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Abstract—

In this paper, we study the problem of control of nonlinear
systems over an erasure channel. The stability and performance
metric are adopted from the ergodic theory of random dy-
namical systems to study the almost sure and second moment
stabilization problem. The main result of this paper proves
that, while there are no limitations for the almost sure stabi-
lization, fundamental limitations arise for the second moment
stabilization. In particular, we provide a necessary condition
for the second moment stabilization of multi-state single input
nonlinear systems expressed in terms of the probability of
erasure and positive Lyapunov exponents of the open loop
unstable system. The dependence of the limitation result on the
Lyapunov exponents highlights, for the first time, the important
role played by the global non-equilibrium dynamics of the
nonlinear systems in obtaining the performance limitation. This
result generalizes the existing results for the stabilization of
linear time invariant systems over erasure channels and differs
from the existing Bode-like fundamental limitation results
for nonlinear systems, which are expressed in terms of the
eigenvalues of the linearization.

I. INTRODUCTION

Networked controlled systems have been the focus of much

research in recent years [1]. Among several relevant ques-

tions, one main problem is to characterize the limitations

induced on closed loop stability and performance caused by

the presence of unreliable communication channel(s) in the

loop. The work of [2] has been the first to address noisy

channel models and to show that different notions of closed

loop stability (bounded moments) required a new notion of

reliable communication of bits, and led to a new notion

of capacity, the Anytime capacity. In particular, fading has

been shown to affect the Anytime capacity of the channel

and therefore its ability to stabilize the closed loop system.

A fading channel model popular in the literature is the

analog erasure channel, which is simply modeled as an on/off

Bernoulli switch, and can be used as a simple model of a

packet drop link with neglegible quantization effects. Most of

the research on the estimation and control of network systems

over noisy channels has considered LTI plants [3], [4]. There

are no results that address this problem for nonlinear systems.

The existing results for nonlinear systems without channel

noise uncertainty have essentially reverted to the local linear

analysis involving the eigenvalues of the linearized system

[5], [6]. The problem of characterizing the limitations in

the stabilization and estimation of network systems with
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nonlinear components over noisy, uncertain, channels is a

timely research topic given the important role that nonlinear

dynamics play in the applications such as network power

systems and biological networks.

In this paper, we study the problem of characterizing the

fundamental limitations in the stabilization of a nonlinear

system which is controlled via an on/off fading channel with

IID Bernoulli fading. The objective is to characterize the

quality of service of the channel, in term of probability

of successful transmission, to guarantee a certain stability

notion of the closed loop system. We adopt the stability

and performance metric, of almost sure and second moment

stability, from the ergodic theory of random dynamical

systems. The main result of this paper proves that, while

there are no limitations for the almost sure stabilization,

a fundamental limitation arises for the second moment

stabilization. The limitation is expressed in terms of the

probability of erasure and the positive Lyapunov exponents

of the open loop unstable system. The dependence of the

limitation result on the Lyapunov exponents highlights, for

the first time, the important role played by the global non-

equilibrium dynamics of the nonlinear systems in obtaining

the performance limitation.

The paper presents two important innovations: 1) Extends

the framework of random dynamical systems [7], [8] to

controlled dynamical systems. 2) Connects the stability re-

quirement with the Quality of Service of the channel and

the positive Lyapunov exponents of the open loop system.

In this sense, the results of the paper generalize those of

[3], and the Lyapunov exponents therefore emerge as natural

generalization of the linear system eigenvalues in capturing

the limitations of nonlinear networked systems.

The organization of the paper is as follows. In section II, we

present some preliminaries and definition from the theory of

random dynamical systems. In section III, we present the

main results on the almost sure and second moment expo-

nential stabilization of the random control dynamical system.

Simulation results are presented in section IV followed by

conclusion in section V.

II. PRELIMINARIES AND DEFINITIONS

The set-up for the problem of stabilization of nonlinear

systems over analog erasure channel is described by the

following equation

xn+1 = f (xn)+ξnbun, (1)

where xn ∈ X ⊂R
N ia a compact state space, un ∈U ⊂R is a

control input and {ξn}
∞
n=0 ∈ {0,1} is a sequence of random
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variables assumed to be independent identically distributed

(i.i.d.) with the following probability distribution

Prob(ξn = 1) = p, Prob(ξn = 0) = 1− p. (2)

Throughout this paper, we assume that (1− p) is bounded

away from zero. The random variables {ξn}
∞
n=0 model the

erasure channel between the plant and the controller. We now

make following assumptions on the system dynamics.

Assumption 1: The system mapping f : X →X is assumed to

be smooth and the Jacobian
∂ f

∂x
(x) assumed to be invertible

for almost all (w.r.t. Lebesgue measure) x ∈ X .

Assumption 2: The pair { f ,b} is assumed to be feedback

linearizable i.e., there exists a feedback control input γ : X ×
U → X and a coordinate transformation x̃ for X and ũ for U

(possibly locally defined) such that

f (x)+bγ(x̃, ũ) = Ax̃+Bũ

where the matrix A and B are constant and in controllable

canonical form.

The problem of feedback linearization for discrete time

systems is extensively studied in the nonlinear control sys-

tem literature. We refer the interested readers to references

[9], [10], providing necessary and sufficient conditions for

feedback linearization.

Assumption 3: We assume that there exists a β > 1 such

that ‖ ∂ f (x)
∂x

v ‖> β ‖ v ‖ for all x ∈ X and v ∈ TxX (the

tangent space of X at x). This assumption has following

consequences on the system dynamics:

Cons.1. Let Λ1
exp, . . . ,Λ

N
exp be the Lyapunov exponents of

the open loop system, then all the Lyapunov exponents are

positive (Refer to definition 7 for Lyapunov exponents).

Cons.2. The open loop system has an unique ergodic in-

variant measure which is equivalent to Lebesgue ( Refer to

definition 6 for ergodic invariant measure) .

Cons.1 follows from the definition of Lyapunov exponents

and for the proof of the Cons.2 refer to [11] (Theorem 1.3

Chapter III).

Assumption 4: We assume that the control input un for (1)

is state feedback and deterministic ( i.e., un = k(xn)).
Few comments on the assumptions are necessary. While

assumptions 1 and 2 are technical in nature, assumption 3 has

important consequences on the system dynamics. Assump-

tion 3 is analogous to the assumption made in the case of

linear time invariant (LTI ) systems that all the eigenvalues

of system matrix are unstable. In the case of LTI systems,

one can always separate the system dynamics into stable

and unstable part by appropriate coordinate transformation.

Similarly in the case of nonlinear system it should be possi-

ble to separate the stable and unstable part along the stable

and unstable manifolds by performing appropriate change

of coordinate [12]. However the mathematical sophistication

that is required to do so is outside the scope of this paper and

will be the topic of future research. Hence, for the simplicity

of presentation of the main message of this paper, we make

the assumption 3.

Remark 5: In the proof of the main result of this paper,

we only require that Cons.1 and Cons.2 to be true. The

assumption 3 is sufficient for Cons.1 and Cons.2 to be true

but not necessary.

We next discuss some preliminaries from ergodic theory

of deterministic dynamical systems. For more details on

the preliminaries, the interested readers can refer to [13],

[14], [15]. Consider a discrete time deterministic dynamical

system of the form:

xn+1 = T (xn) (3)

where xn ∈X ⊂R
N a compact set, T : X →X is assumed to be

at least C1 function of x and its Jacobian ∂T
∂x

(x) is invertible

for almost all w.r.t. Lebesgue measure x ∈ X . We denote by

M (X) and B(X) the space of probability measures on X

and the Borel σ− algebra of sets on X respectively.

Definition 6 (Ergodic invariant measure): A probability

measure µ ∈ M (X) is said to be invariant for (3) if

µ(B) = µ(T−1(B)) for all sets B ∈ B(X). An invariant

probability measure is said to be ergodic if any T -invariant

set A i.e., T−1(A) = A has µ measure equal to one or zero.

Definition 7 (Lyapunov exonents): Consider the determinis-

tic dynamical system (3) and let

L(x) = lim
n→∞





(

n

∏
k=0

∂T

∂x
(xk)

)′(
n

∏
k=0

∂T

∂x
(xk)

)





1
2n

, x0 = x

(4)

If λ i
exp are the eigenvalues of L(x0) then the Lyapunov

exponents Λi
exp are given by Λi

exp = logλ i
exp for i = 1, . . . ,N.

Furthermore if L(x) 6= 0 then

lim
n→∞

1

n
log |det

(

n

∏
k=0

∂T

∂x
(xk)

)

| = log
N

∏
k=1

λ k
exp(x). (5)

Remark 8: The condition for the existence of limit in (4) is

given by the Oseledec Multiplicative ergodic theorem [16].

These conditions are satisfied by the uncontrolled system

(1) in the form of Assumption 1. Similarly the limit in (4)

is independent of the initial condition x0 if the system has

unique ergodic invariant measure. Hence for the uncontrolled

system (1) the Lyapunov exponents are independent of initial

conditions due to Assumption 3. For the proof of equality

(5), we refer the readers to [17] Proposition 1.3 and Theorem

1.6.

We now introduce stochastic notions of stabilities for a

general random dynamical system of the form:

xn+1 = T (xn,γn) (6)

where x ∈ X ⊂ R
N is a compact set, γn ∈ W . The mapping

T : X ×W → X is assume to be smooth with respect to x ∈ X

for every fixed γ ∈W and is measurable in γ for every fixed

x. The γn is a sequence of i.i.d random variable taking finitely

many values in the set W = {w1, . . . ,wr} with following

probability distribution

Prob(γn = wk) = pk, k = 1, . . . ,r, ∀n

Define a probability measure ρ on W by ρ({wk}) = pk. Let

Ω = ∏
∞
i=0 Wi, Wi = W , and define the probability measure P

on Ω by P = ∏
∞
i=0 ρ .
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The stochastic notions of stability that we use in this paper

are derived from the linear derivative map associated with the

RDS (6). The linear derivative map is defined as follows:

ηn+1 =
∂T

∂x
(xn,γn)ηn (7)

where ηn ∈ R
N and ∂T

∂x
(x,γ) : TxX → TT (x,γ) is a Jacobian of

T , mapping vectors from the tangent space at point x ∈ X

to the tangent space at point T (x,γ). The linear derivative

map has been used for incremental stability analysis of

nonlinear systems. We use the linear derivative map to define

two different notions of stochastic stabilities for random

dynamical system (6) [8].

Definition 9 (Almost sure exponentially stable): The

random dynamical system (6) is said to be almost

sure exponentially stable if

lim
n→∞

1

n
log ‖ ηn ‖< 0 (8)

for almost all, w.r.t. Lebesgue measure, x0 ∈X with ‖η0 ‖= 1

and almost all, w.r.t. measure P, random sequence {γn}
∞
n=0 ∈

Ω.

Definition 10 (Second moment exponential stable): The

random dynamical system (6) is said to be second moment

exponential stable if there exists positive constants K < ∞

and β < 1 such that

Eξ n
0

[

‖ ηn+1 ‖
2
]

< Kβ n, ∀n ≥ 0 (9)

for almost all w.r.t. Lebesgue measure x0 ∈ X with ‖ η0 ‖= 1

and where ξ n
0 = {ξ0, . . . ,ξn}.

The second moment exponential stability is stronger notion

of stability than almost sure exponential stability.

III. MAIN RESULTS

The main results of this paper can be summarized as follows:

We prove that for almost sure stability (Definition 8) of the

random dynamical system (1) we do not need any minimum

quality of service i.e., almost sure stability is guaranteed

for any non-zero probability of non-erasure. However for

second moment stabilization (Definition 10) we require some

minimum quality of service. The following theorem is the

first main result of this paper and the proof of it is omitted

due to space constraints. The proof utilizes the fact that the

system satisfies assumption 2.

Theorem 11: There exists a choice of feedback control input

un = k(xn) such that the feedback control random dynamical

system (1) is almost sure stable.

Now, we state the second main result of this paper on the

second moment exponential stability of system (1).

Theorem 12: The necessary condition for the second mo-

ment exponential stability (Definition 10) of (1) is given by

(1− p)

(

N

∏
k=1

λ k
exp

)2

< 1 (10)

where λ k
exp = expΛk

exp and Λk
exp > 0 is the kth positive Lya-

punov exponent of the uncontrolled system xn+1 = f (xn) and

(1− p) is the probability of erasure i.e., Prob(ξn = 0) = 1− p.

We postpone the proof of this theorem till the end of this

paper. Using the assumption 4 we write the feedback control

random dynamical system (1) along with its derivative map

as follows:

xn+1 = f (xn)+ξnbk(xn)

ηn+1 =

(

∂ f

∂x
(xn)+ξnb

∂k

∂x
(xn)

)

ηn (11)

Given the complicated nature of the proof, we now outline

some of the main steps that are involved in the proof of the

Theorem 12.

1) We first define a relaxation of system equations (11).

Doing so we derive a necessary condition for the second

moment stability of relaxed system thereby providing neces-

sary condition for the second moment stability of the actual

system.

2) The necessary condition for the second moment stability

of the relaxed system (Lemma 14) is based on Lyapunov

analysis.

3) The Lyapunov function is used for deriving the optimal

control for minimizing the second moment of the relaxed

system (Lemma 16).

4) Finally we prove that the necessary condition for the

second moment stability of the relaxed system is given by

(10) (Lemma 17).

The relaxation of system equations (11) is motivated from

the definition of the second moment exponential stability,

(Definition 10) expressed in terms of the tangent space

dynamics η . The relaxation of system equation (11) is

defined as follows:

xn+1 = f (xn)+ γnbk(xn) (12a)

ηn+1 =

(

∂ f

∂x
(xn)+ξnbv(xn)

)

ηn (12b)

The system equations (12) are the relaxation of system

equations (11) in the following sense.

1) The random variable γn ∈ {0,1} appearing in the state

space dynamics (12a) is assumed to be independent of ξn ∈
{0,1}. {γn}

∞
n=0 is a sequence of i.i.d. random variables.

2) The input v(xn) applied to the tangent space dynamics is

not constraint to be the derivative of k(xn), the input to the

state space dynamics.

It is convenient to write the relaxed system as follows:

xn+1 = f (xn)+ γnbk(xn) =: F(xn,γn)

ηn+1 =

(

∂ f

∂x
+ξnbv

)

(xn)ηn =: A (xn,ξn)ηn (13)

The second moment exponential stability of (13) is defined

as follows:

Definition 13 (Second moment exponential stability): The

random dynamical system (13) is said to be second moment

exponential stable if there exists positive constants K < ∞

and β < 1 such that

E[ξ n
0 ,γn

0 ]

[

‖ ηn+1 ‖
2
]

< Kβ n, ∀n ≥ 0 (14)
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for almost all w.r.t. Lebesgue initial conditions x0 ∈ X and

‖ η0 ‖= 1.

We now provide Lyapunov function-based characterization

for the second moment stability of the relaxed system (13).

Lemma 14: If the system (13) is second moment exponen-

tially stable (Definition 14) then there exists a matrix function

of x, P(x) such that α1I ≤ P(x) ≤ α2I for some positive

constants α1,α2 and satisfies

E[ξℓ,γℓ]

[

A
′
(xℓ,ξℓ)P(xℓ+1)A (xℓ,ξℓ)

]

< P(xℓ) (15)

Proof: Define

P(xℓ) :=
∞

∑
n=ℓ

E[ξ n
ℓ
,γn−1

ℓ
]





(

n

∏
k=ℓ

A (xk,ξk)

)′(
n

∏
k=ℓ

A (xk,ξk)

)



 (16)

With the above definition of P(xℓ) and using the fact

Eξn
[(A (xk,ξk))

′
A (xk,ξk)] > 0, since A (x,ξ = 0) = ∂ f

∂x
is

assumed to be invertible (Assumption 1), it follows that

P(xℓ) satisfies the inequality (15). Since the relaxed system is

assumed to be second moment stable, there exists a constant

0 < K < ∞ and λ < 0 such that

E
[ξ ℓ

0 ,γℓ−1
0 ]

[

‖ A (xℓ,ξℓ) · · ·A (x0,ξ0) ‖
2
]

≤ Keλℓ hence

‖ P(x) ‖≤
K

1− eλ
, or P(x) ≤ α2I

The lower bound on P(x) and the existence of α1 follows

from (15) and the assumption that A (x,ξ = 0) is invertible.

Definition 15 (Matrix Lyapunov function): We refer to the

matrix function P(x) satisfying the necessary condition (15)

of Theorem 14 as matrix Lyapunov function.

We now use the matrix Lyapunov function to derive the

optimal control that minimize the second moment for the

relaxed system.

Lemma 16: Consider the second moment stabilization prob-

lem for the relaxed system (12). The optimal control input

for the tangent space dynamics that minimize the second

moment is given by

v(xn) = −
b
′
Q̄(xn+1)A(xn)

b
′
Q̄(xn+1)b

where A(xn) := ∂ f

∂x
(xn) and Q̄(xn+1) := Eγn [Q(xn+1)]. The

matrix function Q̄(x) can be obtained as the solution to the

following Riccati equation corresponding to the minimum

energy optimal control problem on the tangent space (Defi-

nition 18 and Theorem 19 in Appendix).

A
′
(xn)Q̄(xn+1)A(xn)−

A
′
(xn)Q̄(xn+1)bb

′
Q̄(xn+1)A(xn)

∆+b
′
Q̄(xn+1)b

= Q(xn) (17)

where ∆ > 0 is some constant. Furthermore the matrix

function Q̄(x) will qualify as the valid Lyapunov function

(Definition 15) provided

(1− p)
(

1+b
′
Q̄0(xn+1)b

)

< 1,

where Q0(xn) = Q(xn)
∆

satisfies (17) with ∆ replace with one.

Proof: Let P(xn) be the matrix Lyapunov function

satisfying the condition of the Theorem 14. To derive the

optimal control for the tangent space dynamics, we write

the control Lyapunov inequality as follows:

E[ξn,γn]

[

(A(xn)+ξnbv(xn))
′
P(xn+1)(A(xn)+ξnbv(xn))

]

< P(xn) (18)

Taking expectation w.r.t. (ξn,γn) and using the fact that xn is

independent of γn and minimizing w.r.t. v, we get following

expression for the optimal control v(xn)

v(xn) = −
b
′
P̄(xn+1)A(xn)

b
′
P̄(xn+1)b

, (19)

where P̄(xn+1) := Eγn [P(xn+1)]. Substituting (19) in (18), we

get

A
′
(xn)P̄(xn+1)A(xn)−

A
′
(xn)P̄bb

′
P̄A(xn)

∆P +b
′
P̄(xn+1)b

< P(xn),

where ∆P := b
′
P̄(xn+1)b

(1−p)
p

and P̄ = P̄(xn+1). Since

P(xn+1) is the matrix Lyapunov function and hence bounded

from below, we know that there exists some constant ∆ > 0

such that ∆P ≥ ∆. The above inequality necessarily implies

A
′
(xn)P̄(xn+1)A(xn)−

A
′
(xn)P̄bb

′
P̄A(xn)

∆+b
′
P̄(xn+1)b

< P(xn)

and hence existence of matrix R(x) ≥ 0 such that

A
′
(xn)P̄(xn+1)A(xn)−

A
′
(xn)P̄(xn+1)bb

′
P̄(xn+1)A(xn)

∆+b
′
P̄(xn+1)b

+R(xn)

= P(xn)

The above equation resembles the Riccati like equation

obtained from the optimal control problem on the tangent

space (Definition 18 and Theorem 19 in Appendix). Hence

one can show that there exists a matrix Q(x) ≤ P(x) such

that Q(x) satisfies

A
′
(xn)Q̄(xn+1)A(xn)−

A
′
(xn)Q̄(xn+1)bb

′
Q̄(xn+1)A(xn)

∆+b
′
Q̄(xn+1)b

= Q(xn) (20)

Now if b
′
Q̄(xn+1)b

(1−p)
p

< ∆, then it is easy to see that Q(xn)
satisfy

A
′
(xn)Q̄(xn+1)A(xn)− p

A
′
(xn)Q̄(xn+1)bb

′
Q̄(xn+1)A(xn)

b
′
Q̄(xn+1)b

< Q(xn)

The condition b
′
Q̄(xn+1)b

(1−p)
p

< ∆ can be simplified to give

(1− p)(1+b
′
Q̄0(xn+1))b) < 1

where Q(x) = ∆Q0(x) and matrix Q0(x) satisfies (20) with

∆ replaced with one.

We now prove the result for the second moment exponential

stability of the relaxed system (12).

Lemma 17: The necessary condition for the second moment

exponential stability of the relaxed system (12) is given by

(1− p)
N

∏
k=1

(

λ k
exp

)2

< 1 (21)
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where λ k
exp = expΛk

exp and Λk
exp > 0 is the kth positive Lya-

punov exponent of the uncontrolled system xn+1 = f (xn).
Proof: From Lemma 16, we know that the optimal

solution Q(x) of the Riccati equation will qualify as a

Lyapunov function if

(1− p)
(

1+b
′
Q̄0(xn+1)b

)

< 1 (22)

where Q0(x) satisfies (20) with ∆ replaced with one i.e.,

A
′
(xn)Q̄0(xn+1)A(xn)−

A
′
(xn)Q̄0(xn+1)bb

′
Q̄0(xn+1)A(xn)

1+b
′
Q̄0(xn+1)b

= Q0(xn) (23)

Applying the determinant formula det(X +ac
′
) = det(X)(1+

c
′
X−1a), where a and c are column vectors, to Acl(xn) =

A(xn)−
bb

′
Q̄0(xn+1)A(xn)

1+b
′
Q̄0(xn+1)b

, we get

1+b
′
Q̄0(xn+1)b = det(A(xn))det(Acl(xn))

−1 (24)

Furthermore the Riccati equation (23) can be written in terms

of Acl as

A
′
(xn)Q̄0(xn+1)Acl(xn) = Q0(xn) (25)

Hence the inequality (22) using (24) and (25) can be written

as

(1− p)det(A2(xn))det(Q̄0(xn+1)det(Q0(xn))
−1 < 1 (26)

where Q̄0(xn+1) = Eγn [Q0(xn+1)]. Now Eγn [Q0(xn+1)] ≥
Q0(x̃n+1), where x̃n+1 = f (xn) or x̃n+1 = f (xn) + bk(xn).
Hence we get following necessary condition for (26) to be

true

(1− p)det(A2(xn))det(Q0(x̃n+1)det(Q0(xn))
−1 < 1 (27)

Let xn = f n(x0) := f ◦ . . . ◦ f (x0) ( f composed n times).

Since the inequality (27) needs to hold true at all points

x∈X , computing the above inequality along the uncontrolled

trajectory xn = f n(x0) we get

(1− p)n
n−1

∏
k=0

det(A2( f k(x0)))det(Q0(x̃k+1)Q0( f k(x0))
−1) < 1

Taking log and average over n, we get

1

n
logqn

n−1

∏
k=0

det(A2( f k(x0)))det(Q0(x̃k+1)Q0( f k(x0))
−1) < 0 (28)

where q := 1− p and x̃k+1 is equal to f ( f k(x0))+bk( f k(x0))
or f ( f k(x0)). Now we make use of the ergodic property of

the uncontrolled system xn+1 = f (xn) to compute the quantity

in the left hand side of the above inequality in the limit as

n → ∞. Using assumption 3, we know that system has a

unique ergodic invariant measure µ which is equivalent to

Lebesgue. Ergodictiy with respect to Lebesgue measure has

the consequence that any positive Lebesgue measure set can

be evolved forward to intersect any other positive measure

set with the intersection having positive measure as well.

Now consider any point x̃k+1 in (28), by ergodicity we know

that there exists an integer m such that ‖ x̃k+1 − f m(x0) ‖< ε

and hence |detQ(x̃k+1)Q( f m(x0))
−1)| ≤ 1±δ with δ and ε

arbitrary small. Hence for large enough n, we get from (28)

1

n
log

[

(1− p)n(1±δ )n
n−1

∏
k=0

det(A2( f k(x0)))

]

< 0

Since δ here is arbitrary, we get following necessary condi-

tion using the result from Definition 7 and Remark 8

(1− p)
N

∏
k=1

(

λ k
exp

)2

< 1

This gives us the required necessary condition (21) for the

second moment stability of the relaxed system.

We are now ready to prove the main result of this paper on

second moment stability of system (1).

Proof: [Proof of Theorem 12] Since system equations (12)

are relaxation of the actual system equations (11). The nec-

essary condition for the second moment exponential stability

of the relaxed system will form the necessary condition for

the actual system.

IV. EXAMPLES

We consider a two dimensional piecewise linear map on X =
[−0.5,0.5]× [0,1], where the line (−0.5,y) is identified with

(0.5,y) and similarly the line (x,0) is identified with (x,1).
The system is described by following equation.

zn+1 =

{

A1zn +B(un +wn) for 0 ≤ xn ≤ 0.5

A2zn +B(un +wn) for −0.5 ≤ xn ≤ 0
(29)

where zn = (xn,yn)
′, wn ∈ [0,0.01] is an uniform random

variable, and

A1 =

(

0.5 2

−2 1

)

, A2 =

(

−0.5 2

−2 1

)

, B =

(

1

0

)

The Lyapunov exponents for the map are computed to be

equal to Λ1
exp = 0.6975 and Λ2

exp = 0.6965. Since the map is

expanding it satisfies the assumption 1 of the main theorem.

The matrix A1 and A2 are chosen such that the system is

continuous at the boundaries and along the lines where the

phase space is identified. Based on the Lyapunov exponents,

the critical transition probability is computed to be equal to

p∗ = 1− 1

exp
2(Λ1

exp+Λ2
exp)

= 0.93. The feedback control gains

K1 and K2 are chosen such that closed loop system with no

erasure is stable.

K1 = [1.2003 1.5645], K2 = [0.3518 1.4791]

From Fig.1 and Fig. 2, we see that for value of non-erasure

probability below critical value of p∗, the linearized state

variance grows unbounded while for non-erasure probability

above p∗ the linearized state variance is bounded.

V. CONCLUSION

In this paper, we have considered the stabilization of a

class of nonlinear systems by state feedback controller when

the actuation command may be lost on a communication

link with certain probability. We have adopted the notions

of stability from the random theory of dynamical systems.
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Fig. 1. Plots for non-erasure probability of p = 0.92 below p∗ (a) State
trajectory; (b) Linearized state variance.
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Fig. 2. Plots for non-erasure probability of p = 0.97 above p∗ (a) State
trajectory; (b) Linearized state variance.

We have shown that the Laypunov exponents of the open

loop plant characterize the stabilization limitations and the

required quality of service of the communicaion link. Our

preliminary results are quite encouraging and our novel

approach, based on random dynamical system theory, is

amenable to various extensions. One important feature of our

main result is its global nature away from the equilibrium

and the emergence of the open loop Lyapunov exponents as

the natural generalization of the linear system eigenvalues in

capturing the system limitations.
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VII. APPENDIX

Definition 18 (Optimal control on tangent space):

Consider the system

xn+1 = f (xn)+ γnbk(xn), ηn+1 =
∂ f

∂x
(xn)ηn +bvn (30)

where {γn}
∞
n=0 ∈ {0,1} be a sequence of i.i.d random vari-

ables. Let x0,x1, · · · be the trajectory of the state space

dynamics and η0 be the initial state for the tangent space

dynamics. Consider the following infinite horizon cost crite-

ria

ϑ(x,η) = min
v0,v1,...

∞

∑
n=0

Eγn
0

[

η
′

nR(xn)ηn +
∆

2
v2

n

]

(31)

where R(x) ≥ 0 is a positive semi definite matrix, ∆ > 0 is

some constant and x = x0 and η = η0. The objective is to find

the sequence of control input v0,v1, · · · for the tangent space

dynamics such that the cost function (31) is minimized.

Theorem 19: Consider the optimal control problem for the

tangent space dynamics as defined in Definition 18, the

optimal control input v∗n for the tangent space dynamics that

minimizes the infinite horizon cost criterion (31) is of the

form: v∗n = −
b
′
P̄(xn+1)A(xn)

∆+b
′
P̄(xn+1)b

ηn where P̄(xn+1) := Eγn [P(xn+1)]

and satisfies following Riccati like matrix equation

P(xn) = A
′
(xn)P̄(xn+1)A(xn)−

A
′
(xn)P̄(xn+1)bb

′
P̄(xn+1)A(xn)

∆+b
′
P̄(xn+1)b

+R(xn)

The optimal cost function is quadratic and is of the form

ϑ ∗(x,η) = η
′
P(x)η

The proof of this theorem follows along the lines of proof

for the optimal control of linear time varying system. We

omit the proof of this theorem due to space constraints.
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