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hmanus
ript (Please, provide the mansu
ript number!)Control of Preferen
es in So
ial NetworksGeorgios C. ChasparisDepartment of Automati
 Control, Lund University, Box 118, Lund 221 00-SE, Sweden, georgios.
hasparis�
ontrol.lth.seJe� S. ShammaS
hool of Ele
tri
al and Computer Engineering, Georgia Institute of Te
hnology, Atlanta, GA 30332, shamma�gate
h.eduWe 
onsider the problem of deriving optimal marketing poli
ies for the spread of innovations in a so
ialnetwork. We seek to 
ompute poli
ies that a

ount for i) endogenous network in�uen
es, ii) the presen
eof 
ompetitive �rms, that also wish to in�uen
e the network, and iii) possible un
ertainties in the networkmodel. Contrary to prior work in optimal advertising, whi
h also a

ounts for network in�uen
es, we assumea dynami
al model of preferen
es and we 
ompute optimal poli
ies for either a �nite or in�nite horizon.The optimal poli
ies are related to and extend priorly introdu
ed notions of 
entrality measures usually
onsidered in so
iology. We also 
ompute robust optimal poli
ies for the 
ase of misspe
i�ed dynami
s orun
ertainties whi
h 
an be modeled as external disturban
es of the nominal dynami
s. We show that theoptimization exhibits a 
ertainty equivalen
e property, i.e., the optimal values of the 
ontrol variables arethe same as if there were no un
ertainty. Finally, we investigate the s
enario where a 
ompetitive �rm alsotries to in�uen
e the network. In this 
ase, robust optimal solutions are 
omputed in the form of i) Nashand Sta
kelberg solutions, and ii) max-min solutions.Key words : Dynami
 programming/optimal 
ontrol: Appli
ations, Marketing: Advertising and media,Games/group de
isions: Di�erential, Networks/graphs: Appli
ationsHistory : This paper was �rst submitted on June 28th, 2012.
1. Introdu
tionThis paper is 
on
erned with the derivation of optimal marketing strategies in a so
ial network of
ustomers whose preferen
es are a�e
ted by both their neighbors' preferen
es and the in
entivesprovided through advertising. Similar questions appear in di�erent formulations, for example, theadoption of dominant strategies in a network of strategi
 players Ellison (1993), Young (2001),Ja
kson and Watts (2002), the 
onvergen
e of beliefs in a so
ial network Golub and Ja
kson (2007)or the in�uen
e of word-of-mouth 
ommuni
ation in the adoption of new produ
ts Alkemade andCastaldi (2005), Dubey et al. (2006). In all these formulations, the question remains the same,1
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ript no. (Please, provide the mansu
ript number!)that is: what is the group of agents that we should target so that the maximum 
as
ade of furtherin�uen
es results?This work is 
losely related to the literature on optimal advertising starting with Vidale and Wolfe(1957) in a monopoly framework and it has been extended to di�erential games in oligopolies, adetailed survey of whi
h 
an be found in Jørgensen and Za

our (2004). The main obje
tive of thisline of work, as very well stated in Sethi (1977), is to set up an optimal 
ontrol problem to determinethe optimal rate of advertising expenditures over time in a way that maximizes the net pro�t of the�rm. To this end, prior work has fo
used on i) the derivation of dynami
 models whi
h 
apturethe sales response to advertising, and ii) the 
omputation of an optimal poli
y of advertising as afun
tion of the sales.Those models whi
h 
apture the e�e
t of advertising on sales are usually des
ribed by means ofa di�erential or di�eren
e equation whi
h des
ribes the evolution of the state (sales rate or marketshare) as a fun
tion of the state and the advertising expenditures. We will assume that �rms havesome way of knowing or estimating the dynami
s of sales response to advertising. The estimationof these dynami
s will not be part of this work. Moreover, several sales-to-advertising models arealso a fun
tion of other properties, su
h as pri
e or quality, whi
h will not be 
onsidered here.Prior sales-to-advertising models usually 
apture the following phenomena: i) advertising e�e
tspersist over the 
urrent period but diminish with time Vidale and Wolfe (1957), ii) marginal adver-tising e�e
ts diminish or remain 
onstant with the size of advertising Leitmann and S
hmitendorf(1978), iii) advertising e�e
ts diminish with the size of sales Vidale and Wolfe (1957), Case (1979),Deal (1979), iv) advertising e�e
ts diminish with the size of 
ompetitive advertising Deal and Zionts(1973), Case (1979), Eri
kson (1985, 1992), Chintagunta and Vil
assim (1992), Fru
hter and Kalish(1997), and v) advertising e�e
ts are a�e
ted by word-of-mouth 
ommuni
ation (or ex
ess advertis-ing) Jørgensen (1982).Depending on the formulation of sales response to advertising, models have also been 
ategorizedin: i) sales response models (where the state is the rate of sales) Vidale and Wolfe (1957), ii) marketshare models (where the state is the share of the market) Case (1979), iii) di�usion models (whi
h
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apture the market growth) Bass (1969), and iv) goodwill models (whi
h 
apture the evolution ofadvertising 
apital) Nerlove and Arrow (1962).Our model is also related to those models. It exhibits diminishing returns with time in the absen
eof advertising e�ort, 
onstant marginal returns with the size of advertising, and diminishing returnswith the size of 
ompetitive advertising. It extends traditional advertising models by also 
onsideringthe e�e
t of word-of-mouth 
ommuni
ation through a network of intera
tions similarly to Alke-made and Castaldi (2005), Dubey et al. (2006). However, the analysis here is not restri
ted to theequilibrium state of the evolution of preferen
es. Instead, the dynami
s of network e�e
ts be
omepart of the optimization. Using this model, we are able to derive analyti
ally optimal advertisingstrategies whi
h are related to and extend priorly introdu
ed notions of 
entrality measures usually
onsidered in so
iology Bona
i
h (1987).Due to the in
lusion of network intera
tions in the derivation of the optimal marketing strategy,this work is also related to the di�usion of innovations and 
as
ading phenomena in so
ial networksDomingos and Ri
hardson (2001), Ri
hardson and Domingos (2002), Goldenberg et al. (2001),Kempe et al. (2003). In su
h models, ea
h 
ustomer may pur
hase the marketed produ
t witha probability that depends on the neighbors' probabilities of pur
hasing the produ
t. Then, theoptimal marketing plan 
an be derived based on the expe
ted in
rease in pro�t that this marketingplan in
urs. Of 
ourse, the 
omputation of su
h optimal marketing plan will depend on the amountof in�uen
e ea
h 
ustomer has on its neighbors, a notion that is usually termed as the network valueof a 
ustomer Ri
hardson and Domingos (2002). Several other models of intera
tions have beenproposed in
luding the linear threshold model motivated by S
helling (1978), Granovetter (1978),where nodes be
ome a
tivated if the number of a
tivated neighbors ex
eeds a threshold. Anothermodel of intera
tions is the independent 
as
ade model of Goldenberg et al. (2001), where, on
e anode is a
tivated, it is given the 
han
e to a
tivate its neighbors, while its su

ess depends on aprobability distribution whi
h is independent for ea
h node. One 
hara
teristi
 of these models isthe 
omputational 
omplexity of 
omputing the set of nodes that, if targeted, will in
ur the largestpossible in�uen
e in the network of 
ustomers. Furthermore, it is assumed that there is a unique
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ript number!)seller who is trying to in�uen
e the network, ignoring this way the potential e�e
t that a 
ompetitiveseller may have on its sales.Due to the 
omplexity resulting from the in
lusion of network intera
tions, the 
omputation ofthe optimal poli
y of a �rm might be 
hallenging. For example, Kempe et al. (2003) deals with thealgorithmi
 question posed by Domingos and Ri
hardson (2001) on how we should sele
t the setof nodes that will 
ause the largest possible in�uen
e in the population. In fa
t, an approximationalgorithm is proposed, based on the submodularity property of the in�uen
e fun
tion and in the
ontext of the linear threshold model of S
helling (1978), Granovetter (1978) and the independent
as
ade model of Goldenberg et al. (2001), that 
omputes the optimal set of nodes with a perfor-man
e guarantee of 63%. A similar algorithmi
 approximation is derived by Bharathi et al. (2007)for the 
omputation of best responses in the presen
e of multiple �rms (innovations) under theframework of Goldenberg et al. (2001).For the study of 
ompetition when multiple �rms are present, a game theoreti
 model is proposedby Goyal and Kearns (2011). A

ording to this model, two �rms are 
ompeting for the di�usionof innovations in a given network, where di�usion follows a form of threshold dynami
s similar toGranovetter (1978). Goyal and Kearns (2011) is dealing with the 
omputation of upper boundsof the pri
e of anar
hy, and how network stru
ture may amplify the initial budget di�eren
es. Asimilar network di�usion model has also been 
onsidered by Fazeli and Jadbabaie (2012), wherenodes update their preferen
es upon arrival of a Poisson 
lo
k and a

ording to the payo�s re
eivedby playing a 
oordination game with their neighbors. Furthermore, Nash equilibria are 
omputedfor the strategi
 intera
tion between the two �rms assuming the smallest possible adoption for ea
hstrategy.This paper is also 
on
erned with the 
omputation of optimal marketing poli
ies in the presen
eof word-of-mouth 
ommuni
ation (due to the network stru
ture) and multiple �rms. Its 
ontribu-tion, whi
h distinguishes it from prior literature, lies in the 
ombination of three important fa
torsi) dynami
 network e�e
ts in the formation of preferen
es whi
h are in
luded in the optimization,
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i�
ations/un
ertainties in the assumed model of evolution of preferen
es, and iii) un
er-tainty in the intentions of a 
ompetitive �rm that also tries to in�uen
e the network. Althoughnetwork in�uen
es in the formation of preferen
es are present in several models, the optimization isusually performed at steady-state, e.g., Goyal and Kearns (2011) or Fazeli and Jadbabaie (2012).Here, instead the dynami
s of preferen
es be
ome part of the optimization. Furthermore, althoughun
ertainties due to the presen
e of a 
ompetitive �rm might be taken into a

ount in several mod-els, we would like to also 
ompute optimal marketing poli
ies under the presen
e of un
ertaintiesin the network stru
ture. Usually sto
hasti
 extensions of existing models have been 
onsidered,e.g., Sethi (1983), Prasad and Sethi (2004). In this paper, we would like to 
onsider un
ertaintiesthat 
an in
orporate possible unmodeled dynami
s. Under these perturbed dynami
s, we formulatea max-min optimization to 
ompute an optimal poli
y whi
h is robust to a 
lass of norm-boundedun
ertainties. We show that the optimization exhibits a 
ertainty equivalen
e property, that is, theoptimal values of the 
ontrol variables are the same as if there were no un
ertainty.Finally, we investigate the possibility that a 
ompetitive �rm also tries to in�uen
e the network,introdu
ing a se
ond form of un
ertainty. In this 
ase, and when the obje
tive of the 
ompetitive�rm is to maximize its sales, the strategy of the 
ompetitive �rm may not be known. We willeither assume that i) the 
ompetitive �rm is a 
ompetitive fridge whi
h tries to enter the market,introdu
ing a notion of sequential optimization (expressed by a Sta
kelberg solution), or ii) both�rms have the ability of simultaneous play (expressed by a Nash solution). Under these s
enarios, weprovide a 
omplete 
hara
terization of open-loop Nash and Sta
kelberg solutions. These solutions arealso a subset of 
losed-loop (or Markovian) Nash solutions. A 
omplete 
hara
terization of the set of
losed-loop Nash solutions is going beyond the s
ope of this paper, sin
e it is highly 
ase-dependent,i.e., it depends on the 
lass of poli
ies whi
h will be 
onsidered reasonable for the s
enario of interest.However, the proposed framework 
an easily be utilized to provide 
losed-loop Nash solutions for aspe
i�ed 
lass of poli
ies. Finally, we investigate the s
enario where �rms are also un
ertain aboutthe obje
tives of the 
ompetitor, whi
h 
an be formulated as a max-min optimization.
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ript number!)The remainder of the paper is organized as follows. Se
tion 2 des
ribes the problem under 
onsid-eration. Se
tion 3 dis
usses some ne
essary ba
kground on dynami
 programming. Se
tion 4 derives�nite- and in�nite-horizon optimal poli
ies in a monopoly under unperturbed and perturbed prefer-en
es' update. Se
tion 5 
omputes Sta
kelberg and Nash solutions in a duopoly. Finally, Se
tion 6presents 
on
luding remarks.Notation: For any ve
tor x∈R
n, where xi is its ith entry,

− |x| denotes its Eu
lidean norm,
− |x|∞ , max{|x1|, ..., |xn|},
− max+

1 (x) , max{0, x1, x2, ..., xn},

− max+
i (x) , max

{

{0, x1, x2, ..., xn}\
⋃i−1

k=1 max+
k (x)

}

, i > 1,
− for some α > 0, sat (x;α) , (y1, y2, ..., yn) su
h that

yi =















α xi ≥α

xi 0 < xi < α

0 xi ≤ 0

, i = 1,2, ..., n.2. Problem Des
ription2.1. Evolution of preferen
esThe problem 
onsiders a pair of �rms L = {a, b} and a �nite set of 
ustomers or nodes I =

{1,2, ..., n}.1 We will denote a �rm by ℓ ∈ L and a 
ustomer by i ∈ I. Although we assume thatnodes represent 
ustomers, we may also 
onsider the 
ase where a node i ∈ I represents a groupof 
ustomers with similar 
hara
teristi
s. Nodes are 
onne
ted through a dire
ted network whoselinks are des
ribed by a row sto
hasti
 matrix W .2 The matrix W 
aptures how nodes' pro
livitiestowards the produ
t of either �rm a or �rm b are a�e
ted by its neighbors.Let xℓ
i,k ≥ 0 be the pro
livity of node i towards buying the produ
t of �rm ℓ ∈ {a, b} at time k,and xℓ

k , (xℓ
1,k, x

ℓ
2,k, ..., x

ℓ
n,k) ∈R

n
+ be the ve
tor of pro
livities over the whole network. We will referto this ve
tor as the state of �rm ℓ and we will denote by Sℓ ⊂R

n
+ the 
orresponding set of states.Firm ℓ ∈ L is able to in�uen
e the pro
livity of node i ∈ I towards its produ
t by marketing itsprodu
t to node i, e.g., by o�ering dis
ounts or warranties. Let uℓ
i,k ≥ 0 denote the amount of funds
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ript number!) 7that �rm ℓ spends on marketing its produ
t to node i at time k, and uℓ
k , (uℓ

1,k, u
ℓ
2,k, ..., u

ℓ
n,k) ∈ R

n
+be the ve
tor of funds �rm ℓ spends over the set of nodes I. We will refer to this quantity as the
ontrol of �rm ℓ. We will assume that the amount of funds ea
h �rm 
an spend at any given time
annot be larger than M ℓ, i.e.,

∑

i∈I

uℓ
i,k ≤M ℓ for all k = 0,1, .... (1)Let Cℓ ⊂R

n
+ denote the resulting 
onstraint set of 
ontrols.The spe
i�
 relation between the 
ontrols and the states is motivated by the work of Dubeyet al. (2006), Friedkin (2001) on so
ial in�uen
e network theory and it is des
ribed by the followingdi�eren
e equation:

xℓ
k+1 = ΘWxℓ

k +(I −Θ)ϕ(uℓ
k, u

−ℓ
k ) (2)whi
h provides the pro
livity of node i at time k+1 as a 
onvex 
ombination of i) a weighted averageof the pro
livities of the neighbors and ii) the external in�uen
e 
aused by both own and 
ompetitiveadvertising. The notation −ℓ denotes the 
omplementary set L\ℓ. The matrix Θ satis�es:

Θ = diag{θ1, θ2, ..., θn}, 0≤ θi < 1, ∀i∈ I. (3)The 
onstraint (3) has a natural interpretation sin
e it implies that there is no node that 
om-pletely ignores external in�uen
e. Furthermore, in the absen
e of external in�uen
e, it also modelsdiminishing returns with time. We will simplify notation by rewriting the dynami
s in the form:
xℓ

k+1 = Axℓ
k +Bϕ(uℓ

k, u
−ℓ
k ), (4)where A , ΘW and B , I −Θ. Variations of this nominal model will also be 
onsidered later on inthis paper when �rms are un
ertain about the a

ura
y of the model.The fun
tion ϕ : Cℓ ×C−ℓ → [0, α1]× ...× [0, αn], for some αi > 0, i ∈ I, maps the 
ontrol ve
torsof both �rms to a ve
tor of in�uen
es over the set of nodes I. It is assumed to be nonnegative andbounded above. We will refer to this fun
tion as the in�uen
e fun
tion. We would like fun
tion ϕto also satisfy:
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ript number!)Assumption 1. The in�uen
e fun
tion ϕ : Cℓ ×C−ℓ → [0, α1]× ...× [0, αn], for some αi > 0, i ∈ I,is su
h that:1. ϕi(u
ℓ
k, u

−ℓ
k )≥ 0, if uℓ

i,k ≥ u−ℓ
i,k;2. ϕi(u

ℓ
k, u

−ℓ
k ) = 0, if uℓ

i,k < u−ℓ
i,k.That is, a 
ustomer would be in�uen
ed towards either one of the �rms depending on the relativesize of their advertising. One 
andidate fun
tion whi
h satis�es the above property is:

ϕi(u
ℓ
k, u

−ℓ
k ) , sat(uℓ

i,k −u−ℓ
i,k;αi) (5)for some αi > 0, i = 1,2, ..., n.We will refer to the above model as duopoly. When, instead, u−ℓ

i,k ≡ 0 for all i∈ I and k = 0,1, ...,we will refer to this model as monopoly.The proposed update of preferen
es exhibits 
onstant marginal returns with the size of own adver-tising and diminishing returns with the size of 
ompetitive advertising, whi
h is due to the de�nitionof the in�uen
e fun
tion. It also exhibits diminishing returns with time, due to the de�nition of thematrix Θ. Finally, it models the e�e
t of word-of-mouth (or ex
ess) advertising due to the assumednetwork of 
onne
tions.2.2. Obje
tiveThe utility of �rm ℓ∈L at time k is de�ned as:
g(xℓ

k, u
ℓ
k) = V (xℓ

k)−C(uℓ
k) (6)where we assume that the reward is linear with the pro
livities of the nodes, i.e., V (xℓ

k) = vTxℓ
k, forsome ve
tor v ∈ R

n
+, and the 
ost is linear with the funds spent on advertising, i.e., C(uℓ

k) = cTuℓ
k,for some c∈R

n
+.For some dis
ount fa
tor β ∈ (0,1), the obje
tive of �rm ℓ has the following form

max
πℓ∈Πℓ

{

Jπℓ(x) , lim
N→∞

N−1
∑

k=0

βkg(xℓ
k, µ

ℓ
k(x

ℓ
k))

} (7)
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ript number!) 9over the set of in�nite sequen
es of poli
ies Πℓ with elements πℓ = (µℓ
0, µ

ℓ
1, ...) where µℓ

k is a fun
tionfrom the set of states S to the set of 
ontrols C. The above optimization is subje
t to the dynami
s(4). Later on, we are also going to 
onsider variations of this optimization, espe
ially when dynami
s(4) are perturbed and robust optimal poli
ies need to be derived.For the remainder of the paper, the proposed advertising model 
hara
terized by the dynami
s(4) and the utility fun
tion (6) will be denoted by M.2.3. Assumptions and preliminariesFor the remainder of the paper, we are going to 
onsider the following assumptions:Assumption 2. βvTB − cT > 0.That is, βvi(1 − θi) − ci > 0, i = 1,2, ..., n, i.e., for every unit of advertising e�ort, the dis
ountedreturn of ea
h node is stri
tly greater than the 
orresponding 
ost. This is a reasonable assumptionand it is also related to the existen
e of a non-degenerate solution to the optimization problems
onsidered herein.Assumption 3. αℓ
i ≥M ℓ

i for all i∈ I and ℓ∈L.This assumption implies that ea
h node's 
apa
ity of getting in�uen
ed through advertising is largerthan the advertising power of ea
h �rm. This is not a ne
essary assumption for the existen
e ofsolutions, however, it simpli�es the following analysis. The derivation of the 
orresponding solutionsin 
ase Assumption 3 does not hold is also straightforward and qualitatively remains identi
al.In the presentation of the model, we have impli
itly assumed that the evolution of preferen
es isgoverned by identi
al dynami
s for both �rms. This assumption allows for a 
leaner presentation ofthe analysis, however, as it will be
ome obvious later, it does not 
hange qualitatively the solutions.We also assume that the utility fun
tions of both �rms are of the same form. This implies thatbene�ts and 
osts are materialized as a fun
tion of the pro
livities and investments similarly forboth �rms. This is a reasonable assumption, however, the following analysis 
an be easily modi�edto in
lude the 
ase of di�erent utility fun
tions.
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ript number!)Note, �nally, that the proposed dynami
s (4) 
onstitute a linear time-invariant system withbounded inputs. It is straightforward to show that the above system is input-output stable in thesense that there exist nonnegative 
onstants ζ, θ su
h that the solution to the di�eren
e equation,denoted x(k,x0, u), satis�es |x(k,x0, u)| ≤ ζ + θ‖u‖∞, where ‖u‖∞ , sup{|uk| : k ∈ Z+}. This is dueto the fa
t that W is a row sto
hasti
 matrix and Θ satis�es the 
onstraint (3). The 
onstraint(3) on matrix Θ also implies the 
ontrollability (
f., Kailath (1980)) of the system (A,B), simplybe
ause rank(B) = rank(I −Θ) = n.2.4. Alternative models and dis
ussionThe dynami
s (4) are based on the assumption that agents are bounded rational, sin
e their prefer-en
es are a weighted average of neighbors' preferen
es. Full rationality instead may not ne
essarilylead to better models due to the resulting 
omputational 
omplexity. A similar model in the 
on-text of evolution of preferen
es without external in�uen
e has also been 
onsidered by Friedkinand Johnsen (1999), Golub and Ja
kson (2007) to study the di�usion of innovations and norms ina so
ial network. This model has also been related to alternative measures of 
entrality Bona
i
h(1987), Friedkin (1991).In this paper, we modi�ed the model used by Friedkin and Johnsen (1999), Golub and Ja
kson(2007) to in
lude the possibility of an external 
ontrol in�uen
e (4), e.g., due to advertising e�e
ts.The proposed model bears similarities with several previously introdu
ed advertising models, e.g.,the goodwill models of Nerlove and Arrow (1962), new produ
t di�usion models Bass (1969) orextensions of the Vidale-Wolfe model Vidale and Wolfe (1957). In the following subse
tions wedis
uss some of the similarities and di�eren
es between these models with the proposed M.2.4.1. Comparison with goodwill models Advertising goodwill models (see, e.g., (Jørgensenand Za

our 2004, Se
tion 3.5)) 
apture the evolution of the advertising 
apital. For example, theadvertising goodwill model introdu
ed in the seminal paper Nerlove and Arrow (1962) assumes thefollowing dynami
s
Ġ(t) = u(t)− δG(t), (8a)
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ript number!) 11where G(t) represents the advertising 
apital. The main di�eren
e with the proposed model M isthat the latter in
ludes dire
tly the interpersonal in�uen
es through the assumed 
ommuni
ationnetwork, thus modeling a form of word-of-mouth 
ommuni
ation. Note also that the 
ontrol inputor advertising e�ort u in�uen
es dire
tly the advertising 
apital. Similar is the assumption in M,where the advertising e�ort dire
tly in�uen
es the preferen
es of all nodes. This is not ne
essarilythe 
ase in other advertising models, where the advertising e�ort only applies to the unde
ided partof the population.The dynami
s (8a) 
an also be modi�ed to in
lude the possibility of multiple �rms, e.g., themodels in Fershtman (1984), Chintagunta (1993). For example, the model 
onsidered in Chintagunta(1993) assumes
Ġi(t) =

√

ui(t)− δGi(t), Gi(0) = Gi0 > 0, i∈ {1,2}, (8b)and the sales rate xi (similarly to the proposed ve
tor of pro
livities) depends on the advertising
apital of both �rms, i.e., xi = xi(G1,G2), where ∂xi/∂Gi > 0 and ∂xi/∂Gj < 0 for i 6= j.Note that the square root of the 
ontrol input in (8b), whi
h has also been used in other advertisingmodels (see, e.g., Case (1979)), 
aptures diminishing marginal returns with the size of advertisinge�ort. Alternatively, diminishing marginal returns 
an also be modeled indire
tly by 
onsidering asquared 
ost in the utility fun
tion. For example, in Deal (1979) the term u2
i is 
onsidered instead inthe 
ost fun
tion, or in Gould (1970) more general non-linear fun
tions of ui are 
onsidered whi
hare 
onvex in
reasing. In M, instead, diminishing/
onstant marginal returns with the advertisinge�ort are modeled indire
tly by assuming the saturation e�e
t in the in�uen
e fun
tion.A squared 
ost term in the utility fun
tion 
ould also have been in
luded in the proposed model

M. For example, an alternative utility fun
tion that in
orporates diminishing marginal returns withthe size of advertising 
ould be:
g(xℓ

k, u
ℓ
k) = vTxℓ

k −
(

uℓ
k

)T
Cuℓ

k (9)where C , diag(c), i.e., C is a diagonal matrix where the diagonal entries 
oin
ide with the entries of
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tor c. Some of the ni
e analyti
al properties of M are also shared by the above quadrati
 
ostfun
tion (9), su
h as the forth
oming analyti
al solution of the monopoly optimization problem.2.4.2. Comparison with market-share response models The goodwill advertising modelsand the proposed model M di�er from market-share response models emanating from the model ofVidale-Wolfe, Vidale and Wolfe (1957). An extension of this model to a duopoly has been 
onsideredby Deal and Zionts (1973):
ẋi = (1−xi −xj)ui − δixi, xi(0) = xi0, (10a)for all i, j ∈ {1,2}, i 6= j, and for some 
onstants {δi}. A small modi�
ation Deal et al. (1979) 
analso a

ount for ex
ess advertising e�e
ts due to word-of-mouth in�uen
es in the population, e.g.,

ẋi = (1−xi −xj)ui − δixi + ei(ui −uj)(xi +xj), xi(0) = xi0, (10b)for all i, j ∈ {1,2}, i 6= j, and for 
onstants {ei}, where the last term represents the word-of-mouthswit
hing from j to i.Contrary to both M and the goodwill advertising models, where the advertising e�ort appliesdire
tly to the whole population, in the market-share response generalizations of Vidale-Wolfe'smodel Vidale and Wolfe (1957), the 
ontrol applies only to the unde
ided part of the population.The last term of the dynami
s (10b), whi
h models ex
ess advertising, applies to the de
ided part ofthe market and models transfers due to ex
ess of advertising. This term also resembles the in�uen
efun
tion ϕ 
onsidered in M, where the in�uen
e on a node depends only on the ex
ess part of theadvertising e�orts at that node.Note, however, that a small modi�
ation of M 
an a

ount for behaviors that are present in themarket-share models Vidale and Wolfe (1957). For example, if we instead 
onsider the in�uen
efun
tion:
ϕi(u

ℓ
k, u

−ℓ
k ) , diag

(

αℓ
1−x−ℓ

k

)

uℓ − diag
(

αℓ
1−xℓ

k

)

u−ℓ, (11)then the advertising e�orts of either �rm applies only on the part of the market whi
h is either
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ided or has di�erent preferen
es. When we assume the alternative dynami
s with the in�u-en
e fun
tion (11), then an analyti
al derivation of a 
losed-form solution, even for the monopolyframework, is not feasible any more. In the forth
oming analysis, we will only 
onsider the initiallyproposed in�uen
e fun
tion whi
h provides 
losed-form solutions, however future work may in
ludealternative forms of the in�uen
e fun
tion that may a

ept only numeri
al solutions.Similar remarks also hold for the models emanating from the Lan
haster model of 
ombat, su
has the models of Kimball (1957), Eri
kson (1985, 1992), Chintagunta and Vil
assim (1992), Fru
hterand Kalish (1997). The main di�eren
e of Lan
hester models with the Vidale-Wolfe models is thatin the latter ones the e�e
t of 
ompetitive advertising onto the market share is indire
tly in
luded(through the unde
ided portion of the market). Instead, in the Lan
hester models, the e�e
t of
ompetitive advertising is dire
tly in
luded in the dynami
s of market share.This dis
ussion reveals the �exibility of the proposed model M to in
orporate alternative behaviorsor modeling ideas whi
h have already been dis
ussed in prior literature. In several 
ases though, it isdesirable that a sales-to-advertising model also provides 
losed-form solutions. The proposed model
M and its extensions herein exhibit most of the observed phenomena of sales-to-advertising modelsand, as we will dis
uss later, it provides attra
tive 
losed-form expressions of optimal strategiesunder several s
enarios.3. Dynami
 Programming Ba
kgroundThe notation and part of the analysis in this se
tion follows Bertsekas and Shreve (1978).3.1. The dynami
 programming algorithmDenote by J the set of all extended real-valued fun
tions of the form J : S → R

∗, de�ned on thestate spa
e S and taking values on the extended real line R
∗ = [−∞,+∞].For some time horizon N ∈N, 
onsider the generi
 �nite-horizon optimization problem:

max
π∈Π

{

JN,π(x0) , E

{

g(xN) +
N−1
∑

k=0

βkg(xk, µk,wk)

}} (12)
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ript number!)over any admissible poli
y π = {µ0, µ1, ..., µN−1} ∈ Π, where µk ∈M for all k, and M is the set offun
tions from the set of states S to the set of 
ontrols C. Furthermore, g(xN) de�nes the 
ost atthe �nal stage, whi
h depends only on the �nal state xN .The above optimization is subje
t to the system dynami
s xk+1 = f(xk, uk,wk), where {wk}denotes a noise sequen
e taking values in a measurable spa
e (W,F). Denote J∗
N(x) the optimalvalue of the N -stage obje
tive fun
tion. Finally, assume that |g(x,u,w)| < ∞, for all x ∈ S, u ∈ C,and w ∈W.For any fun
tion J ∈ J , de�ne the following fun
tion

(TJ)(x) , max
u∈C(x)

E{g(x,u,w) +βJ(f(x,u,w))}, x∈ S.Note that (TJ)(·) is the optimal value fun
tion for the one stage problem that has stage 
ost g andterminal 
ost βJ .Also, we will denote by T k the 
omposition of the mapping T with itself k times; i.e., for all
k = 1,2, ..., we write

(T kJ)(x) = (T (T k−1J))(x), x∈ S.For 
onvenien
e, we also write (T 0J)(x) = J(x).Similarly, for any fun
tion J ∈ J and any poli
y µ : S →C, we denote:
(TµJ)(x) , E{g(x,µ(x),w) +βJ(f(x,µ(x),w))}. (13)Again, TµJ may be viewed as the 
ost fun
tion asso
iated with the poli
y µ for the one-stageproblem that has stage 
ost g and terminal 
ost βJ .The dynami
 programming algorithm (DP) is the following algorithm; for any k = 1, ...,N
ompute

Jk(x) = (TJk−1)(x), (14)with initial 
ondition J0(x) = g(x). The last step of the DP algorithm provides the N -stage value,
JN(x), x∈ S.
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H(x,u,J) , E {g(x,u,w) +βJ(f(x,u,w))} . (15)Assumption 4. The above sequen
e {Jk} ⊂J is a non-de
reasing sequen
e satisfying H(x,u,J1) <

∞, and
lim

k→∞
H(x,u,Jk) = H(x,u, lim

k→∞
Jk),for all x∈ S and u∈ C.The above assumption ex
ludes problems where ex
hangeability of expe
tation with the limit isnot possible. This assumption is satis�ed when we 
onsider a monotonously in
reasing sequen
eof fun
tions {Jk} in J and also the fun
tions Jk are measurable with respe
t to the probabilitymeasure under 
onsideration. This will be due to the Lebesgue's In
reasing Convergen
e Theorem(
f., Jones (1993)).Proposition 1 (Optimality of DP). Let Assumption 4 hold, and assume that Jk,π(x) < ∞ forall x∈ S, π ∈Π, and k = 1,2, ...,N . Then, J∗

N = T N(J0).Proof. See Proposition 3.1 in Bertsekas and Shreve (1978). �3.2. In�nite horizon problemsConsider now the in�nite horizon optimization problem:
max
π∈Π

{

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

βkg(xk, µk(xk),wk)

}}

, (16)over any admissible in�nite poli
y π = {µ0, µ1, ...} and subje
t to the system dynami
s xk+1 =

f(x,u,w). Let also de�ne the optimal value of this problem as J∗(x) , supπ∈Π Jπ(x).The following is a 
ondition on the optimal stationary poli
y.Proposition 2 (Optimal stationary poli
y). Consider the in�nite horizon optimization prob-lem of (16) and assume that J0(x)≤H(x,u,J0) for all x ∈ S and u ∈ C where J0(x) = g(x). Then,the optimal value of the in�nite horizon optimization problem is J∗(x) = limN→∞ JN(x), where JN(x)
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ript number!)is the N -th stage value of the dynami
 programming algorithm. Let also Assumption 4 hold. Then,a stationary poli
y π∗ = (µ∗, µ∗, ...) ∈Π is optimal if and only if
Tµ∗(Jπ∗) = T (Jπ∗). (17)Proof. See Proposition 5.5 in Bertsekas and Shreve (1978). �4. Optimal Poli
y in MonopolyIn this se
tion, we 
ompute the optimal poli
y of a �rm when there is no 
ompetitive �rm, and alsothe dynami
s are either a) unperturbed, or b) perturbed. Sin
e we 
onsider a single �rm, we willskip the supers
ript ℓ for the remainder of this se
tion.4.1. Unperturbed dynami
sThe dynami
s we 
onsider in this se
tion are des
ribed by (4) with u−ℓ

k ≡ 0, i.e.,
xk+1 = Axk +Bϕ(uk) , f(xk, uk). (18)In the remainder of this se
tion, we 
ompute the optimal poli
y for the 1) �nite-horizon, and 2)in�nite-horizon optimization problem.First, de�ne: Ãk ,

∑k

j=0 βjAj and hT
k+1 , βvTÃkB − cT, for k = 0,1, .... Note that Ã0 = I and

hT
1 = βvTB − cT.Before 
omputing the solutions to the �nite- and in�nite-horizon optimization problems, notethat:Claim 1. vTÃk+1 ≥ vTÃk for all k = 0,1, ....Proof. First note that

vTÃk+1 = vT

k+1
∑

j=0

βjAj

= vT

k
∑

j=0

βjAj + vTβk+1Ak+1 ≥ vTÃk.where the last inequality results from the fa
t that all the entries of matrix A are nonnegative. �
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ript number!) 174.1.1. Finite-horizon optimization We �rst 
onsider the �nite-horizon optimization
max
π∈Π

{

Jπ(x0) , g(xN) +
N−1
∑

k=0

βkg(xk, µk(xk))

}

. (19)where g(x) , vTx de�nes the utility at the last stage.Proposition 3 (N-th stage optimal poli
y). Consider the �nite horizon optimization problem(19) under the dynami
s (18). The N th stage optimal value of the dynami
 programming iteration,is
J∗

N(x) = vTÃNx+
N−1
∑

k=0

βkhT
N−ku

∗
N−k. (20)The optimal 
ontrol at time k, for k = 0,1, ...,N − 1, is u∗

N−k = (u∗
1,N−k, ..., u

∗
n,N−k), where

u∗
i,N−k =

{

M i = argmax+
1 (hN−k)

0 otherwise. (21)Proof. We are going to show the statement by indu
tion. A

ording to the dynami
 programmingalgorithm, the k-th stage optimal value is
Jk(x) = max

uk∈C(x)
{g(x,uk) +βJk−1(f(x,uk))}where J0(x) = g(x) = vTx. By applying the operator T to J0, we get the optimal value for the �rststage, whi
h is

J1(x) = max
u1∈C(x)

{g(x,u1) +βJ0(f(x,u1))}

= max
u1∈C(x)

{

(vT +βvTA)x+(βvTB − cT)u1

}

= vTÃ1x+hT
1 u∗

1.where the optimal stage 
ontrol is u∗
1 = (u∗

1,1, ..., u
∗
n,1) su
h that

u∗
i,1 =

{

M i = argmax+
1 (h1)

0 otherwise. (22)Note that the value J1(·) is given by expression (20) if we set N = 1 and the optimal stage 
ontrol
u∗

1 is given by expression (21) if we set N = 1 and k = 0.
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JN(x) = vTÃNx+

N−1
∑

k=0

βkhT
N−ku

∗
N−k (23)where u∗

N−k = (u∗
1,N−k, ..., u

∗
n,N−k) is su
h that

u∗
i,N−k =

{

M i = argmax+
1 (hN−k)

0 otherwise,for k = 0,1, ...,N − 1.Consider now an (N +1)-step optimization horizon. The value at (N +1) is:
JN+1(x) = (TJN)(x)

= max
uN+1∈C

{g(x,uN+1) +βJN(f(x,uN+1))}

= vT
(

I +βÃNA
)

x+ max
uN+1∈C

hT
N+1uN+1 +β

N−1
∑

k=0

βkhT
N−ku

∗
N−k

= vT
(

I +βÃNA
)

x+hT
N+1u

∗
N+1 +β

N−1
∑

k=0

βkhT
N−ku

∗
N−k

= vTÃk+1x+
k+1
∑

i=1

βi
(

βvTBÃk−i+1 − cT
)

u∗
k−i+1 (24)where u∗

N+1 = (u∗
1,N+1, ..., u

∗
n,N+1) is su
h that

u∗
i,N+1 =

{

M i = argmax+
1 (hN+1)

0 otherwise, (25)for i = 1,2, ..., n. Thus, we showed that the values of the dynami
 programming iteration are providedby equation (20).Finally, to show optimality of the dynami
 programming iteration, subtra
t equations (23) from(24) to get:
JN+1(x)− JN(x) = vT

(

ÃN+1 − ÃN

)

x+
N−1
∑

k=0

βk
(

hT
N+1−ku

∗
N+1−k −hT

N−ku
∗
N−k

)

+βNhT
1 u∗

1.By Claim 1, we have that vT
(

ÃN+1 − ÃN

)

x≥ 0 for all x ∈ S. By Assumption 2 and (25), we alsohave
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hT

N+1u
∗
N+1 ≥ hT

Nu∗
N ≥ ...≥ hT

1 u∗
1 > 0.Therefore, JN+1(x)≥ JN(x) for all x∈ S and Assumption 4 is satis�ed. Then, by Proposition 1,the dynami
 programming iteration provides the optimal value of the �nite-horizon optimization(19). �The optimal marketing strategy given by (21) is a 
onsequen
e of Assumption 3. As alreadypointed out, the 
orresponding optimal strategy when Assumption 3 does not hold qualitativelyremains identi
al. In parti
ular, it is straightforward to 
he
k that, in this 
ase, the optimal 
ontrolat time k will suggest that we should split the marketing resour
es among the largest entries of hk,i.e., the maximum entry re
eives the largest share, the se
ond maximum entry re
eives the largestshare out of the remaining resour
es and so forth.4.1.2. In�nite-horizon optimization We would like to solve the following optimization prob-lem:

max
π∈Π

{

Jπ(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

} (26)subje
t to the dis
rete-time dynami
s (18). First re
all the de�nition of H(x,u,J) from (15). Givenalso that J0(x) = vTx, it is straightforward to show, under Assumption 2, that:Claim 2. J0(x)≤H(x,u,J0), for all x∈ S and u∈ C(x).Note also that:Lemma 1. The matrix (I −βA) is non-singular for any β ∈ (0,1).Proof. Note that, by 
onstru
tion, (I−βA) is stri
tly diagonally dominant,3 sin
e the magnitudeof its i-th diagonal entry 1−βθiwii satis�es
1−βθiwii = 1−βθi(1−

∑

j 6=i

wij)

= 1−βθi +β
∑

j 6=i

θiwij > β
∑

j 6=i

θiwij ,i.e., it is stri
tly larger than the sum of magnitudes of all non-diagonal entries of the ith row. ByLevy-Desplanques theorem (
f., Horn and Johnson (1985)) the matrix (I−βA) is non-singular. �
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n×n su
h that (I −βA) is non-singular. Then

Ãk =
k

∑

j=0

βjAj = (I −βA)−1(I −βk+1Ak+1), (27)
k = 0,1, .... Furthermore, if limk→∞ Ak exists, then Ã∞ ,

∑∞

j=0 βjAj = (I −βA)−1.Proof. To show the �rst statement, simply multiply from the left with (I − βA). The se
ondstatement is a dire
t 
onsequen
e of (27) if we take the limit as k →∞. �De�ne also: hT
∞ , βvTÃ∞B − cT.Proposition 4 (Optimal Stationary Poli
y). Consider the in�nite horizon optimization prob-lem (26) under the deterministi
 and unperturbed dynami
s (18). Then, the stationary poli
y π∗ =

(µ∗, µ∗, ...) ∈Π, su
h that µ∗(x) = (µ∗
1, µ

∗
2, ..., µ

∗
n) with

µ∗
i =

{

M i = argmax+
1 (h∞)

0 otherwise (28)for i∈ I, is an optimal poli
y for the in�nite horizon optimization problem. Furthermore, the optimalin�nite value is
J∗ = vTÃ∞x+

M

1−β
max+

1 (h∞) . (29)Proof. Due to Claim 2, we have J0(x) ≤ H(x,u,J0) for all x ∈ S and u ∈ C(x). Also, as weshowed in the proof of Proposition 3, due to Claim 1 and Assumption 2, Jk+1(x)≥ Jk(x) for every
x ∈ S. Thus, Assumption 4 is satis�ed and, a

ording to Proposition 2, in order to show that thestationary poli
y π∗ = (µ∗, µ∗, ...) is optimal, it su�
es to show that Tµ∗(Jπ∗) = T (Jπ∗).First, we 
ompute Jπ∗(x): Similarly to Proposition 3 and taking into a

ount (27), the stationarypoli
y π∗ establishes the following sequen
e of values

JN,π∗ = vTÃNx+
N−1
∑

k=0

βkhT
N−kµ

∗

= vTÃ∞(I −βN+1AN+1)x+
N−1
∑

k=0

βk
(

βvTÃ∞(I −βN−kAN−k)B− cT
)

µ∗

= vTÃ∞x+
N−1
∑

k=0

βkhT
∞µ∗ −βN+1vTÃ∞AN+1x−
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βN+1vTÃ∞

N−1
∑

k=0

AN−kBµ∗.Note that
N−1
∑

k=0

AN−kBµ∗ =
N

∑

k=1

AkBµ∗ =
N

∑

k=1

W kΘk(I −Θ)µ∗.Sin
e the diagonal entries of Θ satisfy 0≤ θi < 1 for every i ∈ I and µ∗ is bounded, the above seriesis 
onvergent. Therefore, we have
Jπ∗ , lim

k→∞
Jk,π∗ = vTÃ∞x+

1

1−β
hT
∞µ∗.Given µ∗ = (µ∗

1, µ
∗
2, ..., µ

∗
n) where µ∗

i is given by (28), we have:
hT
∞µ∗ = M ·max+

1 (h∞) . (30)Thus,
Jπ∗ = vTÃ∞x+

M

1−β
max+

1 (h∞) .We are ready now to 
ompute Tµ∗(Jπ∗) and T (Jπ∗). In parti
ular,
Tµ∗(Jπ∗) = g(x,µ∗) +βJπ∗(f(x,µ∗))

= vT
(

I +βÃ∞A
)

x+hT
∞µ∗ +

βM

1−β
max+

1 (h∞) .Due to 
ondition (30) and the fa
t that I +βÃ∞A≡ Ã∞, we have
Tµ∗(Jπ∗) = vTÃ∞x+

M

1−β
max+

1 (h∞) .Finally,
T (Jπ∗)(x) = max

u∈C(x)
{g(x,u) +βJπ∗(f(x,u))}

= vT(I +βÃ∞A)x+ max
u∈C(x)

{

hT
∞u

}

+
βM

1−β
max+

1 (h∞)

= vTÃ∞x+Mmax+
1 (h∞) +

βM

1−β
max+

1 (h∞)

= vTÃ∞x+
M

1−β
max+

1 (h∞) .
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e, we showed that Tµ∗(Jπ∗) = T (Jπ∗), whi
h implies that π∗ is an optimal stationary poli
y.Also, Jπ∗ provides the optimal value of the in�nite-horizon optimization. �In other words, a

ording to (28), the �rm is going to invest the largest possible amount M tothe node whi
h 
orresponds to the maximum entry of
hT
∞ = βvTÃ∞B − cT = βvT(I −βA)−1(I −Θ)− cT.Note that this de
ision is a�e
ted by the following fa
tors:1. how easily node i 
an be in�uen
ed by the �rm's advertising poli
y, whi
h is measured by

1− θi,2. how large is the �network value� of node i throughout the optimization horizon, expressed bythe ith entry of βvT(I −βA)−1, whi
h measures the e�e
t of every unit of advertising e�ort spentin i on the pro
livities of all nodes that are 
onne
ted dire
tly or indire
tly to i,3. how small is the 
ost of every unit of advertising e�ort in node i, expressed by ci.Note also that the matrix (I − βA)−1, whi
h in�uen
es the optimal de
ision, 
an be interpretedas a measure of the 
entrality of the nodes. In fa
t, Bona
i
h in his work on measures of 
entralityBona
i
h (1987), introdu
ed the following 
entrality measure c(γ,β) , γ(I − βA)−1A1, where γ isa s
aling fa
tor. When γ = 1, c(1, β) has several ni
e interpretations. To see this, note that the
entrality measure, whi
h is equivalently written as c(1, β) = (I + βA + β2A2 + ...)A1, 
onstitutesa measure of 
loseness, sin
e it is high for a node whi
h is 
onne
ted to other nodes with shortand highly weighted paths. The parameter β represents the degree of information (bene�ts in ourmodel) that is transmitted from one node to another node. In our 
ase, where A is a row sto
hasti
matrix, the above 
entrality measure takes on the following form
c(1, β) = (I +βA+β2A2 + ...)1 = (I −βA)−1

1.In the 
ontext of our dynami
 model, we 
an say that c(1, β) represents a measure of the relativeimportan
e of nodes (in terms of bene�ts) when the initial 
ondition is x0 = 1 and there is noexternal in�uen
e (i.e., there is no 
ontrol input).
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ript number!) 23Note that in our model both the initial 
ondition and the 
ontrol input a�e
t the returns of theadvertising �rm. Sin
e we are only interested in the 
omputation of the optimal advertising poli
y,an appropriate 
entrality (or network value) measure would be βvTÃ∞B − cT. The highest entryof this ve
tor will provide the highest bene�ts over time. Note that when β = 0, the 
ontrol inputdoes not have any impli
ation to the returns. In that 
ase, 
entrality 
ould be measured by vTÃ∞,sin
e it is only the initial 
ondition that a�e
ts the returns.4.2. Perturbed Dynami
sIn this se
tion, we are going to 
onsider a family of perturbations of the nominal model (18),des
ribed by
xk+1 = Axk +Bϕ(uk) +Fqk, (31)where we have negle
ted the e�e
t of the se
ond �rm. The term qk 
orresponds to an unknownsignal 
aused possibly by misspe
i�ed system dynami
s. The sequen
e {qk} may feed ba
k in apossibly nonlinear way on the history of x. We will impose the following 
onstraint on the size ofany instan
e of this perturbation sequen
e:
|qk| ≤ η, for all k = 0,1, ..., (32)where η > 0 is a measure of the �rm's 
on�den
e of the a

ura
y of the nominal model. Let Qdenote the resulting 
onstraint set of disturban
es.Note that due to the presen
e of the unknown (but bounded) signal qk our initial assumptionthat S ⊂R

n
+ may be violated. As we noted though in Se
tion 2.3, the system is input-output stable,therefore an appropriate shift of the state 
an always guarantee that the dynami
s will evolve withinthe positive 
one. In parti
ular, 
onsider x̄∈R

n
+, su
h that

Fqk + x̄≥ 0, (33)for all qk satisfying (32), and de�ne instead the dynami
s:
xk+1 = Axk +Bϕ(uk) +Fqk + x̄ , f(xk, uk, qk). (34)



Chasparis and Shamma: Control of Preferen
es in So
ial Networks24 Arti
le submitted to Operations Resear
h; manus
ript no. (Please, provide the mansu
ript number!)Note that shifting the dynami
s by x̄ does not 
hange qualitatively the model, sin
e the state x stilldes
ribes propensities, but relative to x̄.For some F ∈ R
n×n de�ne the ve
tor rT

k+1 , βvTÃkF, for k = 0,1, ..., with rT
1 = βvTF . Let also:

rT
∞ , βvTÃ∞F. We would like to solve the following optimization:

max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

}

, (35)subje
t to the perturbed dynami
s (34) and the 
onstraints (32)�(33). Here Σ denotes the set ofsequen
es of poli
ies σ = (ν0, ν1, ...) of the un
ertainty, where νk is a fun
tion from the set of states
S to Q. Note also that due to the new shifted dynami
s, a utility fun
tion of the form g(x,u) =

vTx− cTu−λ(x̄) would have been more appropriate. However, in that 
ase, and sin
e the last termis 
onstant, the optimal poli
y of (35) would have been identi
al.Proposition 5 (Optimal poli
y under un
ertainty). Consider the in�nite horizon optimiza-tion of (35) under the perturbed dynami
s (34) and the 
onstraint (32)�(33). The optimal stationarypoli
y is µ∗ = (µ∗
1, ..., µ

∗
n), su
h that

µ∗
i =

{

M i = argmax+
1 (h∞)

0 otherwise , i∈ I. (36)Proof. To solve this optimization problem, we implement the dynami
 programming iteration.In fa
t, we re
ursively implement the operator T (·) de�ned as
(TJ)(x) , max

u∈C
min
q∈Q

{g(x,u) +βJ(f(x,u, q))}, (37)for any x∈ S. The dynami
 programming iteration gives:
JN(x) = vTÃNx+

N−1
∑

k=0

[

βkhT
N−ku

∗
N−k +βkrT

N−kq
∗
N−k +βk+1vTÃN−kx̄

]

,for all N = 1,2, ..., where u∗
k and q∗

k denote the sequen
es of optimal investments and disturban
es,respe
tively. In parti
ular, u∗
k = (u∗

1,k, ..., u
∗
n,k) and q∗

k = (q∗
1,k, ..., q

∗
n,k), are su
h that

u∗
i,k =

{

M i = argmax+
1 (hk)

0 otherwise , i∈ I,
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k q∗

k = −η |rk|∞ . In other words, the disturban
e pla
es all its weight on the maximum (inabsolute value) entry of rk, or
q∗

i,k =

{

−η i = argmax+
1 (rk)

0 otherwise , i∈ I.The order of max and min in the de�nition of the operator T (·) does not 
hange the optimalpoli
ies. Note also that:
H(x,u, q, J0) = g(x,u) +βJ0(f(x,u, q))

= J0(x) +βvTAx+βvT(Fq + x̄) + (βvTB − cT)u

≥ J0(x)for all x ∈ S, u ∈ C∗, q ∈ Q∗ and under 
ondition (33). Thus, from Proposition 2, the dynami
programming iteration provides the optimal in�nite value.Consider the stationary poli
y (36) for the monopolisti
 �rm and the stationary poli
y σ∗ =

(ν∗, ..., ν∗) for the disturban
e su
h that rT
∞ν∗ =−η |r∞|

∞
. Similarly to the proof of Proposition 4,the 
orresponding in�nite value is

J(π∗,σ∗)(x) = vTÃ∞x+hT
∞ lim

N→∞

N−1
∑

k=0

βkµ∗ + rT
∞ lim

N→∞

N−1
∑

k=0

βkν∗+

βvTÃ∞ lim
N→∞

N−1
∑

k=0

βkx̄

= vTÃ∞x+
1

1−β

[

Mmax+
1 (h∞)− η |r∞|

∞
+βvTÃ∞x̄

]

.By following similar reasoning with the proof of Proposition 4, we 
an show that
T(µ∗,ν∗)(J(π∗,σ∗)) = T (J(π∗,σ∗)).Therefore, a

ording to Proposition 2, (π∗, σ∗) provides the optimal lower value. It is also straight-forward to show that the sequen
e of poli
ies (π∗, σ∗) also provides the optimal upper value, de�ningthis way a solution to the max-min optimization problem. �Note that the robust optimal poli
y for the perturbed model 
oin
ides with the optimal poli
yfor the unperturbed or riskless model, i.e., it exhibits a 
ertainty equivalen
e property.
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y in Duopoly5.1. PreliminariesThe previous se
tion 
omputed the optimal robust poli
y for the problem of monopoly under norm-bounded model un
ertainty. In this se
tion, we would also like to in
lude the possibility that a
ompetitive �rm tries to in�uen
e the preferen
es of the 
ustomers towards buying its own produ
tas des
ribed by the more general duopoly model (4).The presen
e of a 
ompetitive �rm introdu
es a new sour
e of un
ertainty. We will either assumethat i) the 
ompetitive �rm has the form of a 
ompetitive fringe whi
h tries to enter the market,introdu
ing a notion of sequential optimization (expressed by a Sta
kelberg solution), or ii) both�rms have the ability of simultaneous play (expressed by a Nash solution).Ea
h �rm ℓ∈L solves the following optimization problem:
max
πℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0) , lim

N→∞

N−1
∑

k=0

βkg
(

xℓ
k, µ

ℓ
k(x

ℓ
k)

)

} (38)subje
t to the system dynami
s
xℓ

k+1 = Axℓ
k +Bϕ(µℓ

k, µ
−ℓ
k ) (39)where πℓ = (µℓ

1, µ
ℓ
2, ...) and π−ℓ = (µ−ℓ

1 , µ−ℓ
2 , ...) are the in�nite sequen
es of poli
ies of the �rms ℓand −ℓ, respe
tively.Definition 1 (Sta
kelberg solution). A Sta
kelberg solution is a pair of poli
ies (πℓ∗, π−ℓ∗)∈

Πℓ ×Π−ℓ su
h that
π−ℓ∗ ∈BR−ℓ(π

ℓ∗) , argmax
π−ℓ

{

J(π−ℓ,πℓ)(x
−ℓ
0 )

∣

∣πℓ∗
}and, πℓ∗ ∈ argmaxπℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0)

∣

∣π−ℓ ∈BR−ℓ(π
ℓ)

}

.In the above de�nition of a Sta
kelberg solution, we will refer to �rm ℓ as the leader and �rm −ℓas the follower. Note that the de�nition implies that �rm ℓ (or leader) announ
es �rst its poli
y,while �rm −ℓ (or follower) rea
ts to that poli
y.Definition 2 (Nash solution). A pair of poli
ies (πℓ∗, π−ℓ∗) ∈ Πℓ × Π−ℓ is a Nash solution if
π−ℓ∗ ∈BR−ℓ(π

ℓ∗) and πℓ∗ ∈BRℓ(π
−ℓ∗).
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losed-loop Nash solutions. If, instead, themaximization in the de�nition of the Nash solution is restri
ted to the set of sequen
es of 
ontrolinputs in Cℓ, then the 
orresponding solutions will be referred to as open-loop Nash solutions. Notethat these de�nitions of Nash solutions impli
itly assumes a simultaneous announ
ement of poli
iesfor both �rms.A straightforward impli
ation of the above de�nitions is that any Sta
kelberg solution is also aNash solution.5.2. Open-loop stationary Nash solutionsIn this se
tion, we will restri
t our attention to open-loop Nash solutions that are also stationary,i.e., time-independent. Before 
hara
terizing this family of Nash solutions, de�ne the set of a
tions
Aℓ , {α1, α2, ..., αn}, ℓ∈L, su
h that for ea
h i ∈ {1,2, ..., n}, αi = (αi,1, αi,2, ..., αi,n) where

αi,j ,

{

M j = argmax+
i (h∞),

0 otherwise, j = 1,2, ..., n.In other words, the a
tion αi 
orresponds to investing all available funds to the ith largest non-negative entry of h∞. Note that the set of a
tions de�ne an isomorphi
 set of stationary poli
ies,i.e., for ea
h a
tion αi there is a stationary poli
y (αi, αi, ...). Let us also denote by J(i,j)(x) the
orresponding in�nite horizon value for initial 
ondition x when one �rm applies stationary poli
y
(αi, αi, ...) and the other �rm applies (αj, αj, ...). Any other open-loop stationary poli
y µℓ 
an berepresented as a mixture of a
tions in Aℓ, i.e.,

µℓ =















α1, with probability pℓ
1

. . .

αn, with probability pℓ
n

, ℓ∈L, (40)where pℓ
i ≥ 0, i ∈ I, and ∑

i
pℓ

i = 1. The 
orresponding value of the obje
tive fun
tion (38) for anyopen-loop stationary poli
y is 
hara
terized by the following proposition.Proposition 6 (Payo�s under open-loop poli
ies). When both �rms ℓ∈L apply an open-loop
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y πℓ = (µℓ, µℓ, ...) satisfying (40), the in�nite value of the obje
tive fun
tion J(πℓ,π−ℓ)de�ned by (38), is J(πℓ,π−ℓ) =
∑

i∈I

∑

j∈I J(i,j)p
ℓ
ip

−ℓ
j , where

J(i,j)(x) =

{

vTÃ∞x+ 1
1−β

[−cTαi], i = j

vTÃ∞x+ 1
1−β

[hT
∞αi], i 6= j

, x∈ Sℓ, ℓ∈L. (41)Proof. When the pair of stationary poli
ies (πℓ, π−ℓ) is applied, where πℓ = (µℓ, µℓ, ...) and π−ℓ =

(µ−ℓ, µ−ℓ, ...), the 
orresponding value of the obje
tive fun
tion of �rm ℓ will be:
J(πℓ,π−ℓ)(x) = vTÃ∞x+ lim

N→∞

N−1
∑

k=0

βk
[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]

= vTÃ∞x+
1

1−β

[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]for some initial state x∈ Sℓ. If µℓ = µ−ℓ = αi, then the 
orresponding in�nite value of the obje
tivefun
tion of ℓ, denoted J(i,i), is:

J(i,i)(x) = vTÃ∞x+
1

1−β
[−cTαi].If, instead, µℓ = αi and µ−ℓ = αj , i 6= j, the 
orresponding in�nite value of the obje
tive fun
tion ℓ,denoted J(i,j), is:

J(i,j)(x) = vTÃ∞x+
1

1−β
[hT

∞αi].Then, the 
orresponding expe
ted return of �rm ℓ∈L is:
J(πℓ,π−ℓ)(x) = vTÃ∞x+

∑

i,j∈I

[(h∞ + c)Tϕ(αi, αj)− cTαi]

1−β
pℓ

ip
−ℓ
j

=
∑

i,j∈I

[

vTÃ∞x+
[(h∞ + c)Tϕ(αi, αj)− cTαi]

1−β

]

pℓ
ip

−ℓ
j

=
∑

i,j∈I

J(i,j)p
ℓ
ip

−ℓ
j ,whi
h 
on
ludes the proof. �Thus, we may de�ne an equivalent one-stage symmetri
 game of two players, �nite set of a
tions

Aℓ = {α1, α2, ..., αn} for ea
h player ℓ ∈ L, and payo� matrix of the row player whi
h is given byTable 1.A dire
t 
onsequen
e of Proposition 6 is the following:
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α1 α2 ... αn

α1 J(1,1) J(1,2) ... J(1,n)

α2 J(2,1) J(2,2) ... J(2,n)... ... ... ... ...
αn J(n,1) J(n,2) ... J(n,n)Table 1 Equivalent one-shot symmetri
 game in open-loop stationary poli
ies.Lemma 3. The following hold:1. J(i,j)(x)≥ J(i,i)(x) for all i, j ∈ I with i 6= j;2. J(i,j)(x) = J(i,j′)(x) for all i, j, j′ ∈ I with j 6= i and j′ 6= i;3. J(i,j)(x)≥ J(j,i)(x) for all i, j ∈ I with i > j.Proposition 7 (Sta
kelberg & Nash solutions). Let us 
onsider the optimization problem(38) under the dynami
s (39) and the 
onstraints (1) with M ℓ = M−ℓ, i.e., both �rms have identi
aladvertising power. For any ℓ ∈ L, the pair of open-loop stationary poli
ies π∗ = (πℓ∗, π−ℓ∗) where

πℓ∗ = (µℓ∗, µℓ∗, ...) and µℓ is de�ned by (40) satisfying either(1) pℓ
1 = p−ℓ

2 = 1, or(2) pℓ
1 = p−ℓ

2 =
J(1,2)−J(2,2)

J(1,2)−J(1,1)+J(2,1)−J(2,2)
,de�nes an open-loop Nash solution. Furthermore, when ℓ ∈ L has the opportunity to announ
e itspoli
y �rst, the open-loop stationary poli
y 
orresponding to (1) de�nes an open-loop Sta
kelbergsolution.Proof. The �rst 
laim is a dire
t 
onsequen
e of Lemma 3 and the fa
t that any one of thepoli
ies 
orresponding to the 
ases (1) and (2) de�nes a Nash solution for the equivalent one-shotsymmetri
 game of Table 1.Assume now that ℓ has the opportunity to announ
e its strategy �rst. In order to show that

(πℓ∗, π−ℓ∗) de�nes a Sta
kelberg solution, we need to verify that the leader's poli
y πℓ∗ guaran-tees maximum return over all possible announ
ed poli
ies. It is straightforward to show that anyannoun
ed poli
y that does not allo
ate all available funds to argmax+
1 (h∞) will result to a bestresponse of the follower that de
reases leader's utility. �
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on
lusions of Proposition 7 do not ne
essarily hold when we 
onsider di�erent spendingpowers for the �rms, i.e., when M ℓ 6= M−ℓ. However, extending the 
on
lusions of Proposition 7 tothat 
ase is straightforward.Another straightforward impli
ation of Proposition 7 is summarized in the following 
orollary.Corollary 1. The open-loop stationary Nash solutions 
hara
terized by Proposition 7 are also
losed-loop Nash solutions.This is due to the fa
t that open-loop strategies are a subset of Markovian or state-dependentstrategies. A 
omplete 
hara
terization of the set of 
losed-loop Nash solutions is going beyond thes
ope of this paper, sin
e it is highly 
ase-dependent, i.e., it depends on the 
lass of poli
ies whi
hwill be 
onsidered reasonable for the appli
ation of interest. For example, if we assume that the
lass of strategies over whi
h the optimization is exe
uted are a�ne fun
tions of the state, then anew 
lass of 
losed loop Nash solutions 
an easily be 
omputed using the framework proposed inthis paper.5.3. Max-min solutionsComputing an optimal strategy whi
h is robust to any possible poli
y of the 
ompetitor 
an beformulated as a max-min optimization. Consider two �rms with di�erent expenditure 
apabilities.In parti
ular, 
onsider the following two s
enarios: a) M ℓ > M−ℓ, and b) M ℓ ≤M−ℓ for any ℓ∈L.Then, �rm ℓ∈ {a, b} solves the following max-min optimization:
max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg (xk, µk(xk))

} (42)over the set Π of in�nite sequen
es of poli
ies (µ0, µ1, ...) and subje
t to the system dynami
s
xk+1 = Axk +Bϕ(µk, νk). (43)The set Σ denotes the 
olle
tion of in�nite sequen
es of poli
ies (ν0, ν1, ...) of the 
ompetitor. Inwords, the above optimization re�e
ts the situation at whi
h the �rm wishes to announ
e a strategy
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h will provide the optimal returns assuming that the 
ompetitor a
ts to minimize these returns.To simplify notation, we have removed the supers
ript ℓ from the above optimization variables. Itis straightforward to show that:Proposition 8. Let us 
onsider the optimization problem (42) under the dynami
s (43) and the
onstraints (1). If M ℓ > M−ℓ, i.e., the advertising power of the �rm ℓ is larger than the one of its
ompetitor, then the optimal strategy of the �rm will be a stationary poli
y (µ∗, µ∗, ...) su
h that
µ∗

i =

{

M i = argmax+
1 (h∞)

0 otherwise , i∈ I. (44)Note that this is not ne
essarily the 
ase when the advertising power of the �rm is less thanthe 
ompetitor's. In that 
ase, any strategy will be optimal, sin
e the 
ompetitor has the power to
ountera
t any announ
ed strategy of the �rm.6. Con
lusionsWe dis
ussed the problem of deriving optimal advertising strategies in a network of 
ustomers orgroups of 
ustomers. Contrary to prior work, the dynami
s of preferen
es were also a�e
ted byan underlying network of intera
tions whi
h introdu
es a form of word-of-mouth 
ommuni
ationbetween nodes. The derived optimal poli
ies are related to and extend priorly introdu
ed notionsof 
entrality measures usually 
onsidered in so
iology. Although the assumed model of evolution ofpreferen
es might be the out
ome of an identi�
ation pro
ess, it is likely that we are un
ertain aboutits a

ura
y. To this end, we also 
onsidered a perturbed model whi
h models possible misspe
i�
a-tions or un
ertainties of the nominal model, and we derived robust optimal strategies. It was shownthat the monopoly model exhibits a 
ertainty equivalen
e property, i.e., the optimal strategies forthe perturbed model 
oin
ide with the optimal strategies for the unperturbed or riskless model.Finally, we investigated robust poli
ies in a duopoly framework. In parti
ular, we 
hara
terized theset of open-loop Nash solutions. The model 
an easily be utilized to a

ommodate s
enarios atwhi
h more 
ompli
ated forms of strategies are of interest, leading to new forms of 
losed-loop Nashsolutions. We also 
hara
terized the set of max-min solutions in a duopoly framework, when �rmsmakes no assumptions about the utilities of the 
ompetitor.
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