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Abstract— This paper concerns the power minimization prob-
lem in server farms. The power minimization problem over
dynamic power allocation schemes is formally defined and
formulated as an optimization problem. It is shown that finding
the optimal solution for this optimization problem is not
feasible. Inspired by control theory, a well-established method
to optimize a cost function over the constraints imposed by the
evolution of a dynamical system, called Real-Time Optimization
(RTO), is invoked to find a sub-optimal solution for the power
minimization problem. The obtained algorithm is simulated
and compared with the state-of-the-art optimal static power
allocation solution. A considerable improvement in energy
consumption is attained for the same quality of service (QoS)
level, when dynamic power allocation is used.

I. INTRODUCTION

Recently, power delivery, electricity consumption, and
heat management in server farms have gained considerable
attention, because of their quickly rising energy expenditure.
In the United States alone, the energy bill due to server
farms amounted to about $4.5 billion per year in 2007 [10],
while worldwide spending on enterprise power and cooling
is reported to be more than $30 billion [19], [17].

This paper focuses on the problem of allocating the
available power budget to different servers in order to
minimize the total energy consumption while satisfying the
required quality of service (QoS). In real world applications,
job arrival rates are time-varying. For example, a search
engine’s load fluctuates considerably during the day, with
demand usually higher during office hours than at night.
Consequently, use of static power allocation solutions is not
satisfactory in many cases.

This paper has two main contributions. First, we formalize
the average power optimization problem in a server farm and
we state it as an optimization problem. Unsurprisingly, the
general problem is shown to be hardly tractable both theo-
retically and computationally. Our second main contribution
is a reformulation of the optimization problem as a tractable
optimal control one that can be solved using the well-known
two-stage real-time optimization approach.

The proposed algorithm dynamically changes the power
allocated to servers based on the current and predicted
incoming load. Due to the non-negligible start-up time of
servers, the algorithm has to predict the future processing
power demand in order to ensure that sufficient resources
are always available. A Markov Modulated Poisson Process
(MMPP) is used to describe the time-varying job arrival
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process, as it qualitatively models the time-varying arrival
rate while remaining analytically tractable [9]. The resulting
dynamic algorithm is then compared with the state-of-the-
art static solutions to show that power consumption can be
drastically reduced without compromising the QoS.

The rest of the paper is organized as follows: in Sec. II, the
prior work on data center power management as well as the
real-time optimization (RTO) method is reviewed. In Sec. III
the required assumptions for different system components
are stated and the average power minimization problem is
formally defined. Section IV discusses our proposed method
to obtain a sub-optimal dynamic power allocation for server
farms. Section V is devoted to simulations to compare our
proposed algorithm with the state-of-the-art static solutions.
Finally, conclusions and directions for future work are pro-
vided in Sec. VI.

II. PRIOR WORK

Power management techniques span from hardware ap-
proaches to decrease processor power consumption to effi-
cient cooling methods. From an implementation viewpoint,
the solution operates either locally (chip, server, etc.) [1],
[14], [21] or globally (cluster, data center) [17], [10], [18],
[19], [7], [16].

Two types of problems can be considered in the power
management area [19]. In the peak power allocation prob-
lems, the QoS is maximized while ensuring that the system
does not violate a given peak power budget, where the
peak power budget is typically a critical specification of a
server farm [8], [5], [10]. In the average power allocation
problems, the focus is about minimizing the average power
required to achieve a certain QoS [18], [1]. Power allocation
solutions may be static, or dynamic. In the first case, the
power allocated to servers does not vary over the time. In
the latter case, the power allocated to servers depends on the
number and arrival rate of job requests.

In the process control engineering area, the two-stage real
time optimization (RTO) approach is a well-known technique
to optimize an “economic” cost in dynamical systems subject
to disturbances and uncertainties [3], [2], [6], [15]. The
general hierarchical structure of an RTO-based system is
shown in Fig. 1. An upper-level real-time optimization layer
performs the economic cost optimization at steady state
and computes optimal set-points for the dynamical system.
The validation part ensures that the optimal set-points are
achievable and compatible with state or control constraints
and passes them to a lower-level dynamic layer. At the
dynamic layer, a controller tries to track the set-points and to
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Fig. 1. Hierarchical control structure in real-time optimization systems,
[6].

keep the state variables as close to the optimal set-points as
possible. Besides, observers at the dynamic layer provide the
necessary information to update the steady-state model and
re-optimize the set-points. Parameters of both cost function
and constraints are provided to the RTOs by the planning
and scheduling system.

III. AVERAGE POWER MINIMIZATION PROBLEM
DEFINITION

Consider a server farm consisting of M similar servers
all sharing workload and power supply. Incoming jobs are
buffered at the input of an available server according to the
task assignment policy. We assume homogeneity in the server
farm architecture so that any packet can be routed to any
server.

A. Component Model

In order to formally analyze the performance of an ar-
bitrary power allocation scheme, we need models to relate
power and frequency in server processors and to describe the
job arrival process.

1) Power-vs-Frequency relationship: The frequency at
which a processor works may vary based on the power supply
voltage and hence the power consumption level. We define
such relationship as a function

g : P → C ; c = g(p), (1)

where P is the set of all possible power consumption
levels, C is the set of frequencies at which a server can
operate, p is the server power consumption level, and c
is its corresponding frequency. This function depends on
processor technology as well as the scaling mechanism used
to control this relationship such as DFS (Dynamic Frequency
Scaling), DVFS (Dynamic Voltage and Frequency Scaling)
and DVFS+DFS [10], [19], [13].

2) Job arrival process: A job arrival model can be derived
performing statistical analysis on arrived job traces. There is
always a trade off between the accuracy of a stochastic model

and its mathematical tractability. Varying-rate processes re-
quire additional attention, because models usually lead to
mathematically intractable problems.

B. Power Allocation Scheme and Constraints

Let [0,T ] be the time interval of interest.
Definition 1- A static power allocation scheme P is an

ordered set of real numbers {p j ∈P; j = 1, . . . ,M} where p j
is the power allocated to the jth server over the said interval
and P is the set of all possible power consumption levels
for a server.

Definition 2- A dynamic power allocation scheme F is
an ordered set of functions { f j : [0,T ]→P; j = 1, . . . ,M}
where f j(t) is the power allocated to the jth server at the
time t.

A dynamic power allocation scheme can be either open-
loop or closed-loop. In open-loop the whole function is
determined at time 0, while in closed-loop, the function at
time t depends on the observations of the system parameters
up to time t. Static power allocation schemes are open loop
by definition.

For every power allocation scheme, we can define a cost
function E which models the total energy consumed by all
servers during the whole time interval. For a static power
allocation P we can write

E(P) = T
M

∑
j=1

p j, (2)

while for a dynamic power allocation F we have

E(F) =
M

∑
j=1

∫ T

0
f j(t)dt. (3)

Dynamic power allocations are the main subject of our
investigation. In general, we would like to find an optimal
power allocation F∗ that minimizes (3) while satisfying a
set of constraints. We consider two types of constraints:
start-up constraints and performance constraints. The start-
up constraints state that a server turned on at a time t
cannot start processing immediately. We define startup state
such a period of time. A set of power allocation schemes
that satisfies the startup constraints is denoted by FI . The
performance constraints are usually expressed in terms of
performance and throughput parameters, e.g., mean delay
time, jitter, total server farm throughput. The set of power
allocation schemes that satisfies the performance constraints
is denoted by FP.

C. Problem Formulation

The average power minimization problem over a dynamic
power allocation schemes can be defined as

min
F

E(F)

F ∈FI (4)
F ∈FP.
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D. Difficulty in Solving the General Problem

With general models for power-to-frequency relationship
and job arrival process, the optimization problem in (4) is
extremely hard to solve both theoretically and computation-
ally. First of all, its solution involves a combinatorial search
over an extremely large set: for each server s j, a solution
is a function f j : [0,T ] → P which is a member of the
infinite dimensional set P [0,T ]. In practice, we may analyze
the system in discrete time with a sampling time τs assumed
to be very small compared to T to have a reasonably small
discretization error. Then, the solutions for each server would
be the sequences f j(k)∈P , k = 1, . . . ,N, where N = T

τs
. The

solution space, PN , would still be very large. Furthermore,
the number of servers M in a server farm can be very high
and therefore, a power allocation solution for the whole
server farm would be in the space PN×M , far from tractable.

The constraints add another level of complication as they
are in general non-convex. Consequently, for many practical
cases it is not possible to calculate the optimal solution and
we need to make some simplifying assumptions and to look
for sub-optimal solutions.

IV. AN RTO APPROACH TO AVERAGE POWER
MINIMIZATION PROBLEM

Let us consider a discrete-time control approach. The
resulting power allocation solution will be a piecewise con-
stant function. The incoming job process is also discretized
accordingly, which means that all the jobs arrived during a
time slot are assumed to have arrived at the beginning of the
next time slot.

We also assume that servers only have three states: on,
su (starting-up), and off. In the off state a server does not
consume power and it does not process jobs (p = 0,g(0) =
0). In the su state, a server consumes psu watts while it
does not process jobs (g(psu) = 0). Finally in the on state, a
server power consumption is pon and its processor works at a
nominal frequency con. The power-vs-frequency relationship
can be written as

g : P = {0, psu, pon}→ C = {0,con}; (5)
g = {(0,0),(psu,0),(pon,con)}.

We denote the state of jth server during the kth interval
as S j(k) which takes values in the set {off, su, on}. At each
time slot k, the number of on servers determines the total
processing capacity c(k) of the whole server farm

c(k) = ∑
S j(k)=on

con. (6)

In discrete-time, the arriving job model is given by the
number of jobs arrived at each time slot together with their
size distribution. In this paper, we assume that all jobs have
the same size. Under such an assumption, the incoming job
model is described by a random process {X(k), k ∈ Z},
where X(k) is the total number of task units arrived at the
kth slot. Since all jobs have the same size, the optimal task
assignment algorithm is the one which assigns each task unit
to the least busy server.

A Markov Modulated Poisson Process (MMPP) is used
to model the varying-rate incoming job process {X(k)} [9].
The discrete-time MMPP consists of a finite-state discrete-
time Markov chain whose states are chosen from the set S=
{s1,s2, . . . ,sn} with a transition matrix P and a set of arrival
rates {λ1,λ1, . . . ,λn}. The state of the Markov chain during
the kth slot, denoted with Z(k), determines the rate at which
jobs arrive at the server farm, and we call it Markov chain
rate. Let si be the state of the Markov chain in the kth slot,
i.e. Z(k) = si. Then, the distribution of jobs arriving at the
server farm during the same slot has a Poisson distribution
with rate λi. Job arrival rates change randomly according to
the transition matrix P. We set the discretization sampling
time to be the amount of time it takes for an on server to
process a task unit. The frequency con is then normalized to
1 job units per time slot.

When a server is switched on, it cannot immediately start
processing the assigned tasks. Let Ts be the number of
intervals that a server requires in order to transition from
the off state to the on state. We assume that the transition
from the on state to the off state takes a negligible amount
of time.

Given the above constraint, the state of servers at the
beginning of the kth slot is determined by the sequence of the
switching commands, i.e. the commands to switch the servers
on and off, during all time slots before k. The problem (4)
can now be reformulated as

min
u

E(F(u)) (7)

F(u) ∈FP,

where F(u) is the power allocation scheme when the switch-
ing command u is applied.

Since the decision to turn on a server yields its effect only
Ts interval later, the future status of the system need to be
taken into account to make a decision at the current time.

The performance constraint we consider is the mean delay.
Mean delay is the expected time it takes to complete a job
from its arrival at the server farm. A power allocation scheme
is acceptable only if the mean delay time is less than a certain
predetermined value TD.

A. Optimal Control formulation

Let l(k) be the number of jobs in the server farm during
the kth slot. The number of jobs arriving at the server farm
during the kth interval is the uncontrollable, stochastic input,
while the switching command is the controllable input. We
can describe the evolution l(k) as

l(k+1) = l(k)+X(k)−min
{

l(k), cu(k)
}
, (8)

where cu(k) is the service rate of the server farm at the time
k when the switching command control u is applied. The
cost function (3) can be written as

E(u) =
N

∑
k=1

 ∑
S j(k)∈ON(u,k)

pon + ∑
S j(k)∈SU(u,k)

psu

, (9)
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where for each time slot k, ON(k,u) is the set of on servers
and SU(k,u) is the set of starting-up servers where the
switching control commands u is applied.

Performance constraints in (7) can be written in terms of
the state variables l j and the control input u

D(u) = E
[

∑k 1+ l(k)
∑k X(k)

]
, (10)

where the expectation is taken over the incoming job dis-
tribution. Using (9) and (10), the optimal power allocation
problem in (4) can be rewritten as

min
u

E(u)

D(u)≤ TD. (11)

B. Real-Time Optimization approach

In our scenario, the job arrival rate is time varying and
unknown a priori. The model update part uses statistical
properties of the incoming job process as well as the ob-
served data to provide an estimated value of the job arrival
rate. In the steady-state optimization part, the cost function is
optimized based on the steady-state behavior of a queueing
theoretic model of the server farm, given the estimated
arrival rate. The optimal set-points are passed to the dynamic
controller in terms of the required processing capacity as
well as the corresponding steady-state queue length, and the
switching command decisions are made based on these set-
points.

For a given job arrival rate λ and for any number of
active servers c, the dynamic equation (8) can be viewed as
a discrete-time G/D/c queueing system [12]. In this queueing
model, the number of incoming jobs in one slot has a Poisson
distribution of parameter λ , the service time for each job is
deterministic, i.e. 1, and c is the number of servers.

The steady-state behavior of a discrete-time G/D/c queue-
ing systems is well studied [12], [11], [20]. The probability
generating function L (z) (PGF) of l is

L (z) = c(1−ρ)
(z−1)X (z)
zc−X (z)

c−1

∏
i=1

z− zi

1− zi
, (12)

where ρ = λ

c , X (z) is PGF of the input distribution X , and
zi, 1≤ i≤ c−1 are c−1 zeros of zc−X (z) inside the unit
disk {z : |z|< 1} (proved to exist by Riuchè’s theorem [4]).
The mean value l̄ can is given by

l̄ = L ′(1) = λ − (c−1)−ρ2c
2(1−ρ)

+
c−1

∑
i=1

1
1− zi

. (13)

Accordingly, the mean delay time D can be computed using
Little’s theorem [20] yielding D= l̄

λ
. For a fixed input rate λ ,

the optimal (most economic) valid service rate is the smallest
value of c̄ for which the stability condition holds (c̄ > λ )
and the corresponding delay time D satisfies the performance
condition D≤ TD.

C. Dynamic Control approach

Given the optimal set-point (c̄, l̄), the dynamic control
problem is a tracking problem which can be addressed using
classical control tools. We use the following controller

u =
⌊(

α(ĉ− c̄)+β (l̂− l̄)
)⌋

, (14)

where u is the resulting switching command (the number of
servers which should be turned on or off, according to the
sign of u), ĉ and l̂ are predicted service rate and system
content, respectively, at Ts slots ahead if no switching is
applied, α and β are coefficients that can be appropriately
tuned, and b·c is the floor operator.

D. Observation and Model Update

In an MMPP the arrival rate changes randomly according
a transition matrix P. The state of the Markov chain rate at
the current time is unknown and a probability distribution
over all possible states describes our knowledge about the
current arrival rate.

Let the vector µµµ(k + τ|k) ∈ Rn be the probability dis-
tribution over all n possible states of Markov chain rate
at the time slot k + τ , conditioned on all the observations
up to time k. The initial distribution µµµ(0|0) is assumed to
be known, and the current time distribution µµµ(k|k) can be
derived recursively from the distributions in the past, using
the following algorithm:
Step 1 - Time Update: Having µ(k|k) in hand, by the
Chapman-Kolmogorov equation for discrete-time Markov
chains we can write

µµµ(k+1|k) = µµµ(k|k)P. (15)

We call (15) the time update equation.
Step 2 - Measurement update: Once the observation at the
time k + 1 is available, we can use the number of arrived
jobs to correct the probability distribution on Markov chain
rate states. The corrected distribution µµµ(k+1|k+1) is the a
posteriori probability distribution given the number of arrived
jobs X(k+1) at the time k+1. Assume the observer reports
that x jobs have arrived during the time slot k+ 1, i.e. the
event {X(k+1) = x} is observed, we can write

P[Z(k+1) = s j | X(k+1) = x] (16)

=
P[X(k+1) = x|Z(k+1) = s j]P[Z(k+1) = s j]

P[X(k+1) = x]

=
e−λ j

λ x
j

x! µ j(k+1|k)

∑
n
i=1 e−λi

λ x
i

x! µi(k+1|k)
, (17)

where µ j(k+1|k) is the jth element of the vector µµµ(k+1|k).
The arrival rate used in the steady-state optimization part

of the control approach is λ̂ (k+Ts|k), i.e. the expected arrival
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Fig. 2. Markov chain rate in incoming job MMPP model

rate Ts time steps ahead. This prediction can be computed as

λ̂ (k+Ts|k) = E[X(k+Ts)] (18)

=
n

∑
j=1

E[X(k+Ts)|Z(k+Ts) = j] P[Z(k+Ts) = j]

=
n

∑
j=1

λ j µ j(k+Ts|k),

where the probability distribution µµµ(k+Ts|k) can be com-
puted as

µµµ(k+Ts|k) = µµµ(k|k)PTs . (19)

V. SIMULATION RESULTS

In this section a server farm with M = 2000 server
is considered. The traffic is generated via a Montecarlo
approach. Since computation of the optimal solution for
the dynamic power allocation problem (7) is infeasible, our
dynamic solution is compared to the state-of-the-art optimal
static solution.

The performance of our proposed solution depends on a
number of parameters, especially on the starting up period
Ts, start up energy consumption level Psu and the Markov
chain rate transition matrix P. We examine the effect of each
of these parameters and describe a condition under which
the proposed dynamic strategy provides significant energy
savings.

Figure 2 shows the Markov chain rate and the corre-
sponding job arrival rates in the MMPP model we used
in our simulation. The Markov chain rate has three states
corresponding to idle, normal and busy periods of a server
farm, with the incoming workload rates equal to 30%, 60%
and 90% of maximum processing power of the server farm,
respectively.

The change in the load arrival rate can be measured by the
mean run time τ of the Markov chain rate, i.e. the expected
time that the Markov chain rate spends in the same state
before jumping to another. The number of successive time
steps that the Markov chain rate stays in the jth state has a
geometric distribution with parameter 1−Pj j. So the mean
run time τ j for the jth state is 1

1−Pj j
. Averaging over all states,

the mean run time τ is

τ =
M

∑
j=1

µ jτ j =
M

∑
j=1

µ j

1− p j j
, (20)

where µ j is the jth element of the steady-state distribution
µµµ of the Markov chain rate.

The mean delay time obtained by the RTO solution is
depicted in Fig. 3 for different values of the ratio of Ts

τ
.

The allowable delay time is set to be 3 time slots and
the dynamic power allocation algorithm tries to keep the
mean delay below this threshold, while minimizing the total
power consumption. As depicted in Fig. 3, the mean delay
is successfully kept below the threshold approximately for
Ts
τ
< 0.5, but the algorithm fails for larger ratio values as

predicted above. Our algorithm is then compared with that
of the state-of-the-art optimal static power allocation scheme.
For each value of Ts

τ
, our proposed dynamic algorithm and

the optimal static algorithm are compared and the total
energy needed to attain a same performance level in each
case is compared. The energy consumption improvement
provided by the dynamic algorithm is shown in Fig. 4.
The proposed dynamic power allocation algorithm offers the
same mean delay time with 30% less consumed energy,
when the incoming rate changes are sufficiently slower
than the servers’ dynamics ( Ts

τ
� 1 ), Fig. 4. This energy

consumption improvement decreases as the workload rate
changes becomes faster and finally for very abrupt changes in
arrival rate (i.e. large values of Ts

τ
), the static power allocation

strategy might be preferable.
The behavior of the system can be justified considering

the energy saved when turning off idle servers and the
energy spent by starting up servers which cannot imme-
diately process jobs. When the changes on the arrival job
rate are slow compared to the server start-up time, the
saved energy is dominant so the dynamic power allocation
algorithm provides better performance than the static one.
On the other hand, when the changes on the arrival job
rate are on the same scale of the server start-up time, the
energy spent on starting up servers is dominant and this
causes the performance of the dynamic algorithm to degrade
considerably compared to its static counterpart.

Fig. 3. Mean delay time under dynamic power allocation for different
values of Ts

τ
ratio. The allowable delay time is set to be 3 time slots.
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Fig. 4. Improvement in total energy consumption made by proposed
dynamic algorithm comparing to optimal static algorithm for different values
of Ts

τ
ratio. when the same QoS level is attained.

Slowly varying job arrival rate is usually the dominant
case for the server farm applications. The starting up time
Ts is usually in the order of seconds to minutes, while the
time scale of incoming job rate is in the hours time-scale (a
server farms may have busy hours and idle hours in a day).
So for many practical applications, we expect a 10%-20%
saving in consumed energy.

VI. CONCLUSION AND FUTURE WORK

In this paper the average power minimization over dy-
namic power allocation schemes is formally defined and
formulated in terms of an optimization problem. Consider-
ing the infeasibility of the general problem, a sub-optimal
method is proposed. Inspired by optimal control theory,
the well-known two-stage real-time optimization method is
invoked and the original problem is split into two separate
problems: a steady-state optimization problem which pro-
vides the optimal set-points, and a tracking problem to reach
the provided optimal set-points.

The performance of the proposed control algorithm is
shown via a computer simulation and the effect of different
system parameters is investigated. Under a condition called
slowly varying job arrival rate, typically satisfied in server
farms, the proposed algorithm guarantees the allowable mean
delay and considerably improves upon the state-of-the-art
optimal static power allocation with the same overall energy
consumption.

There are a number of simplifying assumptions made in
this study which can be generalized in future work. Without
fundamental changes, the proposed control approach can be
extended to the cases in which the servers have more than
two power consumption levels and corresponding processing
frequencies, as long as there are finite number of such levels.
Removing the assumption about splitting the incoming jobs
into equally sized task units require the development of a task
assignment policy. In such a case, the development of a task

assignment policy and of a power allocation scheme should
be jointly considered under the same optimization problem.
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