
Pathologies of Temporal Difference Methods in
Approximate Dynamic Programming

Dimitri P. Bertsekas

Abstract—Approximate policy iteration methods based
on temporal differences are popular in practice, and have
been tested extensively, dating to the early nineties, but
the associated convergence behavior is complex, and not
well understood at present. An important question is
whether the policy iteration process is seriously hampered
by oscillations between poor policies, roughly similar to
the attraction of gradient methods to poor local minima.
There has been little apparent concern in the approximate
DP/reinforcement learning literature about this possibility,
even though it has been documented with several simple
examples. Recent computational experimentation with the
game of tetris, a popular testbed for approximate DP
algorithms over a 15-year period, has brought the issue
to sharp focus. In particular, using a standard set of 22
features and temporal difference methods, an average score
of a few thousands was achieved. Using the same features
and a random search method, an overwhelmingly better
average score was achieved (600,000-900,000). The paper
explains the likely mechanism of this phenomenon, and
derives conditions under which it will not occur.

Proc. of 2010 Conference on Decision and Control, Atlanta, Ga., Dec. 2010

I. INTRODUCTION

In this paper we discuss some phenomena that hamper
the effectiveness of approximate policy iteration methods
for finite-state stochastic dynamic programming (DP)
problems. These are iterative methods that are patterned
after the classical policy iteration method, with each
iteration involving evaluation of the cost vector of a
current policy, and a policy improvement process aiming
to obtain an improved policy.

We focus on the classical discounted finite-state
Markovian Decision Problem (MDP) as described in
textbooks such as [Ber07] and [Put94]. Here, for a
given policy µ, the policy evaluation phase involves the
approximate solution of the Bellman equation

J = gµ + αPµJ, (1)

where gµ ∈ <n is the one-stage cost vector of the policy
µ, Pµ is its n× n transition probability matrix, and α ∈
(0, 1) is a discount factor.1 The unique solution of Eq.

Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp.
Science, M.I.T., Cambridge, Mass., 02139. dimitrib@mit.edu

Dimitri Bertsekas was supported by NSF Grant ECCS-0801549, by
the LANL Information Science and Technology Institute, and by the
Air Force Grant FA9550-10-1-0412.

Many thanks are due to Huizhen (Janey) Yu for many helpful
discussions and suggestions.

1In our notation <n is the n-dimensional Euclidean space, all vectors
in <n are viewed as column vectors, and a prime denotes transposition.
The identity matrix is denoted by I .

(1) is denoted Jµ and is the cost vector of policy µ.
In the most common form of approximate policy

iteration, we introduce an n×r matrix Φ whose columns
can be viewed as basis functions, and we approximate
the cost vectors of policies by vectors in the range of Φ:

S = {Φr | r ∈ <s}.

Thus, given µ, an approximation of Jµ that has the form
Φrµ is used to generate an (approximately) improved
policy µ via the equation

µ = arg min
µ′∈M

[
gµ′ + αPµ′Φrµ

]
, (2)

where M is the set of admissible policies, and the min-
imization is done separately for each state/component.
This approach is described in detail in the literature, has
been extensively tested in practice, and is one of the
major methodologies for approximate DP (see the books
by Bertsekas and Tsitsiklis [BeT96], Sutton and Barto
[SuB98], Gosavi [Gos03], Cao [Cao07], Chang, Fu, Hu,
and Marcus [CFH07], Meyn [Mey07], Powell [Pow07],
and Borkar [Bor08]; the textbook [Ber07] together with
its on-line chapter [Ber10a] provide a recent treatment
and up-to-date references). The main advantage of using
approximations of the form Φr is that the algorithm
can be implemented using Monte-Carlo simulation using
exclusively low-dimensional linear algebra calculations
(of order s rather than n).

An important question is whether the policy iteration
process will converge or whether it will cycle between
several policies. Convergence is guaranteed in the case
where the policy evaluation is exact (Φ is the iden-
tity matrix), or is done using an aggregation method
(to be described later; see Section IV). However, the
process may also be cycling among several (possibly
poor) policies. There has been little apparent concern
in the approximate DP/reinforcement learning literature
about this possibility, even though it was documented
with several relatively simple examples in the book
[BeT96]. Unfortunately recent research developments
with the game of tetris, a popular testbed for rein-
forcement learning algorithms for more than 15 years
([Van95], [TsV96], [BeI96], [Kak02], [FaV06], [SzL06],
[DFM09], [ThS09]), have brought the issue to sharp
focus and suggest that policy oscillations can prevent the
attainment of good performance. In particular, using a set
of 22 features introduced by Bertsekas and Ioffe [BeI96],

and temporal difference methods (the LSPE method) an
average score of a few thousands was achieved (similar
results were obtained with the LSTD method [LaP03]).
Using the same features and a random search method
in the space of weight vectors r, an average score of
600,000-900,000 was achieved [SzL06], [ThS09]. These
case studies, together with the oscillatory computational
results of [BeI96] (also reproduced in [BeT96], Section
8.3), suggest that in the tetris problem, policy iteration
using the projected equation is seriously hampered by
oscillations between poor policies, roughly similar to the
attraction of gradient methods to poor local minima.

Moreover related phenomena may be causing similar
(and hard to detect) difficulties in other related approx-
imate DP methodologies: approximate policy iteration
with the Bellman error method, policy gradient methods,
and approximate linear programming. In particular, the
tetris problem, using the same 22 features, has been
addressed by approximate linear programming [FaV06],
[DFM09], and with a policy gradient method [Kak02],
also with a grossly suboptimal achieved average score of
a few thousands.

This paper has a dual purpose. The first purpose is to
draw attention to the significance of policy oscillations,
as an issue that has been underestimated, and has the
potential to alter in fundamental ways our thinking
about approximate DP. The second purpose is to propose
approximate policy iteration methods with guaranteed
convergence/termination. In Section II we provide some
background on approximate policy iteration, while in
Section III, we describe the mechanism for oscillations.
In Section IV, we describe some methods to prevent
oscillations and the restrictions that they require. This
leads to specific methods, some new and some known,
which not only don’t exhibit oscillations but also achieve
a more favorable order of error bound.

II. APPROXIMATE POLICY ITERATION

Let us first introduce some notation. We introduce the
mapping T : <n 7→ <n defined by

(TJ)(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
,

for i = 1, . . . , n, where pij(u) is the transition probabil-
ity from state i to state j, as a function of the control
u, and g(i, u, j) is the one-stage cost. For a policy µ we
introduce the mapping Tµ : <n 7→ <n defined by

(TµJ)(i) =
n∑

j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αJ(j)

)
,

for i = 1, . . . , n. The optimal cost vector J∗ is the unique
fixed point of T , while Jµ, the cost vector of µ, is the
unique fixed point of T .

We consider a standard approximate policy iteration
method with linear cost function approximation. In this

method, given Φrµ, an approximation of the cost vector
of the current policy µ, we generate an “improved” policy
µ using the formula Tµ(Φrµ) = T (Φrµ), i.e., for all i

µ(i) = arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j)+αφ(j)′rµ

)
, (3)

where φ(j)′ is the row of Φ that corresponds to state j.
The method terminates with µ if Tµ(Φrµ) = T (Φrµ).
We then repeat with µ replaced by µ.

The theoretical basis for the preceding approximate
policy iteration method is given in Prop. 6.2 of [BeT96]
(also Prop. 1.3.6 of [Ber07]), where it was shown that
if the policy evaluation is accurate to within δ (in the
sup-norm sense ‖Φrµ − Jµ‖∞ ≤ δ), then the method
will yield a sequence of policies {µk} such that

lim sup
k→∞

‖Jµk − J∗‖∞ ≤
2αδ

(1− α)2
. (4)

Experimental evidence indicates that this bound, while
tight in theory ([BeT96], Example 6.4), tends to be con-
servative in practice. Furthermore, often just a few policy
evaluations are needed before the bound is attained. Still,
however, given that α ≈ 1, and that the sup-norm error of
the policy evaluation process (and hence δ) is potentially
large, the bound (4) is far from reassuring.

When the policy sequence {µk} terminates with some
µ, the much sharper bound

‖Jµ − J∗‖∞ ≤
2αδ

1− α (5)

holds. To show this, let J be the cost vector obtained
by policy evaluation of µ, and note that it satisfies ‖J −
Jµ‖∞ ≤ δ (by assumption) and TJ = TµJ (since µk

converges to µ). We write

TJµ ≥ T (J − δe) = TJ − αδe
= TµJ − αδe ≥ TµJµ − 2αδe
= Jµ − 2αδe,

where e is the unit vector, from which by repeatedly
applying T to both sides, we obtain

J∗ = lim
m→∞

TmJµ ≥ Jµ −
2αδ

1− αe,

thereby showing the error bound (5). A comparison of the
two bounds (4) and (5) suggests an important advantage
for methods that guarantee policy convergence.

Let us now discuss algorithmic approaches for approx-
imate policy evaluation. The most popular are:
(a) Projected equation approach: Here we solve the

projected equation

Φr = ΠTµ(Φr),

where Π denotes projection onto the subspace S =
{Φr | r ∈ <s}. The projection is with respect

to a weighted Euclidean norm ‖ · ‖ξ, where ξ =
(ξ1, . . . , ξn) is a probability distribution with pos-
itive components (i.e., ‖x‖2ξ =

∑n
i=1 ξix

2
i , where

ξi > 0 for all i).

(b) Aggregation approach: Here we solve an equation
of the form

Φr = ΦDTµ(Φr),

where Φ and D are matrices whose rows are re-
stricted to be probability distributions. The vector r
has an interpretation as a cost vector of an aggregate
problem that has s states and is defined by Φ and D.
Note that there is a probabilistic structure restriction
in the form of Φ, while there is no such restriction
in the projected equation approach.

Generally, the projected equation approach is associ-
ated with temporal difference (TD) methods, which origi-
nated in reinforcement learning with the works of Samuel
[Sam59], [Sam67] on a checkers-playing program. The
papers by Barto, Sutton, and Anderson [BSA83], and
Sutton [Sut88] proposed the TD(λ) method, which mo-
tivated a lot of research in simulation-based DP, partic-
ularly following an early success with the backgammon
playing program of Tesauro [Tes92]. The original papers
did not make the connection of TD methods with the
projected equation, and for quite a long time it was not
clear which mathematical problem TD(λ) was aiming
to solve! The convergence properties of TD(λ) and its
connections with the projected equation were clarified
in the mid 90s through the works of several authors,
see e.g., Tsitsiklis and Van Roy [TsV97]. More recent
works have focused on the use of least squares-based
TD methods, such as the LSTD (Least Squares Temporal
Differences) method (Bradtke and Barto [BrB96]), and
the LSPE (Least Squares Policy Evaluation) method
(Bertsekas and Ioffe [BeI96]).

The aggregation approach also has a long history in
scientific computation and operations research. It was
introduced in the simulation-based approximate DP con-
text, mostly in the form of value iteration; see Singh,
Jaakkola, and Jordan [SJJ94], [SJJ95], Gordon [Gor95],
and Tsitsiklis and Van Roy [TsV96] (for textbook presen-
tations of aggregation, see [Ber07], [Ber10a]). Currently
the aggregation approach seems to be less popular, but
as we will argue in this paper, it has some interesting
advantages over the projected equation approach, even
though there are restrictions in its applicability.

An important fact, to be shown later, is that when the
aggregation approach is used for policy evaluation, the
policy sequence {µk} terminates with some µ, while this
is generally not true for the projected equation approach.

III. POLICY OSCILLATIONS

Projected equation-based variants of policy iteration
methods are popular in practice, and have been tested

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

Fig. 1. Greedy partition and cycle of policies generated by nonop-
timistic policy iteration. Thus µ yields µ by policy improvement if
and only if rµ ∈ Rµ. In this figure, the method cycles between
four policies and the corresponding four parameters rµk rµk+1 rµk+2

rµk+3 .

extensively, dating to the early nineties (see e.g., the
books [BeT96], [SuB08], and the references quoted
there; for a sample of more recent experimental stud-
ies, see Lagoudakis and Parr [LaP03], Jung and Polani
[JuP07], and Busoniu et al. [BED09]), but the associated
convergence behavior is complex, and involves poten-
tially damaging oscillations that are not well understood
at present. This behavior was first described, together
with the attendant policy oscillation and chattering phe-
nomena, by the author at an April 1996 workshop on
reinforcement learning [Ber96], and was subsequently
discussed in Section 6.4 of [BeT96].

To get a sense of this behavior, we introduce the so
called greedy partition. This is a partition of the space
<s of parameter vectors r into subsets Rµ, each subset
corresponding to a stationary policy µ, and defined by

Rµ =
{
r
∣∣∣ µ(i) = arg min

u∈U(i)

n∑

j=1

pij(u)

(
g(i, u, j) + αφ(j)′r

)
, i = 1, . . . , n

}
.

Thus, Rµ is the set of parameter vectors r for which µ
is greedy with respect to Φr.

For simplicity, let us assume that we use a policy eval-
uation method that for each given µ produces a unique
parameter vector rµ. Nonoptimistic policy iteration starts
with a parameter vector r0, which specifies µ0 as a
greedy policy with respect to Φr0, and generates rµ0 by
using the given policy evaluation method. It then finds a
policy µ1 that is greedy with respect to Φrµ0 , i.e., a µ1

such that rµ0 ∈ Rµ1 . It then repeats the process with µ1

replacing µ0. If some policy µk satisfying rµk ∈ Rµk

is encountered, the method keeps generating that policy.
This is the necessary and sufficient condition for policy
convergence in the approximate policy iteration method.
Of course, the mere fact that a policy iteration method
is guaranteed to converge is not in itself a guarantee of
good performance, beyond the fact that a better error
bound holds in this case [cf. Eqs. (5) and (4)].

In the case of a lookup table representation where
the parameter vectors rµ are equal to the cost-to-go
vector Jµ, the condition rµk ∈ Rµk is equivalent to
rµk = Trµk , and is satisfied if and only if µk is optimal.
When there is cost function approximation, however, this
condition need not be satisfied for any policy. In this
case, since there is a finite number of possible vectors
rµ, one generated from another in a deterministic way,
the algorithm ends up repeating some cycle of policies
µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . ,

rµk+m−1 ∈ Rµk+m , rµk+m ∈ Rµk ;

(see Fig. 1). Furthermore, there may be several differ-
ent cycles, and the method may end up converging to
any one of them depending on the starting policy µ0.
The actual cycle obtained depends on the initial policy
µ0. This is reminiscent of gradient methods applied to
minimization of functions with multiple local minima,
where the limit of convergence depends on the starting
point. Furthermore, the policies obtained may be quite
bad, subject only to the error bound (4) The following
example illustrates policy oscillation.

Example 1: Consider a discounted problem with two
states, 1 and 2, illustrated in Fig. 2(a). There is a choice
of control only at state 1, and there are two policies,
denoted µ∗ and µ. The optimal policy µ∗ when at state
1 stays at 1 with probability p > 0 and incurs a negative
cost c. The other policy is µ and cycles between the two
states with 0 cost. We consider cost approximation of the
form i r, so Φ = (1, 2)′.

Let us construct the greedy partition. We have

Rµ =
{
r | p

(
c+ α(1 · r)

)
+ (1− p)α(2 · r) ≥ α(2 · r)

}

= {r | c ≥ αr},
Rµ∗ = {r | c ≤ αr}.

We next calculate the points rµ and rµ∗ that solve
the projected equations Cµrµ = dµ and Cµ∗rµ∗ = dµ∗ ,
which correspond to µ and µ∗, respectively. We have

Cµ = Φ′Ξµ(1− αPµ)Φ

=
(

1
2

)(
1 0
0 1

)(
1 −α
−a 1

)(
1
2

)
= 5− 9α,

dµ = Φ′Ξµgµ =
(

1
2

)(
1 0
0 1

)(
0
0

)
= 0,

so rµ = 0. Similarly, with some calculation,

Cµ∗ = Φ′Ξµ∗(1− αPµ∗)Φ

=
(

1
2

)(1
2−p 0
0 1−p

2−p

)(
1− αp −α(1− p)
−a 1

)(
c
0

)

=
c

2− p ,

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

1

Fig. 2. The problem of Example 1. (a) Costs and transition probabili-
ties for the policies µ and µ∗. (b) The greedy partition and the solutions
of the projected equations corresponding to µ and µ∗. Nonoptimistic
policy iteration oscillates between rµ and rµ∗ .

dµ∗ = Φ′Ξµ∗gµ∗ =
(

1
2

)(1
2−p 0
0 1−p

2−p

)(
c
0

)
=

c

2− p ,

so
rµ∗ =

c

5− 4p− α(4− 3p)
.

We now note that since c < 0, rµ = 0 ∈ Rµ∗ , while
for p ≈ 1 and α > 1− α, we have

rµ∗ ≈
c

1− α ∈ Rµ;

cf. Fig. 2(b). In this case, approximate policy iteration
cycles between µ and µ∗.

Notice that it is hard to predict when and what kind
of oscillation will occur. For example if c > 0, we have
rµ = 0 ∈ Rµ, while for p ≈ 1 and α > 1− α, we have

rµ∗ ≈
c

1− α ∈ Rµ∗ .

In this case approximate policy iteration will converge to
µ (or µ∗) if started with r in Rµ (or Rµ∗ , respectively).

IV. CONDITIONS FOR POLICY CONVERGENCE

The preceding analysis has indicated that it is desirable to
avoid policy oscillation in approximate policy iteration.
Moreover, as mentioned earlier, when policies converge
there is a more favorable error bound associated with
the method [cf. Eq. (5) versus Eq. (4)]. It is therefore
interesting to investigate conditions under which the
sequence of policies will converge.

To this end, consider a method that evaluates the cost
vector Jµ of a policy µ by a vector Φrµ that is defined
as a solution of the fixed point equation

(MTµ)(Φr) = Φr (6)

where M : <n 7→ S is a mapping (independent of µ).
Let us assume the following conditions:
(a) M is monotone in the sense that My ≤ My for

any two vectors y, y ∈ <n such that y ≤ y
(b) For each µ, there is a unique solution of Eq. (6),

denoted Φrµ.

(c) For each µ and starting point r0, the iteration

Φrk+1 = MTµ(Φrk)

converges to Φrµ.

Note that conditions (b) and (c) are satisfied if MTµ is
a contraction on S.

Proposition 1. Let conditions (a)-(c) hold. Consider the
approximate policy iteration method that uses Eq. (6) for
policy evaluation, and is operated so that it terminates
when a policy µ is obtained such that Tµ(Φrµ) =
T (Φrµ). Then the method terminates in a finite number
of iterations.

Proof: Similar to the standard proof of convergence
of (exact) policy iteration, we use the policy improve-
ment equation Tµ(Φrµ) = T (Φrµ), the monotonicity of
M , and the policy evaluation Eq. (6) to write

(MTµ)(Φrµ) = (MT)(Φrµ) ≤ (MTµ)(Φrµ) = Φrµ.

Since MTµ is monotone by condition (a), by iterating
with MTµ and by using condition (c), we obtain

Φrµ = lim
k→∞

(MTµ)k(Φrµ) ≤ Φrµ.

There are finitely many policies, so we must have Φrµ =
Φrµ after a finite number of iterations, which implies that
Tµ(Φrµ) = T (Φrµ), and that the algorithm terminates
with µ.

When the projected equation approach is used (M =
Π where Π is a Euclidean projection matrix), the mono-
tonicity assumption is satisfied if Π is independent
of the policy µ and has nonnegative components. It
turns out that this is true when Φ has nonnegative
components, and has linearly independent columns that
are orthogonal with respect to the inner product <
x1, x2 >= x′1Ξx2. This follows from the projection
formula Π = Φ(Φ′ΞΦ)−1Φ′Ξ = ΦΦ′Ξ and the fact that
Φ′ΞΦ is positive definite and diagonal.

An important special case where Prop. 4.1 applies and
policies converge is when M = ΦD, and Φ and D are
matrices whose rows are probability distributions. This
is policy evaluation by aggregation, noted in Section II.
Briefly, there is a finite set A of aggregate states, and D
and Φ are the matrices that have as rows disaggregation
and aggregation probability distributions, respectively,
whose components relate the original system states with
the aggregate states and are defined as follows:
(1) For each aggregate state x and original system state

i, we specify the disaggregation probability dxi [we
have

∑n
i=1 dxi = 1 for each x ∈ A]. Roughly, dxi

may be interpreted as the “degree to which x is
represented by i.”

(2) For each aggregate state y and original system state
j, we specify the aggregation probability φjy (we
have

∑
y∈A φjy = 1 for each j = 1, . . . , n).

Roughly, φjy may be interpreted as the “degree of
membership of j in the aggregate state y.”

It can be seen that for the aggregation case M = ΦD,
M is monotone and MTµ is a sup-norm contraction
(since M is nonexpansive with respect to the sup norm),
so that conditions (a)-(c) are satisfied. The same is true
in the more general case M = ΦD, where Φ and D
are matrices with nonnegative components, and the row
sums of M are less or equal to 1, i.e.,

s∑

m=1

ΦimDmj ≥ 0, ∀ i, j = 1, . . . , n,

s∑

m=1

Φim
n∑

j=1

Dmj ≤ 1, ∀ i = 1, . . . , n.

Note that even in this more general case, the policy eval-
uation Eq. (6) can be solved by using simulation and low
order calculations (see [Ber10a] and the survey [Ber10b],
which contains many references). An interesting special
case where the aggregation equation Φr = ΦDTµ(Φr)
is also a projected equation is hard aggregation (the state
space is partitioned into subsets, and each column of Φ
has a 1 for the states in the subset corresponding to the
column, and a 0 for the remaining states), as discussed
in [Ber10a], [Ber10b].

V. CONCLUSIONS

We have considered some aspects of approximate policy
iteration methods. From the analytical point of view, this
is a subject with a rich theory and interesting algorithmic
issues. From a practical point of view, this is a method-
ology that can address very large and difficult problems,
and yet challenge the practitioner with unpredictable
behaviors, such as policy oscillations, which are not fully
understood at present.

We have derived conditions under which policy os-
cillations will not occur, and showed that aggregation-
based methods satisfy these conditions. It thus appears
that these methods have more regular behavior, and offer
better error bound guarantees that TD methods. On the
other hand, aggregation methods are restricted in the
choice of basis functions that they can use, and this can
be a significant limitation for many problems.

REFERENCES

[BED09] Busoniu, L., Ernst, D., De Schutter, B., and
Babuska, R., 2009. “Online Least-Squares Policy Itera-
tion for Reinforcement Learning Control,” unpublished
report, Delft Univ. of Technology, Delft, NL.

[BSA83] Barto, A. G., Sutton, R. S., and Anderson, C.
W., 1983. “Neuronlike Elements that Can Solve Difficult
Learning Control Problems,” IEEE Trans. on Systems,
Man, and Cybernetics, Vol. 13, pp. 835-846.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Tempo-
ral Differences-Based Policy Iteration and Applications
in Neuro-Dynamic Programming,” LIDS-P-2349, MIT,
Cambridge, MA.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996.
Neuro-Dynamic Programming, Athena Scientific, Bel-
mont, MA.

[Ber96] Bertsekas, D. P., 1996. Lecture at NSF Workshop
on Reinforcement Learning, Hilltop House, Harper’s
Ferry, NY.

[Ber07] Bertsekas, D. P., 2007. Dynamic Programming
and Optimal Control, 3rd Edition, Vols. I and II, Athena
Scientific, Belmont, MA.

[Ber10a] Bertsekas, D. P., 2010. Approximate Dynamic
Programming, on-line at
http://web.mit.edu/dimitrib/www/dpchapter.html.

[Ber10b] Bertsekas, D. P., 2010. “Approximate Policy
Iteration: A Survey and Some New Methods,” Report
LIDS-P-2833, MIT; to appear in Journal of Control
Theory and Applications.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation:
A Dynamical Systems Viewpoint, Cambridge Press.

[BrB96] Bradtke, S. J., and Barto, A. G., 1996. “Lin-
ear Least-Squares Algorithms for Temporal Difference
Learning,” Machine Learning, Vol. 22, pp. 33-57.

[CFH07] Chang, H. S., Fu, M. C., Hu, J., Marcus, S. I.,
2007. Simulation-Based Algorithms for Markov Decision
Processes, Springer, NY.

[Cao07] Cao, X. R., 2007. Stochastic Learning and
Optimization: A Sensitivity-Based Approach, Springer,
NY.

[DFM09] Desai, V. V., Farias, V. F., and Moallemi,
C. C., 2009. “Aproximate Dynamic Programming via a
Smoothed Approximate Linear Program, Submitted.

[FaV06] Farias, V. F., and Van Roy, B., 2006. “Tetris:
A Study of Randomized Constraint Sampling, in Prob-
abilistic and Randomized Methods for Design Under
Uncertainty, Springer-Verlag.

[Gor95] Gordon, G. J., 1995. “Stable Function Approxi-
mation in Dynamic Programming,” in Machine Learning:
Proceedings of the Twelfth International Conference,
Morgan Kaufmann, San Francisco, CA.

[Gos03] Gosavi, A., 2003. Simulation-Based Optimiza-
tion Parametric Optimization Techniques and Reinforce-
ment Learning, Springer-Verlag, NY.

[JuP07] Jung, T., and Polani, D., 2007. “Kernelizing
LSPE(λ),” in Proc. 2007 IEEE Symposium on Approxi-
mate Dynamic Programming and Reinforcement Learn-
ing, Honolulu, Hawaii. pp. 338-345.

[Kak02] Kakade, S., 2002. “A Natural Policy Gradient,”
in Advances in Neural Information Processing Systems,

Vol. 14, MIT Press, Cambridge, MA.

[LaP03] Lagoudakis, M. G., and Parr, R., 2003. “Least-
Squares Policy Iteration,” J. of Machine Learning Re-
search, Vol. 4, pp. 1107-1149.

[Mey07] Meyn, S., 2007. Control Techniques for Com-
plex Networks, Cambridge University Press, NY.

[Pow07] Powell, W. B., 2007. Approximate Dynamic
Programming: Solving the Curses of Dimensionality,
Wiley, NY.

[Put94] Puterman, M. L., 1994. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming, J.
Wiley, NY.

[SJJ94] Singh, S. P., Jaakkola, T., and Jordan, M. I.,
1994. “Learning without State-Estimation in Partially
Observable Markovian Decision Processes,” Proc. of the
Eleventh Machine Learning Conference, pp. 284-292.

[SJJ95] Singh, S. P., Jaakkola, T., and Jordan, M. I., 1995.
“Reinforcement Learning with Soft State Aggregation,”
in Advances in Neural Information Processing Systems
7, MIT Press, Cambridge, MA.

[Sam59] Samuel, A. L., 1959. “Some Studies in Machine
Learning Using the Game of Checkers,” IBM J. Res. and
Development, pp. 210-229.

[Sam67] Samuel, A. L., 1967. “Some Studies in Machine
Learning Using the Game of Checkers. II – Recent
Progress,” IBM J. Res. and Development, pp. 601-617.

[SuB98] Sutton, R. S., and Barto, A. G., 1998. Rein-
forcement Learning, MIT Press, Cambridge, MA.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the
Methods of Temporal Differences,” Machine Learning,
Vol. 3, pp. 9-44.

[SzL06] Szita, I., and Lorinz, A., 2006. “Learning Tetris
Using the Noisy Cross-Entropy Method,” Neural Com-
putation, Vol. 18, pp. 2936-2941.

[Tes92] Tesauro, G., 1992. “Practical Issues in Temporal
Difference Learning,” Machine Learning, Vol. 8, pp. 257-
277.

[ThS09] Thiery, C., and Scherrer, B., 2009. “Improve-
ments on Learning Tetris with Cross-Entropy,” Intern.
Computer Games Assoc. Journal, Vol. 32, pp. 23-33.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996.
“Feature-Based Methods for Large-Scale Dynamic Pro-
gramming,” Machine Learning, Vol. 22, pp. 59-94.

[Van06] Van Roy, B., 2006. “Performance Loss Bounds
for Approximate Value Iteration with State Aggregation,”
Math. of Operations Research, Vol. 31, pp. 234-244.

[YuB10] Yu, H., and Bertsekas, D. P., 2010. “New
Error Bounds for Approximations from Projected Linear
Equations,” Mathematics of Operations Research, Vol.
35, 2010, pp. 306-329.

