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Submitted to Operations Researhmanusript (Please, provide the mansuript number!)Control of Preferenes in Soial NetworksGeorgios C. ChasparisDepartment of Automati Control, Lund University, Box 118, Lund 221 00-SE, Sweden, georgios.hasparis�ontrol.lth.seJe� S. ShammaShool of Eletrial and Computer Engineering, Georgia Institute of Tehnology, Atlanta, GA 30332, shamma�gateh.eduWe onsider the problem of deriving optimal marketing poliies for the spread of innovations in a soialnetwork. We seek to ompute poliies that aount for i) endogenous network in�uenes, ii) the preseneof ompetitive �rms, that also wish to in�uene the network, and iii) possible unertainties in the networkmodel. Contrary to prior work in optimal advertising, whih also aounts for network in�uenes, we assumea dynamial model of preferenes and we ompute optimal poliies for either a �nite or in�nite horizon.The optimal poliies are related to and extend priorly introdued notions of entrality measures usuallyonsidered in soiology. We also ompute robust optimal poliies for the ase of misspei�ed dynamis orunertainties whih an be modeled as external disturbanes of the nominal dynamis. We show that theoptimization exhibits a ertainty equivalene property, i.e., the optimal values of the ontrol variables arethe same as if there were no unertainty. Finally, we investigate the senario where a ompetitive �rm alsotries to in�uene the network. In this ase, robust optimal solutions are omputed in the form of i) Nashand Stakelberg solutions, and ii) max-min solutions.Key words : Dynami programming/optimal ontrol: Appliations, Marketing: Advertising and media,Games/group deisions: Di�erential, Networks/graphs: AppliationsHistory : This paper was �rst submitted on June 28th, 2012.
1. IntrodutionThis paper is onerned with the derivation of optimal marketing strategies in a soial network ofustomers whose preferenes are a�eted by both their neighbors' preferenes and the inentivesprovided through advertising. Similar questions appear in di�erent formulations, for example, theadoption of dominant strategies in a network of strategi players Ellison (1993), Young (2001),Jakson and Watts (2002), the onvergene of beliefs in a soial network Golub and Jakson (2007)or the in�uene of word-of-mouth ommuniation in the adoption of new produts Alkemade andCastaldi (2005), Dubey et al. (2006). In all these formulations, the question remains the same,1



Chasparis and Shamma: Control of Preferenes in Soial Networks2 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)that is: what is the group of agents that we should target so that the maximum asade of furtherin�uenes results?This work is losely related to the literature on optimal advertising starting with Vidale and Wolfe(1957) in a monopoly framework and it has been extended to di�erential games in oligopolies, adetailed survey of whih an be found in Jørgensen and Zaour (2004). The main objetive of thisline of work, as very well stated in Sethi (1977), is to set up an optimal ontrol problem to determinethe optimal rate of advertising expenditures over time in a way that maximizes the net pro�t of the�rm. To this end, prior work has foused on i) the derivation of dynami models whih apturethe sales response to advertising, and ii) the omputation of an optimal poliy of advertising as afuntion of the sales.Those models whih apture the e�et of advertising on sales are usually desribed by means ofa di�erential or di�erene equation whih desribes the evolution of the state (sales rate or marketshare) as a funtion of the state and the advertising expenditures. We will assume that �rms havesome way of knowing or estimating the dynamis of sales response to advertising. The estimationof these dynamis will not be part of this work. Moreover, several sales-to-advertising models arealso a funtion of other properties, suh as prie or quality, whih will not be onsidered here.Prior sales-to-advertising models usually apture the following phenomena: i) advertising e�etspersist over the urrent period but diminish with time Vidale and Wolfe (1957), ii) marginal adver-tising e�ets diminish or remain onstant with the size of advertising Leitmann and Shmitendorf(1978), iii) advertising e�ets diminish with the size of sales Vidale and Wolfe (1957), Case (1979),Deal (1979), iv) advertising e�ets diminish with the size of ompetitive advertising Deal and Zionts(1973), Case (1979), Erikson (1985, 1992), Chintagunta and Vilassim (1992), Fruhter and Kalish(1997), and v) advertising e�ets are a�eted by word-of-mouth ommuniation (or exess advertis-ing) Jørgensen (1982).Depending on the formulation of sales response to advertising, models have also been ategorizedin: i) sales response models (where the state is the rate of sales) Vidale and Wolfe (1957), ii) marketshare models (where the state is the share of the market) Case (1979), iii) di�usion models (whih



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 3apture the market growth) Bass (1969), and iv) goodwill models (whih apture the evolution ofadvertising apital) Nerlove and Arrow (1962).Our model is also related to those models. It exhibits diminishing returns with time in the abseneof advertising e�ort, onstant marginal returns with the size of advertising, and diminishing returnswith the size of ompetitive advertising. It extends traditional advertising models by also onsideringthe e�et of word-of-mouth ommuniation through a network of interations similarly to Alke-made and Castaldi (2005), Dubey et al. (2006). However, the analysis here is not restrited to theequilibrium state of the evolution of preferenes. Instead, the dynamis of network e�ets beomepart of the optimization. Using this model, we are able to derive analytially optimal advertisingstrategies whih are related to and extend priorly introdued notions of entrality measures usuallyonsidered in soiology Bonaih (1987).Due to the inlusion of network interations in the derivation of the optimal marketing strategy,this work is also related to the di�usion of innovations and asading phenomena in soial networksDomingos and Rihardson (2001), Rihardson and Domingos (2002), Goldenberg et al. (2001),Kempe et al. (2003). In suh models, eah ustomer may purhase the marketed produt witha probability that depends on the neighbors' probabilities of purhasing the produt. Then, theoptimal marketing plan an be derived based on the expeted inrease in pro�t that this marketingplan inurs. Of ourse, the omputation of suh optimal marketing plan will depend on the amountof in�uene eah ustomer has on its neighbors, a notion that is usually termed as the network valueof a ustomer Rihardson and Domingos (2002). Several other models of interations have beenproposed inluding the linear threshold model motivated by Shelling (1978), Granovetter (1978),where nodes beome ativated if the number of ativated neighbors exeeds a threshold. Anothermodel of interations is the independent asade model of Goldenberg et al. (2001), where, one anode is ativated, it is given the hane to ativate its neighbors, while its suess depends on aprobability distribution whih is independent for eah node. One harateristi of these models isthe omputational omplexity of omputing the set of nodes that, if targeted, will inur the largestpossible in�uene in the network of ustomers. Furthermore, it is assumed that there is a unique



Chasparis and Shamma: Control of Preferenes in Soial Networks4 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)seller who is trying to in�uene the network, ignoring this way the potential e�et that a ompetitiveseller may have on its sales.Due to the omplexity resulting from the inlusion of network interations, the omputation ofthe optimal poliy of a �rm might be hallenging. For example, Kempe et al. (2003) deals with thealgorithmi question posed by Domingos and Rihardson (2001) on how we should selet the setof nodes that will ause the largest possible in�uene in the population. In fat, an approximationalgorithm is proposed, based on the submodularity property of the in�uene funtion and in theontext of the linear threshold model of Shelling (1978), Granovetter (1978) and the independentasade model of Goldenberg et al. (2001), that omputes the optimal set of nodes with a perfor-mane guarantee of 63%. A similar algorithmi approximation is derived by Bharathi et al. (2007)for the omputation of best responses in the presene of multiple �rms (innovations) under theframework of Goldenberg et al. (2001).For the study of ompetition when multiple �rms are present, a game theoreti model is proposedby Goyal and Kearns (2011). Aording to this model, two �rms are ompeting for the di�usionof innovations in a given network, where di�usion follows a form of threshold dynamis similar toGranovetter (1978). Goyal and Kearns (2011) is dealing with the omputation of upper boundsof the prie of anarhy, and how network struture may amplify the initial budget di�erenes. Asimilar network di�usion model has also been onsidered by Fazeli and Jadbabaie (2012), wherenodes update their preferenes upon arrival of a Poisson lok and aording to the payo�s reeivedby playing a oordination game with their neighbors. Furthermore, Nash equilibria are omputedfor the strategi interation between the two �rms assuming the smallest possible adoption for eahstrategy.This paper is also onerned with the omputation of optimal marketing poliies in the preseneof word-of-mouth ommuniation (due to the network struture) and multiple �rms. Its ontribu-tion, whih distinguishes it from prior literature, lies in the ombination of three important fatorsi) dynami network e�ets in the formation of preferenes whih are inluded in the optimization,



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 5ii) misspei�ations/unertainties in the assumed model of evolution of preferenes, and iii) uner-tainty in the intentions of a ompetitive �rm that also tries to in�uene the network. Althoughnetwork in�uenes in the formation of preferenes are present in several models, the optimization isusually performed at steady-state, e.g., Goyal and Kearns (2011) or Fazeli and Jadbabaie (2012).Here, instead the dynamis of preferenes beome part of the optimization. Furthermore, althoughunertainties due to the presene of a ompetitive �rm might be taken into aount in several mod-els, we would like to also ompute optimal marketing poliies under the presene of unertaintiesin the network struture. Usually stohasti extensions of existing models have been onsidered,e.g., Sethi (1983), Prasad and Sethi (2004). In this paper, we would like to onsider unertaintiesthat an inorporate possible unmodeled dynamis. Under these perturbed dynamis, we formulatea max-min optimization to ompute an optimal poliy whih is robust to a lass of norm-boundedunertainties. We show that the optimization exhibits a ertainty equivalene property, that is, theoptimal values of the ontrol variables are the same as if there were no unertainty.Finally, we investigate the possibility that a ompetitive �rm also tries to in�uene the network,introduing a seond form of unertainty. In this ase, and when the objetive of the ompetitive�rm is to maximize its sales, the strategy of the ompetitive �rm may not be known. We willeither assume that i) the ompetitive �rm is a ompetitive fridge whih tries to enter the market,introduing a notion of sequential optimization (expressed by a Stakelberg solution), or ii) both�rms have the ability of simultaneous play (expressed by a Nash solution). Under these senarios, weprovide a omplete haraterization of open-loop Nash and Stakelberg solutions. These solutions arealso a subset of losed-loop (or Markovian) Nash solutions. A omplete haraterization of the set oflosed-loop Nash solutions is going beyond the sope of this paper, sine it is highly ase-dependent,i.e., it depends on the lass of poliies whih will be onsidered reasonable for the senario of interest.However, the proposed framework an easily be utilized to provide losed-loop Nash solutions for aspei�ed lass of poliies. Finally, we investigate the senario where �rms are also unertain aboutthe objetives of the ompetitor, whih an be formulated as a max-min optimization.



Chasparis and Shamma: Control of Preferenes in Soial Networks6 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)The remainder of the paper is organized as follows. Setion 2 desribes the problem under onsid-eration. Setion 3 disusses some neessary bakground on dynami programming. Setion 4 derives�nite- and in�nite-horizon optimal poliies in a monopoly under unperturbed and perturbed prefer-enes' update. Setion 5 omputes Stakelberg and Nash solutions in a duopoly. Finally, Setion 6presents onluding remarks.Notation: For any vetor x∈R
n, where xi is its ith entry,

− |x| denotes its Eulidean norm,
− |x|∞ , max{|x1|, ..., |xn|},
− max+

1 (x) , max{0, x1, x2, ..., xn},

− max+
i (x) , max

{

{0, x1, x2, ..., xn}\
⋃i−1

k=1 max+
k (x)

}

, i > 1,
− for some α > 0, sat (x;α) , (y1, y2, ..., yn) suh that

yi =















α xi ≥α

xi 0 < xi < α

0 xi ≤ 0

, i = 1,2, ..., n.2. Problem Desription2.1. Evolution of preferenesThe problem onsiders a pair of �rms L = {a, b} and a �nite set of ustomers or nodes I =

{1,2, ..., n}.1 We will denote a �rm by ℓ ∈ L and a ustomer by i ∈ I. Although we assume thatnodes represent ustomers, we may also onsider the ase where a node i ∈ I represents a groupof ustomers with similar harateristis. Nodes are onneted through a direted network whoselinks are desribed by a row stohasti matrix W .2 The matrix W aptures how nodes' prolivitiestowards the produt of either �rm a or �rm b are a�eted by its neighbors.Let xℓ
i,k ≥ 0 be the prolivity of node i towards buying the produt of �rm ℓ ∈ {a, b} at time k,and xℓ

k , (xℓ
1,k, x

ℓ
2,k, ..., x

ℓ
n,k) ∈R

n
+ be the vetor of prolivities over the whole network. We will referto this vetor as the state of �rm ℓ and we will denote by Sℓ ⊂R

n
+ the orresponding set of states.Firm ℓ ∈ L is able to in�uene the prolivity of node i ∈ I towards its produt by marketing itsprodut to node i, e.g., by o�ering disounts or warranties. Let uℓ
i,k ≥ 0 denote the amount of funds
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k , (uℓ

1,k, u
ℓ
2,k, ..., u

ℓ
n,k) ∈ R

n
+be the vetor of funds �rm ℓ spends over the set of nodes I. We will refer to this quantity as theontrol of �rm ℓ. We will assume that the amount of funds eah �rm an spend at any given timeannot be larger than M ℓ, i.e.,

∑

i∈I

uℓ
i,k ≤M ℓ for all k = 0,1, .... (1)Let Cℓ ⊂R

n
+ denote the resulting onstraint set of ontrols.The spei� relation between the ontrols and the states is motivated by the work of Dubeyet al. (2006), Friedkin (2001) on soial in�uene network theory and it is desribed by the followingdi�erene equation:

xℓ
k+1 = ΘWxℓ

k +(I −Θ)ϕ(uℓ
k, u

−ℓ
k ) (2)whih provides the prolivity of node i at time k+1 as a onvex ombination of i) a weighted averageof the prolivities of the neighbors and ii) the external in�uene aused by both own and ompetitiveadvertising. The notation −ℓ denotes the omplementary set L\ℓ. The matrix Θ satis�es:

Θ = diag{θ1, θ2, ..., θn}, 0≤ θi < 1, ∀i∈ I. (3)The onstraint (3) has a natural interpretation sine it implies that there is no node that om-pletely ignores external in�uene. Furthermore, in the absene of external in�uene, it also modelsdiminishing returns with time. We will simplify notation by rewriting the dynamis in the form:
xℓ

k+1 = Axℓ
k +Bϕ(uℓ

k, u
−ℓ
k ), (4)where A , ΘW and B , I −Θ. Variations of this nominal model will also be onsidered later on inthis paper when �rms are unertain about the auray of the model.The funtion ϕ : Cℓ ×C−ℓ → [0, α1]× ...× [0, αn], for some αi > 0, i ∈ I, maps the ontrol vetorsof both �rms to a vetor of in�uenes over the set of nodes I. It is assumed to be nonnegative andbounded above. We will refer to this funtion as the in�uene funtion. We would like funtion ϕto also satisfy:



Chasparis and Shamma: Control of Preferenes in Soial Networks8 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)Assumption 1. The in�uene funtion ϕ : Cℓ ×C−ℓ → [0, α1]× ...× [0, αn], for some αi > 0, i ∈ I,is suh that:1. ϕi(u
ℓ
k, u

−ℓ
k )≥ 0, if uℓ

i,k ≥ u−ℓ
i,k;2. ϕi(u

ℓ
k, u

−ℓ
k ) = 0, if uℓ

i,k < u−ℓ
i,k.That is, a ustomer would be in�uened towards either one of the �rms depending on the relativesize of their advertising. One andidate funtion whih satis�es the above property is:

ϕi(u
ℓ
k, u

−ℓ
k ) , sat(uℓ

i,k −u−ℓ
i,k;αi) (5)for some αi > 0, i = 1,2, ..., n.We will refer to the above model as duopoly. When, instead, u−ℓ

i,k ≡ 0 for all i∈ I and k = 0,1, ...,we will refer to this model as monopoly.The proposed update of preferenes exhibits onstant marginal returns with the size of own adver-tising and diminishing returns with the size of ompetitive advertising, whih is due to the de�nitionof the in�uene funtion. It also exhibits diminishing returns with time, due to the de�nition of thematrix Θ. Finally, it models the e�et of word-of-mouth (or exess) advertising due to the assumednetwork of onnetions.2.2. ObjetiveThe utility of �rm ℓ∈L at time k is de�ned as:
g(xℓ

k, u
ℓ
k) = V (xℓ

k)−C(uℓ
k) (6)where we assume that the reward is linear with the prolivities of the nodes, i.e., V (xℓ

k) = vTxℓ
k, forsome vetor v ∈ R

n
+, and the ost is linear with the funds spent on advertising, i.e., C(uℓ

k) = cTuℓ
k,for some c∈R

n
+.For some disount fator β ∈ (0,1), the objetive of �rm ℓ has the following form

max
πℓ∈Πℓ

{

Jπℓ(x) , lim
N→∞

N−1
∑

k=0

βkg(xℓ
k, µ

ℓ
k(x

ℓ
k))

} (7)
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0, µ

ℓ
1, ...) where µℓ

k is a funtionfrom the set of states S to the set of ontrols C. The above optimization is subjet to the dynamis(4). Later on, we are also going to onsider variations of this optimization, espeially when dynamis(4) are perturbed and robust optimal poliies need to be derived.For the remainder of the paper, the proposed advertising model haraterized by the dynamis(4) and the utility funtion (6) will be denoted by M.2.3. Assumptions and preliminariesFor the remainder of the paper, we are going to onsider the following assumptions:Assumption 2. βvTB − cT > 0.That is, βvi(1 − θi) − ci > 0, i = 1,2, ..., n, i.e., for every unit of advertising e�ort, the disountedreturn of eah node is stritly greater than the orresponding ost. This is a reasonable assumptionand it is also related to the existene of a non-degenerate solution to the optimization problemsonsidered herein.Assumption 3. αℓ
i ≥M ℓ

i for all i∈ I and ℓ∈L.This assumption implies that eah node's apaity of getting in�uened through advertising is largerthan the advertising power of eah �rm. This is not a neessary assumption for the existene ofsolutions, however, it simpli�es the following analysis. The derivation of the orresponding solutionsin ase Assumption 3 does not hold is also straightforward and qualitatively remains idential.In the presentation of the model, we have impliitly assumed that the evolution of preferenes isgoverned by idential dynamis for both �rms. This assumption allows for a leaner presentation ofthe analysis, however, as it will beome obvious later, it does not hange qualitatively the solutions.We also assume that the utility funtions of both �rms are of the same form. This implies thatbene�ts and osts are materialized as a funtion of the prolivities and investments similarly forboth �rms. This is a reasonable assumption, however, the following analysis an be easily modi�edto inlude the ase of di�erent utility funtions.



Chasparis and Shamma: Control of Preferenes in Soial Networks10 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)Note, �nally, that the proposed dynamis (4) onstitute a linear time-invariant system withbounded inputs. It is straightforward to show that the above system is input-output stable in thesense that there exist nonnegative onstants ζ, θ suh that the solution to the di�erene equation,denoted x(k,x0, u), satis�es |x(k,x0, u)| ≤ ζ + θ‖u‖∞, where ‖u‖∞ , sup{|uk| : k ∈ Z+}. This is dueto the fat that W is a row stohasti matrix and Θ satis�es the onstraint (3). The onstraint(3) on matrix Θ also implies the ontrollability (f., Kailath (1980)) of the system (A,B), simplybeause rank(B) = rank(I −Θ) = n.2.4. Alternative models and disussionThe dynamis (4) are based on the assumption that agents are bounded rational, sine their prefer-enes are a weighted average of neighbors' preferenes. Full rationality instead may not neessarilylead to better models due to the resulting omputational omplexity. A similar model in the on-text of evolution of preferenes without external in�uene has also been onsidered by Friedkinand Johnsen (1999), Golub and Jakson (2007) to study the di�usion of innovations and norms ina soial network. This model has also been related to alternative measures of entrality Bonaih(1987), Friedkin (1991).In this paper, we modi�ed the model used by Friedkin and Johnsen (1999), Golub and Jakson(2007) to inlude the possibility of an external ontrol in�uene (4), e.g., due to advertising e�ets.The proposed model bears similarities with several previously introdued advertising models, e.g.,the goodwill models of Nerlove and Arrow (1962), new produt di�usion models Bass (1969) orextensions of the Vidale-Wolfe model Vidale and Wolfe (1957). In the following subsetions wedisuss some of the similarities and di�erenes between these models with the proposed M.2.4.1. Comparison with goodwill models Advertising goodwill models (see, e.g., (Jørgensenand Zaour 2004, Setion 3.5)) apture the evolution of the advertising apital. For example, theadvertising goodwill model introdued in the seminal paper Nerlove and Arrow (1962) assumes thefollowing dynamis
Ġ(t) = u(t)− δG(t), (8a)



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 11where G(t) represents the advertising apital. The main di�erene with the proposed model M isthat the latter inludes diretly the interpersonal in�uenes through the assumed ommuniationnetwork, thus modeling a form of word-of-mouth ommuniation. Note also that the ontrol inputor advertising e�ort u in�uenes diretly the advertising apital. Similar is the assumption in M,where the advertising e�ort diretly in�uenes the preferenes of all nodes. This is not neessarilythe ase in other advertising models, where the advertising e�ort only applies to the undeided partof the population.The dynamis (8a) an also be modi�ed to inlude the possibility of multiple �rms, e.g., themodels in Fershtman (1984), Chintagunta (1993). For example, the model onsidered in Chintagunta(1993) assumes
Ġi(t) =

√

ui(t)− δGi(t), Gi(0) = Gi0 > 0, i∈ {1,2}, (8b)and the sales rate xi (similarly to the proposed vetor of prolivities) depends on the advertisingapital of both �rms, i.e., xi = xi(G1,G2), where ∂xi/∂Gi > 0 and ∂xi/∂Gj < 0 for i 6= j.Note that the square root of the ontrol input in (8b), whih has also been used in other advertisingmodels (see, e.g., Case (1979)), aptures diminishing marginal returns with the size of advertisinge�ort. Alternatively, diminishing marginal returns an also be modeled indiretly by onsidering asquared ost in the utility funtion. For example, in Deal (1979) the term u2
i is onsidered instead inthe ost funtion, or in Gould (1970) more general non-linear funtions of ui are onsidered whihare onvex inreasing. In M, instead, diminishing/onstant marginal returns with the advertisinge�ort are modeled indiretly by assuming the saturation e�et in the in�uene funtion.A squared ost term in the utility funtion ould also have been inluded in the proposed model

M. For example, an alternative utility funtion that inorporates diminishing marginal returns withthe size of advertising ould be:
g(xℓ

k, u
ℓ
k) = vTxℓ

k −
(

uℓ
k

)T
Cuℓ

k (9)where C , diag(c), i.e., C is a diagonal matrix where the diagonal entries oinide with the entries of



Chasparis and Shamma: Control of Preferenes in Soial Networks12 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)the vetor c. Some of the nie analytial properties of M are also shared by the above quadrati ostfuntion (9), suh as the forthoming analytial solution of the monopoly optimization problem.2.4.2. Comparison with market-share response models The goodwill advertising modelsand the proposed model M di�er from market-share response models emanating from the model ofVidale-Wolfe, Vidale and Wolfe (1957). An extension of this model to a duopoly has been onsideredby Deal and Zionts (1973):
ẋi = (1−xi −xj)ui − δixi, xi(0) = xi0, (10a)for all i, j ∈ {1,2}, i 6= j, and for some onstants {δi}. A small modi�ation Deal et al. (1979) analso aount for exess advertising e�ets due to word-of-mouth in�uenes in the population, e.g.,

ẋi = (1−xi −xj)ui − δixi + ei(ui −uj)(xi +xj), xi(0) = xi0, (10b)for all i, j ∈ {1,2}, i 6= j, and for onstants {ei}, where the last term represents the word-of-mouthswithing from j to i.Contrary to both M and the goodwill advertising models, where the advertising e�ort appliesdiretly to the whole population, in the market-share response generalizations of Vidale-Wolfe'smodel Vidale and Wolfe (1957), the ontrol applies only to the undeided part of the population.The last term of the dynamis (10b), whih models exess advertising, applies to the deided part ofthe market and models transfers due to exess of advertising. This term also resembles the in�uenefuntion ϕ onsidered in M, where the in�uene on a node depends only on the exess part of theadvertising e�orts at that node.Note, however, that a small modi�ation of M an aount for behaviors that are present in themarket-share models Vidale and Wolfe (1957). For example, if we instead onsider the in�uenefuntion:
ϕi(u

ℓ
k, u

−ℓ
k ) , diag

(

αℓ
1−x−ℓ

k

)

uℓ − diag
(

αℓ
1−xℓ

k

)

u−ℓ, (11)then the advertising e�orts of either �rm applies only on the part of the market whih is either



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 13undeided or has di�erent preferenes. When we assume the alternative dynamis with the in�u-ene funtion (11), then an analytial derivation of a losed-form solution, even for the monopolyframework, is not feasible any more. In the forthoming analysis, we will only onsider the initiallyproposed in�uene funtion whih provides losed-form solutions, however future work may inludealternative forms of the in�uene funtion that may aept only numerial solutions.Similar remarks also hold for the models emanating from the Lanhaster model of ombat, suhas the models of Kimball (1957), Erikson (1985, 1992), Chintagunta and Vilassim (1992), Fruhterand Kalish (1997). The main di�erene of Lanhester models with the Vidale-Wolfe models is thatin the latter ones the e�et of ompetitive advertising onto the market share is indiretly inluded(through the undeided portion of the market). Instead, in the Lanhester models, the e�et ofompetitive advertising is diretly inluded in the dynamis of market share.This disussion reveals the �exibility of the proposed model M to inorporate alternative behaviorsor modeling ideas whih have already been disussed in prior literature. In several ases though, it isdesirable that a sales-to-advertising model also provides losed-form solutions. The proposed model
M and its extensions herein exhibit most of the observed phenomena of sales-to-advertising modelsand, as we will disuss later, it provides attrative losed-form expressions of optimal strategiesunder several senarios.3. Dynami Programming BakgroundThe notation and part of the analysis in this setion follows Bertsekas and Shreve (1978).3.1. The dynami programming algorithmDenote by J the set of all extended real-valued funtions of the form J : S → R

∗, de�ned on thestate spae S and taking values on the extended real line R
∗ = [−∞,+∞].For some time horizon N ∈N, onsider the generi �nite-horizon optimization problem:

max
π∈Π

{

JN,π(x0) , E

{

g(xN) +
N−1
∑

k=0

βkg(xk, µk,wk)

}} (12)



Chasparis and Shamma: Control of Preferenes in Soial Networks14 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)over any admissible poliy π = {µ0, µ1, ..., µN−1} ∈ Π, where µk ∈M for all k, and M is the set offuntions from the set of states S to the set of ontrols C. Furthermore, g(xN) de�nes the ost atthe �nal stage, whih depends only on the �nal state xN .The above optimization is subjet to the system dynamis xk+1 = f(xk, uk,wk), where {wk}denotes a noise sequene taking values in a measurable spae (W,F). Denote J∗
N(x) the optimalvalue of the N -stage objetive funtion. Finally, assume that |g(x,u,w)| < ∞, for all x ∈ S, u ∈ C,and w ∈W.For any funtion J ∈ J , de�ne the following funtion

(TJ)(x) , max
u∈C(x)

E{g(x,u,w) +βJ(f(x,u,w))}, x∈ S.Note that (TJ)(·) is the optimal value funtion for the one stage problem that has stage ost g andterminal ost βJ .Also, we will denote by T k the omposition of the mapping T with itself k times; i.e., for all
k = 1,2, ..., we write

(T kJ)(x) = (T (T k−1J))(x), x∈ S.For onveniene, we also write (T 0J)(x) = J(x).Similarly, for any funtion J ∈ J and any poliy µ : S →C, we denote:
(TµJ)(x) , E{g(x,µ(x),w) +βJ(f(x,µ(x),w))}. (13)Again, TµJ may be viewed as the ost funtion assoiated with the poliy µ for the one-stageproblem that has stage ost g and terminal ost βJ .The dynami programming algorithm (DP) is the following algorithm; for any k = 1, ...,Nompute

Jk(x) = (TJk−1)(x), (14)with initial ondition J0(x) = g(x). The last step of the DP algorithm provides the N -stage value,
JN(x), x∈ S.
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H(x,u,J) , E {g(x,u,w) +βJ(f(x,u,w))} . (15)Assumption 4. The above sequene {Jk} ⊂J is a non-dereasing sequene satisfying H(x,u,J1) <

∞, and
lim

k→∞
H(x,u,Jk) = H(x,u, lim

k→∞
Jk),for all x∈ S and u∈ C.The above assumption exludes problems where exhangeability of expetation with the limit isnot possible. This assumption is satis�ed when we onsider a monotonously inreasing sequeneof funtions {Jk} in J and also the funtions Jk are measurable with respet to the probabilitymeasure under onsideration. This will be due to the Lebesgue's Inreasing Convergene Theorem(f., Jones (1993)).Proposition 1 (Optimality of DP). Let Assumption 4 hold, and assume that Jk,π(x) < ∞ forall x∈ S, π ∈Π, and k = 1,2, ...,N . Then, J∗

N = T N(J0).Proof. See Proposition 3.1 in Bertsekas and Shreve (1978). �3.2. In�nite horizon problemsConsider now the in�nite horizon optimization problem:
max
π∈Π

{

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

βkg(xk, µk(xk),wk)

}}

, (16)over any admissible in�nite poliy π = {µ0, µ1, ...} and subjet to the system dynamis xk+1 =

f(x,u,w). Let also de�ne the optimal value of this problem as J∗(x) , supπ∈Π Jπ(x).The following is a ondition on the optimal stationary poliy.Proposition 2 (Optimal stationary poliy). Consider the in�nite horizon optimization prob-lem of (16) and assume that J0(x)≤H(x,u,J0) for all x ∈ S and u ∈ C where J0(x) = g(x). Then,the optimal value of the in�nite horizon optimization problem is J∗(x) = limN→∞ JN(x), where JN(x)



Chasparis and Shamma: Control of Preferenes in Soial Networks16 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)is the N -th stage value of the dynami programming algorithm. Let also Assumption 4 hold. Then,a stationary poliy π∗ = (µ∗, µ∗, ...) ∈Π is optimal if and only if
Tµ∗(Jπ∗) = T (Jπ∗). (17)Proof. See Proposition 5.5 in Bertsekas and Shreve (1978). �4. Optimal Poliy in MonopolyIn this setion, we ompute the optimal poliy of a �rm when there is no ompetitive �rm, and alsothe dynamis are either a) unperturbed, or b) perturbed. Sine we onsider a single �rm, we willskip the supersript ℓ for the remainder of this setion.4.1. Unperturbed dynamisThe dynamis we onsider in this setion are desribed by (4) with u−ℓ

k ≡ 0, i.e.,
xk+1 = Axk +Bϕ(uk) , f(xk, uk). (18)In the remainder of this setion, we ompute the optimal poliy for the 1) �nite-horizon, and 2)in�nite-horizon optimization problem.First, de�ne: Ãk ,

∑k

j=0 βjAj and hT
k+1 , βvTÃkB − cT, for k = 0,1, .... Note that Ã0 = I and

hT
1 = βvTB − cT.Before omputing the solutions to the �nite- and in�nite-horizon optimization problems, notethat:Claim 1. vTÃk+1 ≥ vTÃk for all k = 0,1, ....Proof. First note that

vTÃk+1 = vT

k+1
∑

j=0

βjAj

= vT

k
∑

j=0

βjAj + vTβk+1Ak+1 ≥ vTÃk.where the last inequality results from the fat that all the entries of matrix A are nonnegative. �
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max
π∈Π

{

Jπ(x0) , g(xN) +
N−1
∑

k=0

βkg(xk, µk(xk))

}

. (19)where g(x) , vTx de�nes the utility at the last stage.Proposition 3 (N-th stage optimal poliy). Consider the �nite horizon optimization problem(19) under the dynamis (18). The N th stage optimal value of the dynami programming iteration,is
J∗

N(x) = vTÃNx+
N−1
∑

k=0

βkhT
N−ku

∗
N−k. (20)The optimal ontrol at time k, for k = 0,1, ...,N − 1, is u∗

N−k = (u∗
1,N−k, ..., u

∗
n,N−k), where

u∗
i,N−k =

{

M i = argmax+
1 (hN−k)

0 otherwise. (21)Proof. We are going to show the statement by indution. Aording to the dynami programmingalgorithm, the k-th stage optimal value is
Jk(x) = max

uk∈C(x)
{g(x,uk) +βJk−1(f(x,uk))}where J0(x) = g(x) = vTx. By applying the operator T to J0, we get the optimal value for the �rststage, whih is

J1(x) = max
u1∈C(x)

{g(x,u1) +βJ0(f(x,u1))}

= max
u1∈C(x)

{

(vT +βvTA)x+(βvTB − cT)u1

}

= vTÃ1x+hT
1 u∗

1.where the optimal stage ontrol is u∗
1 = (u∗

1,1, ..., u
∗
n,1) suh that

u∗
i,1 =

{

M i = argmax+
1 (h1)

0 otherwise. (22)Note that the value J1(·) is given by expression (20) if we set N = 1 and the optimal stage ontrol
u∗

1 is given by expression (21) if we set N = 1 and k = 0.
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JN(x) = vTÃNx+

N−1
∑

k=0

βkhT
N−ku

∗
N−k (23)where u∗

N−k = (u∗
1,N−k, ..., u

∗
n,N−k) is suh that

u∗
i,N−k =

{

M i = argmax+
1 (hN−k)

0 otherwise,for k = 0,1, ...,N − 1.Consider now an (N +1)-step optimization horizon. The value at (N +1) is:
JN+1(x) = (TJN)(x)

= max
uN+1∈C

{g(x,uN+1) +βJN(f(x,uN+1))}

= vT
(

I +βÃNA
)

x+ max
uN+1∈C

hT
N+1uN+1 +β

N−1
∑

k=0

βkhT
N−ku

∗
N−k

= vT
(

I +βÃNA
)

x+hT
N+1u

∗
N+1 +β

N−1
∑

k=0

βkhT
N−ku

∗
N−k

= vTÃk+1x+
k+1
∑

i=1

βi
(

βvTBÃk−i+1 − cT
)

u∗
k−i+1 (24)where u∗

N+1 = (u∗
1,N+1, ..., u

∗
n,N+1) is suh that

u∗
i,N+1 =

{

M i = argmax+
1 (hN+1)

0 otherwise, (25)for i = 1,2, ..., n. Thus, we showed that the values of the dynami programming iteration are providedby equation (20).Finally, to show optimality of the dynami programming iteration, subtrat equations (23) from(24) to get:
JN+1(x)− JN(x) = vT

(

ÃN+1 − ÃN

)

x+
N−1
∑

k=0

βk
(

hT
N+1−ku

∗
N+1−k −hT

N−ku
∗
N−k

)

+βNhT
1 u∗

1.By Claim 1, we have that vT
(

ÃN+1 − ÃN

)

x≥ 0 for all x ∈ S. By Assumption 2 and (25), we alsohave
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hT

N+1u
∗
N+1 ≥ hT

Nu∗
N ≥ ...≥ hT

1 u∗
1 > 0.Therefore, JN+1(x)≥ JN(x) for all x∈ S and Assumption 4 is satis�ed. Then, by Proposition 1,the dynami programming iteration provides the optimal value of the �nite-horizon optimization(19). �The optimal marketing strategy given by (21) is a onsequene of Assumption 3. As alreadypointed out, the orresponding optimal strategy when Assumption 3 does not hold qualitativelyremains idential. In partiular, it is straightforward to hek that, in this ase, the optimal ontrolat time k will suggest that we should split the marketing resoures among the largest entries of hk,i.e., the maximum entry reeives the largest share, the seond maximum entry reeives the largestshare out of the remaining resoures and so forth.4.1.2. In�nite-horizon optimization We would like to solve the following optimization prob-lem:

max
π∈Π

{

Jπ(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

} (26)subjet to the disrete-time dynamis (18). First reall the de�nition of H(x,u,J) from (15). Givenalso that J0(x) = vTx, it is straightforward to show, under Assumption 2, that:Claim 2. J0(x)≤H(x,u,J0), for all x∈ S and u∈ C(x).Note also that:Lemma 1. The matrix (I −βA) is non-singular for any β ∈ (0,1).Proof. Note that, by onstrution, (I−βA) is stritly diagonally dominant,3 sine the magnitudeof its i-th diagonal entry 1−βθiwii satis�es
1−βθiwii = 1−βθi(1−

∑

j 6=i

wij)

= 1−βθi +β
∑

j 6=i

θiwij > β
∑

j 6=i

θiwij ,i.e., it is stritly larger than the sum of magnitudes of all non-diagonal entries of the ith row. ByLevy-Desplanques theorem (f., Horn and Johnson (1985)) the matrix (I−βA) is non-singular. �
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n×n suh that (I −βA) is non-singular. Then

Ãk =
k

∑

j=0

βjAj = (I −βA)−1(I −βk+1Ak+1), (27)
k = 0,1, .... Furthermore, if limk→∞ Ak exists, then Ã∞ ,

∑∞

j=0 βjAj = (I −βA)−1.Proof. To show the �rst statement, simply multiply from the left with (I − βA). The seondstatement is a diret onsequene of (27) if we take the limit as k →∞. �De�ne also: hT
∞ , βvTÃ∞B − cT.Proposition 4 (Optimal Stationary Poliy). Consider the in�nite horizon optimization prob-lem (26) under the deterministi and unperturbed dynamis (18). Then, the stationary poliy π∗ =

(µ∗, µ∗, ...) ∈Π, suh that µ∗(x) = (µ∗
1, µ

∗
2, ..., µ

∗
n) with

µ∗
i =

{

M i = argmax+
1 (h∞)

0 otherwise (28)for i∈ I, is an optimal poliy for the in�nite horizon optimization problem. Furthermore, the optimalin�nite value is
J∗ = vTÃ∞x+

M

1−β
max+

1 (h∞) . (29)Proof. Due to Claim 2, we have J0(x) ≤ H(x,u,J0) for all x ∈ S and u ∈ C(x). Also, as weshowed in the proof of Proposition 3, due to Claim 1 and Assumption 2, Jk+1(x)≥ Jk(x) for every
x ∈ S. Thus, Assumption 4 is satis�ed and, aording to Proposition 2, in order to show that thestationary poliy π∗ = (µ∗, µ∗, ...) is optimal, it su�es to show that Tµ∗(Jπ∗) = T (Jπ∗).First, we ompute Jπ∗(x): Similarly to Proposition 3 and taking into aount (27), the stationarypoliy π∗ establishes the following sequene of values

JN,π∗ = vTÃNx+
N−1
∑

k=0

βkhT
N−kµ

∗

= vTÃ∞(I −βN+1AN+1)x+
N−1
∑

k=0

βk
(

βvTÃ∞(I −βN−kAN−k)B− cT
)

µ∗

= vTÃ∞x+
N−1
∑

k=0

βkhT
∞µ∗ −βN+1vTÃ∞AN+1x−



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 21
βN+1vTÃ∞

N−1
∑

k=0

AN−kBµ∗.Note that
N−1
∑

k=0

AN−kBµ∗ =
N

∑

k=1

AkBµ∗ =
N

∑

k=1

W kΘk(I −Θ)µ∗.Sine the diagonal entries of Θ satisfy 0≤ θi < 1 for every i ∈ I and µ∗ is bounded, the above seriesis onvergent. Therefore, we have
Jπ∗ , lim

k→∞
Jk,π∗ = vTÃ∞x+

1

1−β
hT
∞µ∗.Given µ∗ = (µ∗

1, µ
∗
2, ..., µ

∗
n) where µ∗

i is given by (28), we have:
hT
∞µ∗ = M ·max+

1 (h∞) . (30)Thus,
Jπ∗ = vTÃ∞x+

M

1−β
max+

1 (h∞) .We are ready now to ompute Tµ∗(Jπ∗) and T (Jπ∗). In partiular,
Tµ∗(Jπ∗) = g(x,µ∗) +βJπ∗(f(x,µ∗))

= vT
(

I +βÃ∞A
)

x+hT
∞µ∗ +

βM

1−β
max+

1 (h∞) .Due to ondition (30) and the fat that I +βÃ∞A≡ Ã∞, we have
Tµ∗(Jπ∗) = vTÃ∞x+

M

1−β
max+

1 (h∞) .Finally,
T (Jπ∗)(x) = max

u∈C(x)
{g(x,u) +βJπ∗(f(x,u))}

= vT(I +βÃ∞A)x+ max
u∈C(x)

{

hT
∞u

}

+
βM

1−β
max+

1 (h∞)

= vTÃ∞x+Mmax+
1 (h∞) +

βM

1−β
max+

1 (h∞)

= vTÃ∞x+
M

1−β
max+

1 (h∞) .



Chasparis and Shamma: Control of Preferenes in Soial Networks22 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)Hene, we showed that Tµ∗(Jπ∗) = T (Jπ∗), whih implies that π∗ is an optimal stationary poliy.Also, Jπ∗ provides the optimal value of the in�nite-horizon optimization. �In other words, aording to (28), the �rm is going to invest the largest possible amount M tothe node whih orresponds to the maximum entry of
hT
∞ = βvTÃ∞B − cT = βvT(I −βA)−1(I −Θ)− cT.Note that this deision is a�eted by the following fators:1. how easily node i an be in�uened by the �rm's advertising poliy, whih is measured by

1− θi,2. how large is the �network value� of node i throughout the optimization horizon, expressed bythe ith entry of βvT(I −βA)−1, whih measures the e�et of every unit of advertising e�ort spentin i on the prolivities of all nodes that are onneted diretly or indiretly to i,3. how small is the ost of every unit of advertising e�ort in node i, expressed by ci.Note also that the matrix (I − βA)−1, whih in�uenes the optimal deision, an be interpretedas a measure of the entrality of the nodes. In fat, Bonaih in his work on measures of entralityBonaih (1987), introdued the following entrality measure c(γ,β) , γ(I − βA)−1A1, where γ isa saling fator. When γ = 1, c(1, β) has several nie interpretations. To see this, note that theentrality measure, whih is equivalently written as c(1, β) = (I + βA + β2A2 + ...)A1, onstitutesa measure of loseness, sine it is high for a node whih is onneted to other nodes with shortand highly weighted paths. The parameter β represents the degree of information (bene�ts in ourmodel) that is transmitted from one node to another node. In our ase, where A is a row stohastimatrix, the above entrality measure takes on the following form
c(1, β) = (I +βA+β2A2 + ...)1 = (I −βA)−1

1.In the ontext of our dynami model, we an say that c(1, β) represents a measure of the relativeimportane of nodes (in terms of bene�ts) when the initial ondition is x0 = 1 and there is noexternal in�uene (i.e., there is no ontrol input).



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 23Note that in our model both the initial ondition and the ontrol input a�et the returns of theadvertising �rm. Sine we are only interested in the omputation of the optimal advertising poliy,an appropriate entrality (or network value) measure would be βvTÃ∞B − cT. The highest entryof this vetor will provide the highest bene�ts over time. Note that when β = 0, the ontrol inputdoes not have any impliation to the returns. In that ase, entrality ould be measured by vTÃ∞,sine it is only the initial ondition that a�ets the returns.4.2. Perturbed DynamisIn this setion, we are going to onsider a family of perturbations of the nominal model (18),desribed by
xk+1 = Axk +Bϕ(uk) +Fqk, (31)where we have negleted the e�et of the seond �rm. The term qk orresponds to an unknownsignal aused possibly by misspei�ed system dynamis. The sequene {qk} may feed bak in apossibly nonlinear way on the history of x. We will impose the following onstraint on the size ofany instane of this perturbation sequene:
|qk| ≤ η, for all k = 0,1, ..., (32)where η > 0 is a measure of the �rm's on�dene of the auray of the nominal model. Let Qdenote the resulting onstraint set of disturbanes.Note that due to the presene of the unknown (but bounded) signal qk our initial assumptionthat S ⊂R

n
+ may be violated. As we noted though in Setion 2.3, the system is input-output stable,therefore an appropriate shift of the state an always guarantee that the dynamis will evolve withinthe positive one. In partiular, onsider x̄∈R

n
+, suh that

Fqk + x̄≥ 0, (33)for all qk satisfying (32), and de�ne instead the dynamis:
xk+1 = Axk +Bϕ(uk) +Fqk + x̄ , f(xk, uk, qk). (34)
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n×n de�ne the vetor rT

k+1 , βvTÃkF, for k = 0,1, ..., with rT
1 = βvTF . Let also:

rT
∞ , βvTÃ∞F. We would like to solve the following optimization:

max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg(xk, µk(xk))

}

, (35)subjet to the perturbed dynamis (34) and the onstraints (32)�(33). Here Σ denotes the set ofsequenes of poliies σ = (ν0, ν1, ...) of the unertainty, where νk is a funtion from the set of states
S to Q. Note also that due to the new shifted dynamis, a utility funtion of the form g(x,u) =

vTx− cTu−λ(x̄) would have been more appropriate. However, in that ase, and sine the last termis onstant, the optimal poliy of (35) would have been idential.Proposition 5 (Optimal poliy under unertainty). Consider the in�nite horizon optimiza-tion of (35) under the perturbed dynamis (34) and the onstraint (32)�(33). The optimal stationarypoliy is µ∗ = (µ∗
1, ..., µ

∗
n), suh that

µ∗
i =

{

M i = argmax+
1 (h∞)

0 otherwise , i∈ I. (36)Proof. To solve this optimization problem, we implement the dynami programming iteration.In fat, we reursively implement the operator T (·) de�ned as
(TJ)(x) , max

u∈C
min
q∈Q

{g(x,u) +βJ(f(x,u, q))}, (37)for any x∈ S. The dynami programming iteration gives:
JN(x) = vTÃNx+

N−1
∑

k=0

[

βkhT
N−ku

∗
N−k +βkrT

N−kq
∗
N−k +βk+1vTÃN−kx̄

]

,for all N = 1,2, ..., where u∗
k and q∗

k denote the sequenes of optimal investments and disturbanes,respetively. In partiular, u∗
k = (u∗

1,k, ..., u
∗
n,k) and q∗

k = (q∗
1,k, ..., q

∗
n,k), are suh that

u∗
i,k =

{

M i = argmax+
1 (hk)

0 otherwise , i∈ I,
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k q∗

k = −η |rk|∞ . In other words, the disturbane plaes all its weight on the maximum (inabsolute value) entry of rk, or
q∗

i,k =

{

−η i = argmax+
1 (rk)

0 otherwise , i∈ I.The order of max and min in the de�nition of the operator T (·) does not hange the optimalpoliies. Note also that:
H(x,u, q, J0) = g(x,u) +βJ0(f(x,u, q))

= J0(x) +βvTAx+βvT(Fq + x̄) + (βvTB − cT)u

≥ J0(x)for all x ∈ S, u ∈ C∗, q ∈ Q∗ and under ondition (33). Thus, from Proposition 2, the dynamiprogramming iteration provides the optimal in�nite value.Consider the stationary poliy (36) for the monopolisti �rm and the stationary poliy σ∗ =

(ν∗, ..., ν∗) for the disturbane suh that rT
∞ν∗ =−η |r∞|

∞
. Similarly to the proof of Proposition 4,the orresponding in�nite value is

J(π∗,σ∗)(x) = vTÃ∞x+hT
∞ lim

N→∞

N−1
∑

k=0

βkµ∗ + rT
∞ lim

N→∞

N−1
∑

k=0

βkν∗+

βvTÃ∞ lim
N→∞

N−1
∑

k=0

βkx̄

= vTÃ∞x+
1

1−β

[

Mmax+
1 (h∞)− η |r∞|

∞
+βvTÃ∞x̄

]

.By following similar reasoning with the proof of Proposition 4, we an show that
T(µ∗,ν∗)(J(π∗,σ∗)) = T (J(π∗,σ∗)).Therefore, aording to Proposition 2, (π∗, σ∗) provides the optimal lower value. It is also straight-forward to show that the sequene of poliies (π∗, σ∗) also provides the optimal upper value, de�ningthis way a solution to the max-min optimization problem. �Note that the robust optimal poliy for the perturbed model oinides with the optimal poliyfor the unperturbed or riskless model, i.e., it exhibits a ertainty equivalene property.



Chasparis and Shamma: Control of Preferenes in Soial Networks26 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)5. Optimal Poliy in Duopoly5.1. PreliminariesThe previous setion omputed the optimal robust poliy for the problem of monopoly under norm-bounded model unertainty. In this setion, we would also like to inlude the possibility that aompetitive �rm tries to in�uene the preferenes of the ustomers towards buying its own produtas desribed by the more general duopoly model (4).The presene of a ompetitive �rm introdues a new soure of unertainty. We will either assumethat i) the ompetitive �rm has the form of a ompetitive fringe whih tries to enter the market,introduing a notion of sequential optimization (expressed by a Stakelberg solution), or ii) both�rms have the ability of simultaneous play (expressed by a Nash solution).Eah �rm ℓ∈L solves the following optimization problem:
max
πℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0) , lim

N→∞

N−1
∑

k=0

βkg
(

xℓ
k, µ

ℓ
k(x

ℓ
k)

)

} (38)subjet to the system dynamis
xℓ

k+1 = Axℓ
k +Bϕ(µℓ

k, µ
−ℓ
k ) (39)where πℓ = (µℓ

1, µ
ℓ
2, ...) and π−ℓ = (µ−ℓ

1 , µ−ℓ
2 , ...) are the in�nite sequenes of poliies of the �rms ℓand −ℓ, respetively.Definition 1 (Stakelberg solution). A Stakelberg solution is a pair of poliies (πℓ∗, π−ℓ∗)∈

Πℓ ×Π−ℓ suh that
π−ℓ∗ ∈BR−ℓ(π

ℓ∗) , argmax
π−ℓ

{

J(π−ℓ,πℓ)(x
−ℓ
0 )

∣

∣πℓ∗
}and, πℓ∗ ∈ argmaxπℓ∈Πℓ

{

J(πℓ,π−ℓ)(x
ℓ
0)

∣

∣π−ℓ ∈BR−ℓ(π
ℓ)

}

.In the above de�nition of a Stakelberg solution, we will refer to �rm ℓ as the leader and �rm −ℓas the follower. Note that the de�nition implies that �rm ℓ (or leader) announes �rst its poliy,while �rm −ℓ (or follower) reats to that poliy.Definition 2 (Nash solution). A pair of poliies (πℓ∗, π−ℓ∗) ∈ Πℓ × Π−ℓ is a Nash solution if
π−ℓ∗ ∈BR−ℓ(π

ℓ∗) and πℓ∗ ∈BRℓ(π
−ℓ∗).



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 27We will also refer to these solutions as Markovian or losed-loop Nash solutions. If, instead, themaximization in the de�nition of the Nash solution is restrited to the set of sequenes of ontrolinputs in Cℓ, then the orresponding solutions will be referred to as open-loop Nash solutions. Notethat these de�nitions of Nash solutions impliitly assumes a simultaneous announement of poliiesfor both �rms.A straightforward impliation of the above de�nitions is that any Stakelberg solution is also aNash solution.5.2. Open-loop stationary Nash solutionsIn this setion, we will restrit our attention to open-loop Nash solutions that are also stationary,i.e., time-independent. Before haraterizing this family of Nash solutions, de�ne the set of ations
Aℓ , {α1, α2, ..., αn}, ℓ∈L, suh that for eah i ∈ {1,2, ..., n}, αi = (αi,1, αi,2, ..., αi,n) where

αi,j ,

{

M j = argmax+
i (h∞),

0 otherwise, j = 1,2, ..., n.In other words, the ation αi orresponds to investing all available funds to the ith largest non-negative entry of h∞. Note that the set of ations de�ne an isomorphi set of stationary poliies,i.e., for eah ation αi there is a stationary poliy (αi, αi, ...). Let us also denote by J(i,j)(x) theorresponding in�nite horizon value for initial ondition x when one �rm applies stationary poliy
(αi, αi, ...) and the other �rm applies (αj, αj, ...). Any other open-loop stationary poliy µℓ an berepresented as a mixture of ations in Aℓ, i.e.,

µℓ =















α1, with probability pℓ
1

. . .

αn, with probability pℓ
n

, ℓ∈L, (40)where pℓ
i ≥ 0, i ∈ I, and ∑

i
pℓ

i = 1. The orresponding value of the objetive funtion (38) for anyopen-loop stationary poliy is haraterized by the following proposition.Proposition 6 (Payo�s under open-loop poliies). When both �rms ℓ∈L apply an open-loop
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∑

i∈I

∑

j∈I J(i,j)p
ℓ
ip

−ℓ
j , where

J(i,j)(x) =

{

vTÃ∞x+ 1
1−β

[−cTαi], i = j

vTÃ∞x+ 1
1−β

[hT
∞αi], i 6= j

, x∈ Sℓ, ℓ∈L. (41)Proof. When the pair of stationary poliies (πℓ, π−ℓ) is applied, where πℓ = (µℓ, µℓ, ...) and π−ℓ =

(µ−ℓ, µ−ℓ, ...), the orresponding value of the objetive funtion of �rm ℓ will be:
J(πℓ,π−ℓ)(x) = vTÃ∞x+ lim

N→∞

N−1
∑

k=0

βk
[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]

= vTÃ∞x+
1

1−β

[

(h∞ + c)Tϕ
(

µℓ(x), µ−ℓ(x)
)

− cTµℓ(x)
]for some initial state x∈ Sℓ. If µℓ = µ−ℓ = αi, then the orresponding in�nite value of the objetivefuntion of ℓ, denoted J(i,i), is:

J(i,i)(x) = vTÃ∞x+
1

1−β
[−cTαi].If, instead, µℓ = αi and µ−ℓ = αj , i 6= j, the orresponding in�nite value of the objetive funtion ℓ,denoted J(i,j), is:

J(i,j)(x) = vTÃ∞x+
1

1−β
[hT

∞αi].Then, the orresponding expeted return of �rm ℓ∈L is:
J(πℓ,π−ℓ)(x) = vTÃ∞x+

∑

i,j∈I

[(h∞ + c)Tϕ(αi, αj)− cTαi]

1−β
pℓ

ip
−ℓ
j

=
∑

i,j∈I

[

vTÃ∞x+
[(h∞ + c)Tϕ(αi, αj)− cTαi]

1−β

]

pℓ
ip

−ℓ
j

=
∑

i,j∈I

J(i,j)p
ℓ
ip

−ℓ
j ,whih onludes the proof. �Thus, we may de�ne an equivalent one-stage symmetri game of two players, �nite set of ations

Aℓ = {α1, α2, ..., αn} for eah player ℓ ∈ L, and payo� matrix of the row player whih is given byTable 1.A diret onsequene of Proposition 6 is the following:
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α1 α2 ... αn

α1 J(1,1) J(1,2) ... J(1,n)

α2 J(2,1) J(2,2) ... J(2,n)... ... ... ... ...
αn J(n,1) J(n,2) ... J(n,n)Table 1 Equivalent one-shot symmetri game in open-loop stationary poliies.Lemma 3. The following hold:1. J(i,j)(x)≥ J(i,i)(x) for all i, j ∈ I with i 6= j;2. J(i,j)(x) = J(i,j′)(x) for all i, j, j′ ∈ I with j 6= i and j′ 6= i;3. J(i,j)(x)≥ J(j,i)(x) for all i, j ∈ I with i > j.Proposition 7 (Stakelberg & Nash solutions). Let us onsider the optimization problem(38) under the dynamis (39) and the onstraints (1) with M ℓ = M−ℓ, i.e., both �rms have identialadvertising power. For any ℓ ∈ L, the pair of open-loop stationary poliies π∗ = (πℓ∗, π−ℓ∗) where

πℓ∗ = (µℓ∗, µℓ∗, ...) and µℓ is de�ned by (40) satisfying either(1) pℓ
1 = p−ℓ

2 = 1, or(2) pℓ
1 = p−ℓ

2 =
J(1,2)−J(2,2)

J(1,2)−J(1,1)+J(2,1)−J(2,2)
,de�nes an open-loop Nash solution. Furthermore, when ℓ ∈ L has the opportunity to announe itspoliy �rst, the open-loop stationary poliy orresponding to (1) de�nes an open-loop Stakelbergsolution.Proof. The �rst laim is a diret onsequene of Lemma 3 and the fat that any one of thepoliies orresponding to the ases (1) and (2) de�nes a Nash solution for the equivalent one-shotsymmetri game of Table 1.Assume now that ℓ has the opportunity to announe its strategy �rst. In order to show that

(πℓ∗, π−ℓ∗) de�nes a Stakelberg solution, we need to verify that the leader's poliy πℓ∗ guaran-tees maximum return over all possible announed poliies. It is straightforward to show that anyannouned poliy that does not alloate all available funds to argmax+
1 (h∞) will result to a bestresponse of the follower that dereases leader's utility. �



Chasparis and Shamma: Control of Preferenes in Soial Networks30 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)The onlusions of Proposition 7 do not neessarily hold when we onsider di�erent spendingpowers for the �rms, i.e., when M ℓ 6= M−ℓ. However, extending the onlusions of Proposition 7 tothat ase is straightforward.Another straightforward impliation of Proposition 7 is summarized in the following orollary.Corollary 1. The open-loop stationary Nash solutions haraterized by Proposition 7 are alsolosed-loop Nash solutions.This is due to the fat that open-loop strategies are a subset of Markovian or state-dependentstrategies. A omplete haraterization of the set of losed-loop Nash solutions is going beyond thesope of this paper, sine it is highly ase-dependent, i.e., it depends on the lass of poliies whihwill be onsidered reasonable for the appliation of interest. For example, if we assume that thelass of strategies over whih the optimization is exeuted are a�ne funtions of the state, then anew lass of losed loop Nash solutions an easily be omputed using the framework proposed inthis paper.5.3. Max-min solutionsComputing an optimal strategy whih is robust to any possible poliy of the ompetitor an beformulated as a max-min optimization. Consider two �rms with di�erent expenditure apabilities.In partiular, onsider the following two senarios: a) M ℓ > M−ℓ, and b) M ℓ ≤M−ℓ for any ℓ∈L.Then, �rm ℓ∈ {a, b} solves the following max-min optimization:
max
π∈Π

min
σ∈Σ

{

J(π,σ)(x0) , lim
N→∞

N−1
∑

k=0

βkg (xk, µk(xk))

} (42)over the set Π of in�nite sequenes of poliies (µ0, µ1, ...) and subjet to the system dynamis
xk+1 = Axk +Bϕ(µk, νk). (43)The set Σ denotes the olletion of in�nite sequenes of poliies (ν0, ν1, ...) of the ompetitor. Inwords, the above optimization re�ets the situation at whih the �rm wishes to announe a strategy



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 31whih will provide the optimal returns assuming that the ompetitor ats to minimize these returns.To simplify notation, we have removed the supersript ℓ from the above optimization variables. Itis straightforward to show that:Proposition 8. Let us onsider the optimization problem (42) under the dynamis (43) and theonstraints (1). If M ℓ > M−ℓ, i.e., the advertising power of the �rm ℓ is larger than the one of itsompetitor, then the optimal strategy of the �rm will be a stationary poliy (µ∗, µ∗, ...) suh that
µ∗

i =

{

M i = argmax+
1 (h∞)

0 otherwise , i∈ I. (44)Note that this is not neessarily the ase when the advertising power of the �rm is less thanthe ompetitor's. In that ase, any strategy will be optimal, sine the ompetitor has the power toounterat any announed strategy of the �rm.6. ConlusionsWe disussed the problem of deriving optimal advertising strategies in a network of ustomers orgroups of ustomers. Contrary to prior work, the dynamis of preferenes were also a�eted byan underlying network of interations whih introdues a form of word-of-mouth ommuniationbetween nodes. The derived optimal poliies are related to and extend priorly introdued notionsof entrality measures usually onsidered in soiology. Although the assumed model of evolution ofpreferenes might be the outome of an identi�ation proess, it is likely that we are unertain aboutits auray. To this end, we also onsidered a perturbed model whih models possible misspei�a-tions or unertainties of the nominal model, and we derived robust optimal strategies. It was shownthat the monopoly model exhibits a ertainty equivalene property, i.e., the optimal strategies forthe perturbed model oinide with the optimal strategies for the unperturbed or riskless model.Finally, we investigated robust poliies in a duopoly framework. In partiular, we haraterized theset of open-loop Nash solutions. The model an easily be utilized to aommodate senarios atwhih more ompliated forms of strategies are of interest, leading to new forms of losed-loop Nashsolutions. We also haraterized the set of max-min solutions in a duopoly framework, when �rmsmakes no assumptions about the utilities of the ompetitor.



Chasparis and Shamma: Control of Preferenes in Soial Networks32 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)Endnotes1. An extension of the forthoming analysis to multiple number of �rms will be straightforward.2. A row stohasti matrix W is a nonnegative matrix whih also satis�es W1 = 1, i.e., the sumof its entries in any row is equal to 1.3. A matrix is stritly diagonally dominant if in every row of the matrix, the magnitude of thediagonal entry in that row is larger than the sum of the magnitudes of all the other (non-diagonal)entries in that row.AknowledgmentsThis work was supported by AFOSR projets #FA9550-05-1-0321 and #FA9550-09-1-0420. G.C. Chasparisis supported by the Swedish Researh Counil through the Linnaeus Center LCCC.ReferenesAlkemade, F., C. Castaldi. 2005. Strategies for the di�usion of innovations on soial networks. ComputationalEonomis 25 3�23.Bass, F. M. 1969. New produt growth model for onsumer durables. Management Siene 15 215�227.Bertsekas, D., S. Shreve. 1978. Stohasti Optimal Control: The Disrete Time Case. Aademi Press, In.(London) Ltd., London.Bharathi, Shishir, David Kempe, Mahyar Salek. 2007. Competitive in�uene maximization in soial networks.In WINE . 306�311.Bonaih, P. 1987. Power of entrality: A family of measures. Amerian J. of Soiology 92(5) 1170�1182.Case, J. 1979. Eonomis and the ompetitive proess . New York University Press, New York, NY.Chintagunta, P. K. 1993. Investigating the sensitivity of equilibrium pro�ts to advertising dynamis andompetitive e�ets. Management Siene 39 1146�1162.Chintagunta, P. K., N. J. Vilassim. 1992. An empirial investigation of advertising strategies in a dynamiduopoly. Management Siene 38(9) 1230�1244.Deal, K.R. 1979. Optimizing advertising expenditures in a dynami duopoly. Operations Researh 27 682�692.



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 33Deal, K.R., S.P. Sethi, G.L. Thompson. 1979. A bilinear-quadrati di�erential game in advertising. P.T.Liu, J.G. Sutinen, eds., Control theory in mathematial eonomis, Pro. of the third Kingston Conf.,Part B , Leture notes in pure and applied mathematis , vol. 1200. Marel Dekker, New York.Deal, K.R., S. Zionts. 1973. A di�erential games solution to the problem of determining the optimal timingof advertising expenditures. Pro. Seond Annual Northeast Regional AIDS Conf.. Atlanta, GA.Domingos, P., M. Rihardson. 2001. Mining the network value of ustomers. Pro. of the 7th ACM SIGKDDInt. Conf. on Knowledge Disovery and Data Mining . San Franiso, USA.Dubey, P. K., B. De Meyer, R. Garg. 2006. Competing for ustomers in a soial network. Teh. Rep. 1591,Cowles Foundation.Ellison, G. 1993. Learning, loal interation, and oordination. Eonometria 61 1047�1071.Erikson, G. M. 1985. A model of advertising ompetition. J. of Marketing Researh 22 297�304.Erikson, G. M. 1992. Empirial analysis of losed-loop duopoly advertising strategies. Management Siene38(12) 1732�1749.Fazeli, A., A. Jadbabaie. 2012. Game theoreti analysis of a strategi model of ompetitive ontagion andprodut adoption in soial networks. Internal Report .Fershtman, C. 1984. Goodwill and market shares in oligopoly. Eonomia 51 271�281.Friedkin, N. E. 1991. Theoretial foundations for entrality measures. Amerian J. of Soiology 96 1478�1504.Friedkin, N. E. 2001. Norm formation in soial in�uene networks. Soial Networks 23 167�189.Friedkin, N. E., E.C. Johnsen. 1999. Soial in�uene networks and opinion hange. Advanes in GroupProesses 16 1�29.Fruhter, G. E., S. Kalish. 1997. Closed-loop advertising strategies in duopoly. Management Siene 43(1)54�63.Goldenberg, J., B. Libai, E. Muller. 2001. Talk of the network: A omplex systems look at the underlyingproess of word-of-mouth. Marketing Letters 12(3) 211�223.Golub, B., M. O. Jakson. 2007. Naive learning in soial networks: Convergene, in�uene, and the wisdomof rowds. Teh. Rep. FEEM Working Paper No. 64.



Chasparis and Shamma: Control of Preferenes in Soial Networks34 Artile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!)Gould, J. P. 1970. Di�usion proesses and optimal advertising poliy. E.S. Phelps et al., ed., Miroeonomifoundations of employment and in�ation theory . W.W. Norton, New York, 338�368.Goyal, S., M. Kearns. 2011. Competitive ontagion in networks. SSRN .Granovetter, M. S. 1978. Threshold models of olletive behavior. Amerian J. of Soiology 83(6) 1420�1443.Horn, R. A., C. R. Johnson. 1985. Matrix Analysis . Cambridge University Press, Cambridge, UK.Jakson, M., A. Watts. 2002. On the formation of interation networks in soial oordination games. Gamesand Eonomi Behavior 41 265�291.Jones, F. 1993. Lebesgue integration on Eulidean spae. Jones and Bartlett Publishers, In.Jørgensen, S. 1982. A survey of some di�erential games in advertising. J. of Eonomi Dynamis and Control4 341�369.Jørgensen, S., G. Zaour. 2004. Di�erential Games in Marketing . Kluwer Aademi Publishers.Kailath, T. 1980. Linear Systems . Prentie-Hall.Kempe, D., J. Kleinberg, E. Tardos. 2003. Maximizing the spread of in�uene through a soial network.KDD '03: Pro. of the 9th ACM SIGKDD Int. Conf. on Knowledge Disovery and Data Mining . NewYork, NY.Kimball, G. C. 1957. Some industrial appliations of military operations researh methods. OperationsResearh 5 201�204.Leitmann, G., W. E. Shmitendorf. 1978. Pro�t maximization through advertising: A nonzero sum di�erentialgame approah. IEEE Transations on Automati Control 23(4) 646�650.Nerlove, M., K. J. Arrow. 1962. Optimal advertising poliy under dynami onditions. Eonomia 39129�142.Prasad, A., S. P. Sethi. 2004. Competitive advertising under unertainty: A stohasti di�erential gameapproah. J. of Optimization Theory and Appliations 123(1) 163�185.Rihardson, M., P. Domingos. 2002. Mining knowledge-sharing sites for viral marketing. 8th Int. Conf. onKnowledge Disovery and Data Mining .Shelling, T. 1978. Miromotives and Marobehavior . Norton.Sethi, S. P. 1977. Dynami optimal ontrol models in advertising: A survey. SIAM Review 19(4) 685�725.



Chasparis and Shamma: Control of Preferenes in Soial NetworksArtile submitted to Operations Researh; manusript no. (Please, provide the mansuript number!) 35Sethi, S.P. 1983. Deterministi and stohasti optimization of a dynami advertising model. Optimal ControlAppliations & Methods 4(2) 179�184.Vidale, M. L., H. B. Wolfe. 1957. An operations researh study of sales response to advertising. OperationsRes. 5 370�381.Young, H. P. 2001. The dynamis of onformity. S. N. Durlauf, H. P. Young, eds., Soial Dynamis . BrookingsInstitution, Washington, D.C.


