizon, and 2)
infinite-horizon optimization problem.

First, define: A, £ Z?:o AT and b, = BvTA,B — T, for k=0,1,.... Note that A, = I and
hT=pvTB—c".

Before computing the solutions to the finite- and infinite-horizon optimization problems, note

that:
Cram 1. vT A > 0T A, for all k=0,1,....

Proof. First note that
k+1
UTAk+1 =o' ZﬂjAj
§=0
k
— 7 ZﬂjAj —i—’UTﬁkJrlAkJrl > ’UTAk.
§=0

where the last inequality results from the fact that all the entries of matrix A are nonnegative. [



Chasparis and Shamma: Control of Preferences in Social Networks
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 17

4.1.1. Finite-horizon optimization We first consider the finite-horizon optimization

max {Jmo) 2 glan)+ 3 mg(xk,uk(xk))} . (19)

mell
k=0
where g(z) = v defines the utility at the last stage.

PROPOSITION 3 (N-th stage optimal policy). Consider the finite horizon optimization problem
(19) under the dynamics (18). The Nth stage optimal value of the dynamic programming iteration,

1S
N—1

Ti(x)=v"Ayz+ > RN s (20)

k=0

The optimal control at time k, for k=0,1,....; N =1, is uy_, = (U] y_p> - Up n_1), where

(21)

. )M i=argmaxi (hy_x)
LR 0  otherwise.
Proof. We are going to show the statement by induction. According to the dynamic programming

algorithm, the k-th stage optimal value is

Ju(w)= max {g(z,ue) + B 5 (f(2,ue))}

up€C(x

where Jy(z) = g(x) =vTz. By applying the operator T to Jy, we get the optimal value for the first

stage, which is

Ji(x) = max {g(z,u)+ BJo(f(z,u1))}

uy €C(x)

= max {(v" + v A)z+ (Bv"B—c"uy}

uy €C(x)

=T Az + hTu}.
where the optimal stage control is u} = (uj ;,...,u;, ;) such that

U =

. {M i =argmax; (h;) (22)

0 otherwise.

Note that the value Ji(+) is given by expression (20) if we set N =1 and the optimal stage control

uj is given by expression (21) if we set N =1 and k=0.
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Assume that the value iteration for the N-step optimization horizon gives (20), i.e.,
N-1

JIy(z) =vT Ayz + Z Bh N U, (23)

k=0

where uy_, = (U} y_p, -y U5 x_p) 1S such that

. M i=argmax] (hy_;)
Ul N =
A 0  otherwise,

for k=0,1,..,N — 1.
Consider now an (N 4 1)-step optimization horizon. The value at (N +1) is:

Inn(z) = (Ty)(x)

= maXC{g(x,UNH) + BIn(f (2 uni1))}

uUN41€
N-1
=T (I + ﬂANA> T+ max | hJT\/+1UN+1 +0 Z ﬁkh]TV—ku}F\/—k
UN+1 k=0

N—-1
= UT (I +ﬁANA) T+ h%+1u*]<\[+1 + ﬁ Z ﬁkhgfku?\/fk
k=0
k+1

= UTAk+1x + Z ﬂl (ﬁUTBAk,iJrl — CT) UziiJrl (24:)

i=1
* _ * * :
where uy ;= (U] yy1)--5 U yyq) is such that

Ui Ny1 =

. {M i =argmax; (hyy1) (25)

0  otherwise,

fori=1,2,...,n. Thus, we showed that the values of the dynamic programming iteration are provided

by equation (20).

Finally, to show optimality of the dynamic programming iteration, subtract equations (23) from

(24) to get:

JN+1(.’E) — JN(.’I?) = ’UT (AN—H — AN) T+

N-1

k(1T T NpT
Zﬁ (hN+1—kUjv+1—k_hN—ku?V—k) + 67 hyuy.
k=0

By Claim 1, we have that vT (ANH — AN) x>0 for all x € S. By Assumption 2 and (25), we also

have
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Rt = hyuy > .. > hiug > 0.

Therefore, Jyy1(z) > Jy(z) for all x € S and Assumption 4 is satisfied. Then, by Proposition 1,
the dynamic programming iteration provides the optimal value of the finite-horizon optimization
(19). O

The optimal marketing strategy given by (21) is a consequence of Assumption 3. As already
pointed out, the corresponding optimal strategy when Assumption 3 does not hold qualitatively
remains identical. In particular, it is straightforward to check that, in this case, the optimal control
at time k will suggest that we should split the marketing resources among the largest entries of hy,
i.e., the maximum entry receives the largest share, the second maximum entry receives the largest

share out of the remaining resources and so forth.

4.1.2. Infinite-horizon optimization We would like to solve the following optimization prob-

lem:

mell

max{Jﬂ(xO) é]\}ii{l)oz:ﬂkg(xk,uk(xk))} (26)

subject to the discrete-time dynamics (18). First recall the definition of H(z,u,J) from (15). Given

also that Jy(z) = vz, it is straightforward to show, under Assumption 2, that:
Cramm 2. Jo(x) < H(z,u,Jy), for all z €S and u € C(x).
Note also that:
LeEMMA 1. The matriz (I — SA) is non-singular for any 5 € (0,1).
Proof. Note that, by construction, (I —3A) is strictly diagonally dominant,® since the magnitude

of its ¢-th diagonal entry 1 — 860,w;; satisfies

1-— ﬁ@iwii =1- [301(1 — Zwi]‘)

JFi
=1 —ﬁ9i+ﬁ29iwij >ﬁ29iwija
J#i J#i

i.e., it is strictly larger than the sum of magnitudes of all non-diagonal entries of the ith row. By

Levy-Desplanques theorem (cf., Horn and Johnson (1985)) the matrix (I — $A) is non-singular. [
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LEMMA 2. Let € (0,1) and A€ R™™™ such that (I — SA) is non-singular. Then

k
A=Y PAI=(1-BAYNI - p AR, (27)

=0

k=0,1,.... Furthermore, if limy_ . A* ezists, then A, 2 S FA =(T-pA)

Proof. To show the first statement, simply multiply from the left with (I — SA). The second
statement is a direct consequence of (27) if we take the limit as k —oco. O

Define also: hT 2 vT A B —cT.

PROPOSITION 4 (Optimal Stationary Policy). Consider the infinite horizon optimization prob-

lem (26) under the deterministic and unperturbed dynamics (18). Then, the stationary policy 7 =

(p*,p,...) €0, such that p*(x) = (Ui, ps, ..., 1) with

(28)

. M i=argmax] (ho)

My = )
0  otherwise

fori €L, s an optimal policy for the infinite horizon optimization problem. Furthermore, the optimal

infinite value is

J =0T Az + %maxf (hoo) - (29)

Proof. Due to Claim 2, we have Jy(z) < H(x,u,Jy) for all z € S and u € C(z). Also, as we
showed in the proof of Proposition 3, due to Claim 1 and Assumption 2, Jy(z) > Ji(z) for every
x € S. Thus, Assumption 4 is satisfied and, according to Proposition 2, in order to show that the
stationary policy 7* = (p*, ¥, ...) is optimal, it suffices to show that T} (Jo+) =T (Jx=).

First, we compute J,«(x): Similarly to Proposition 3 and taking into account (27), the stationary

policy 7* establishes the following sequence of values

N-1

I = T Ayz + Z BN
k=0
— UTAw(I—ﬁN+1AN+1)$+

N-1
Zﬁk </8,UTAOO(I_ﬁN—kAN—k)B_CT> M*
k=0

N-1
—vTA z+ Z BRI e — BNHIYT A AN g

k=0
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N-1
/8N+1,UTAOO E AN*kB/J*
k=0
Note that
N-1

ANF By —ZA’“B;L —Zwk@’f (I—0)u*

0 k=1 k=1

el
Il

Since the diagonal entries of © satisfy 0 < 6; <1 for every ¢ € Z and p* is bounded, the above series

is convergent. Therefore, we have

Jﬂ.* = lim Jkﬂ'* =v Aoo$+—h
k—o0 /8

Given p* = (uj, s, ..., p) where pf is given by (28), we have:
R =M -max{ (hy). (30)

Thus,

~ M
Jﬂ-* = UTAOOIL' + fﬁmaxf (hoo) .

We are ready now to compute T}« (J.+) and T'(J,+). In particular,

TH*(JTF*) = g(x,u*) +6J7r*(f(xnu/*))
T 1 T | % /BM +
(I—{—ﬁAOOA) x+h pu + 15 _ﬁmax1 (hoo) -
Due to condition (30) and the fact that I+ A A= A, we have

T (Joe) =0T Ao + %max{ (hoo) -

Finally,

T )(w) = e (g(e, )+ B (1, )
= o (I + BALA)z + max {hlu}+ %maxf (hso)
pM +

mmaxl

~ M
=" Awz + ——max{ (ha).

-8

= 0T Az + Mmaxi (hy) + (hoo)
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Hence, we showed that T}« (J+) = T(J+), which implies that 7* is an optimal stationary policy.
Also, J,+ provides the optimal value of the infinite-horizon optimization. [
In other words, according to (28), the firm is going to invest the largest possible amount M to

the node which corresponds to the maximum entry of
hE =BvT A B —c" = puT (I - A (I —0) —c".

Note that this decision is affected by the following factors:

1. how easily node ¢ can be influenced by the firm’s advertising policy, which is measured by
1-0,,

2. how large is the “network value” of node ¢ throughout the optimization horizon, expressed by
the ith entry of BvT(I — BA)~!, which measures the effect of every unit of advertising effort spent
in ¢ on the proclivities of all nodes that are connected directly or indirectly to 1,

3. how small is the cost of every unit of advertising effort in node ¢, expressed by c;.

Note also that the matrix (I — (3A)~!, which influences the optimal decision, can be interpreted
as a measure of the centrality of the nodes. In fact, Bonacich in his work on measures of centrality
Bonacich (1987), introduced the following centrality measure c(v,3) = ~v(I — BA)"* A1, where 7 is
a scaling factor. When v =1, ¢(1,3) has several nice interpretations. To see this, note that the
centrality measure, which is equivalently written as c¢(1,8) = (I + SA + 2A% + ...) A1, constitutes
a measure of closeness, since it is high for a node which is connected to other nodes with short
and highly weighted paths. The parameter 3 represents the degree of information (benefits in our
model) that is transmitted from one node to another node. In our case, where A is a row stochastic

matrix, the above centrality measure takes on the following form
c(1,8)= (I +BA+B*A*+..)1=(I-BA)'1.

In the context of our dynamic model, we can say that ¢(1, 3) represents a measure of the relative
importance of nodes (in terms of benefits) when the initial condition is g =1 and there is no

external influence (i.e., there is no control input).
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Note that in our model both the initial condition and the control input affect the returns of the
advertising firm. Since we are only interested in the computation of the optimal advertising policy,
an appropriate centrality (or network value) measure would be BvTALB — ¢T. The highest entry
of this vector will provide the highest benefits over time. Note that when § =0, the control input

does not have any implication to the returns. In that case, centrality could be measured by v* A,

since it is only the initial condition that affects the returns.

4.2. Perturbed Dynamics

In this section, we are going to consider a family of perturbations of the nominal model (18),
described by

Tpp1 = Az, + Bo(uy,) + Fay, (31)

where we have neglected the effect of the second firm. The term ¢, corresponds to an unknown
signal caused possibly by misspecified system dynamics. The sequence {q;} may feed back in a
possibly nonlinear way on the history of x. We will impose the following counstraint on the size of

any instance of this perturbation sequence:
lgx| <m, forall k=0,1,..., (32)

where 1 > 0 is a measure of the firm’s confidence of the accuracy of the nominal model. Let Q
denote the resulting constraint set of disturbances.

Note that due to the presence of the unknown (but bounded) signal g; our initial assumption
that S C R’ may be violated. As we noted though in Section 2.3, the system is input-output stable,
therefore an appropriate shift of the state can always guarantee that the dynamics will evolve within

the positive cone. In particular, consider T € R’}, such that
Fa,+1 >0, (33)
for all g, satisfying (32), and define instead the dynamics:

Tyr = Azy, + Bo(uy) + Fau + 2 = f(an, ug, q).- (34)
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Note that shifting the dynamics by # does not change qualitatively the model, since the state x still
describes propensities, but relative to .
For some F € R™" define the vector r,, £ BuTALF, for k=0,1,..., with 7T = BvTF. Let also:

rT 2 3uT A F. We would like to solve the following optimization:

mell oe¥x

N-1
max min {J(mo)(l‘o) £ lim Y 5*g(a, uk(l‘k))} : (35)
k=0

subject to the perturbed dynamics (34) and the constraints (32)-(33). Here X denotes the set of
sequences of policies o = (v, V1, ...) of the uncertainty, where v, is a function from the set of states
S to Q. Note also that due to the new shifted dynamics, a utility function of the form g(z,u) =
Tz — cTu— \(Z) would have been more appropriate. However, in that case, and since the last term

is constant, the optimal policy of (35) would have been identical.

PROPOSITION 5 (Optimal policy under uncertainty). Consider the infinite horizon optimiza-
tion of (35) under the perturbed dynamics (34) and the constraint (32)-(33). The optimal stationary
policy is p* = (ui, ..., pk), such that

, iel. (36)

. M i=argmax; (hu)

My = )
0  otherwise

Proof. To solve this optimization problem, we implement the dynamic programming iteration.

In fact, we recursively implement the operator 7'(-) defined as

(TJ)(z) = max

ue

min{g(e,u) + 57 (f(2,1,0))}, (37

q

for any x € §. The dynamic programming iteration gives:

=2

In(7) = v Ay + [ﬁkhﬁka*ka + 85N kOt BT Ay 4z
0

=
Il

for all N =1,2,..., where u;, and ¢; denote the sequences of optimal investments and disturbances,

respectively. In particular, uy = (u] ..., u;, ;) and g5 = (¢ 4.,y 1), are such that

, 1€TL,

. M i=argmax; (h)
u; =
’k 0  otherwise
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and 7}q; = —n|r|, - In other words, the disturbance places all its weight on the maximum (in
absolute value) entry of ry, or
—n i=argmax; (r
O g r) g
’ 0  otherwise
The order of max and min in the definition of the operator T'(-) does not change the optimal

policies. Note also that:

H(x,u,q, JO) = g(IB,U) +ﬁ‘]0(f($vu>q))
= Jo(z) + vt Az + pvT (Fqg+2) + (Bv"B—c"u

> Jo(x)

for all z € S, u e C*, g€ Q° and under condition (33). Thus, from Proposition 2, the dynamic
programming iteration provides the optimal infinite value.

Consider the stationary policy (36) for the monopolistic firm and the stationary policy o* =
(v*,...,v*) for the disturbance such that rL v* = —n|ry| . Similarly to the proof of Proposition 4,

the corresponding infinite value is

N-1 N-1
—TA T s k% T 1 k, *
Jirr o0y (T) = v Aoox—i—hooj\}linooZﬂ L —1—7“001\}211002[3 v+
k=0 k=0
N—1
T % . k—
i g X
- 1 -
= v Apr+ 5 []\hnax;r (hoo) =M 700 o +[3UTA005;} .

By following similar reasoning with the proof of Proposition 4, we can show that

Ttur oy (Jar,0%)) =T (J(mr,07))-

Therefore, according to Proposition 2, (7*,0*) provides the optimal lower value. It is also straight-
forward to show that the sequence of policies (7*,0*) also provides the optimal upper value, defining
this way a solution to the max-min optimization problem. [

Note that the robust optimal policy for the perturbed model coincides with the optimal policy

for the unperturbed or riskless model, i.e., it exhibits a certainty equivalence property.
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5. Optimal Policy in Duopoly
5.1. Preliminaries

The previous section computed the optimal robust policy for the problem of monopoly under norm-
bounded model uncertainty. In this section, we would also like to include the possibility that a
competitive firm tries to influence the preferences of the customers towards buying its own product
as described by the more general duopoly model (4).

The presence of a competitive firm introduces a new source of uncertainty. We will either assume
that i) the competitive firm has the form of a competitive fringe which tries to enter the market,
introducing a notion of sequential optimization (expressed by a Stackelberg solution), or ii) both
firms have the ability of simultaneous play (expressed by a Nash solution).

Each firm ¢ € £ solves the following optimization problem:

N-—-1

nlert
subject to the system dynamics
Ty = Az + Beo(p i) (39)
where ¢ = (uf, 1t,...) and 7=¢ = (u; % uz %, ...) are the infinite sequences of policies of the firms ¢
and —/, respectively.

DEFINITION 1 (STACKELBERG SOLUTION). A Stackelberg solution is a pair of policies (7%, 77%*) €
IT* x I~ such that

" € BR_(7") £ arg max {Jiwtaty (25 |7 }
and, 7 € argmax oy { J e ) (7f) |7r_é €BR_,(7") }.

In the above definition of a Stackelberg solution, we will refer to firm ¢ as the leader and firm —/
as the follower. Note that the definition implies that firm ¢ (or leader) announces first its policy,

while firm —/ (or follower) reacts to that policy.

DEFINITION 2 (NASH SOLUTION). A pair of policies (7, 7=%) € II* x II"* is a Nash solution if

7 € BR_,(7%) and 7 € BR, (7).
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We will also refer to these solutions as Markovian or closed-loop Nash solutions. If, instead, the
maximization in the definition of the Nash solution is restricted to the set of sequences of control
inputs in C%, then the corresponding solutions will be referred to as open-loop Nash solutions. Note
that these definitions of Nash solutions implicitly assumes a simultaneous announcement of policies
for both firms.

A straightforward implication of the above definitions is that any Stackelberg solution is also a

Nash solution.

5.2. Open-loop stationary Nash solutions

In this section, we will restrict our attention to open-loop Nash solutions that are also stationary,
i.e., time-independent. Before characterizing this family of Nash solutions, define the set of actions

AL 2 {ay, ay,...,a }, £ € L, such that for each i € {1,2,...,n}, a; = (a1, X2, -, @iy ) Where

Q= j:1,2,...,n.

A | M j=argmax] (ha),
{0 otherwise,

In other words, the action «a; corresponds to investing all available funds to the ith largest non-

negative entry of h.,. Note that the set of actions define an isomorphic set of stationary policies,

i.e., for each action «; there is a stationary policy (o, o, ...). Let us also denote by J; j(x) the

corresponding infinite horizon value for initial condition & when one firm applies stationary policy

(a, @, ...) and the other firm applies (a;,q;,...). Any other open-loop stationary policy u‘ can be

represented as a mixture of actions in A’ i.e.,

aq, with probability pf
pt=x ... , LeL, (40)
a,, with probability p’,

where pf >0, i €Z, and ), p! = 1. The corresponding value of the objective function (38) for any

open-loop stationary policy is characterized by the following proposition.

PROPOSITION 6 (Payoffs under open-loop policies). When both firms £ € L apply an open-loop
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stationary policy = (u, ut, ...) satisfying (40), the infinite value of the objective function N —

defined by (38), is Jintnty=D ez icr Jiipip;*, where

vT Az + Tgl—clail, i=j

N ,xeS‘ leL. (41)
T Agr + 5lhial], i

Jg () = {

Proof. 'When the pair of stationary policies (7, 7¢) is applied, where 7* = (u*, p*,...) and 7= =

(u=* =%, ...), the corresponding value of the objective function of firm ¢ will be:

N —o0

Jostmety(@) = 0" At Tim 37 8 [(hoo +6) T (1 (@), 0~ (2) — " ()]

= 0 At [ 4 )" ()7 (0) — T o)

for some initial state z € S¢. If u* = =% =, then the corresponding infinite value of the objective

function of ¢, denoted J(; ), is:

J(i,i) (.Z') = ’UTAOO.’I? + ﬁ [—CTCEZ'].

If, instead, u‘=cq; and pu=* = ay, i # j, the corresponding infinite value of the objective function ¢,
denoted J(; 5, is:

~ 1
J(i)j)(.’lf) = Q)TAOO.Z' + m[h;az]

Then, the corresponding expected return of firm ¢ € L is:

i hoo "o, o)) =y
Jomo(@) = A 3 Lt el )~

< 1-p
i,J€L T T
P he +c o, 05) —C oy _
_ Z [UTAOOZL‘—F [( ) Si( ;) ] pfpjg
< -
i,j€T
- Z J(l}j)pfpj_gv
ijET

which concludes the proof. [J

Thus, we may define an equivalent one-stage symmetric game of two players, finite set of actions
A ={ay,qy,...,a,, } for each player ¢ € £, and payoff matrix of the row player which is given by
Table 1.

A direct consequence of Proposition 6 is the following:
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[ o [ [-] o |

(631 J(1,1) J(1,2) J(l,n)

Qg J(2,1) J(2,2) J(z,n)

(7% J(n,l) J(n72) J(n)n)

Table 1 Equivalent one-shot symmetric game in open-loop stationary policies.

LemMA 3. The following hold:
L. Juj(x) > Jun(x) for all i,j € T with i #j;
2. Juj(@)=Jun(x) for alli,j,7 € T with j #1i and j' #i;

3. Jup(x) > Jiyo(x) for alli,j €T withi>j.

PROPOSITION 7 (Stackelberg & Nash solutions). Let us consider the optimization problem
(38) under the dynamics (39) and the constraints (1) with M*= M~*, i.e., both firms have identical
advertising power. For any { € L, the pair of open-loop stationary policies m* = (7%, 7=*) where
7 = (ut, ut,...) and pt is defined by (40) satisfying either

(1) pi=p;‘=1, or

¢ -0 _ Ja,2)=7(2,2)
(2) pr=r2 Ta—Jantien—Jez’

defines an open-loop Nash solution. Furthermore, when € € L has the opportunity to announce its
policy first, the open-loop stationary policy corresponding to (1) defines an open-loop Stackelberg

solution.

Proof. The first claim is a direct consequence of Lemma 3 and the fact that any one of the
policies corresponding to the cases (1) and (2) defines a Nash solution for the equivalent one-shot
symmetric game of Table 1.

Assume now that ¢ has the opportunity to announce its strategy first. In order to show that
(', m=%) defines a Stackelberg solution, we need to verify that the leader’s policy 7% guaran-
tees maximum return over all possible announced policies. It is straightforward to show that any
announced policy that does not allocate all available funds to argmax; (h.) will result to a best

response of the follower that decreases leader’s utility. [
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The conclusions of Proposition 7 do not necessarily hold when we consider different spending
powers for the firms, i.e., when M*¢# M~*. However, extending the conclusions of Proposition 7 to
that case is straightforward.

Another straightforward implication of Proposition 7 is summarized in the following corollary.

COROLLARY 1. The open-loop stationary Nash solutions characterized by Proposition 7 are also

closed-loop Nash solutions.

This is due to the fact that open-loop strategies are a subset of Markovian or state-dependent
strategies. A complete characterization of the set of closed-loop Nash solutions is going beyond the
scope of this paper, since it is highly case-dependent, i.e., it depends on the class of policies which
will be considered reasonable for the application of interest. For example, if we assume that the
class of strategies over which the optimization is executed are affine functions of the state, then a
new class of closed loop Nash solutions can easily be computed using the framework proposed in

this paper.

5.3. Max-min solutions

Computing an optimal strategy which is robust to any possible policy of the competitor can be
formulated as a max-min optimization. Consider two firms with different expenditure capabilities.
In particular, consider the following two scenarios: a) M* > M~¢ and b) M* < M~* for any £ € L.

Then, firm ¢ € {a,b} solves the following max-min optimization:

N-1
max min {J(,w) (x0) £ J\}linoo Z B g (z, Uk(xk))} (42)
k=0

well oe¥

over the set IT of infinite sequences of policies (jg, pt1,...) and subject to the system dynamics
Tpy1 = Axy + Bo(pg, vi). (43)

The set ¥ denotes the collection of infinite sequences of policies (vg,vy,...) of the competitor. In

words, the above optimization reflects the situation at which the firm wishes to announce a strategy
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which will provide the optimal returns assuming that the competitor acts to minimize these returns.
To simplify notation, we have removed the superscript £ from the above optimization variables. It

is straightforward to show that:

PROPOSITION 8. Let us consider the optimization problem (42) under the dynamics (43) and the
constraints (1). If M*> M~", i.e., the advertising power of the firm £ is larger than the one of its

competitor, then the optimal strategy of the firm will be a stationary policy (u*,p*,...) such that

M i= T (heo
Mf_{ i =argmax; ( )7 et (44)

0 otherwise

Note that this is not necessarily the case when the advertising power of the firm is less than
the competitor’s. In that case, any strategy will be optimal, since the competitor has the power to

counteract any announced strategy of the firm.
6. Conclusions

We discussed the problem of deriving optimal advertising strategies in a network of customers or
groups of customers. Contrary to prior work, the dynamics of preferences were also affected by
an underlying network of interactions which introduces a form of word-of-mouth communication
between nodes. The derived optimal policies are related to and extend priorly introduced notions
of centrality measures usually considered in sociology. Although the assumed model of evolution of
preferences might be the outcome of an identification process, it is likely that we are uncertain about
its accuracy. To this end, we also considered a perturbed model which models possible misspecifica-
tions or uncertainties of the nominal model, and we derived robust optimal strategies. It was shown
that the monopoly model exhibits a certainty equivalence property, i.e., the optimal strategies for
the perturbed model coincide with the optimal strategies for the unperturbed or riskless model.
Finally, we investigated robust policies in a duopoly framework. In particular, we characterized the
set of open-loop Nash solutions. The model can easily be utilized to accommodate scenarios at
which more complicated forms of strategies are of interest, leading to new forms of closed-loop Nash
solutions. We also characterized the set of max-min solutions in a duopoly framework, when firms

makes no assumptions about the utilities of the competitor.
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Endnotes

1. An extension of the forthcoming analysis to multiple number of firms will be straightforward.

2. A row stochastic matrix W is a nonnegative matrix which also satisfies W1 =1, i.e., the sum
of its entries in any row is equal to 1.

3. A matrix is strictly diagonally dominant if in every row of the matrix, the magnitude of the
diagonal entry in that row is larger than the sum of the magnitudes of all the other (non-diagonal)

entries in that row.
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