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The Effect of Retroactivity on the Transfer Function of a Phosphorylation

System

Domitilla Del Vecchio

Abstract— It was theoretically shown that impedance-like
effects, called retroactivity, in biomolecular circuits can sig-
nificantly impact the behavior of a system. In this paper, we
quantify the effect of retroactivity on the transfer function of
a phosphorylation system after linearization of its nonlinear
model about a steady state. Our analysis shows that retroac-
tivity shifts the poles of the transfer function toward the low
frequency.

I. Introduction

A modular approach to either understanding or designing

the behavior of complex systems has been customary in

fields such as electrical engineering and computer science.

Such an approach has been more recently proposed also

in systems and synthetic biology, where researchers seek

to understand the behavior of existing networks and to

engineer new systems from a set of building blocks [2],

[3], [15], [21]. A modular approach is based on the as-

sumption that the behavior of a system is not altered due to

connection with another system. Is this assumption natural

in biomolecular networks? It was theoretically shown that

impedance-like effects, called retroactivity, take place at the

interconnection of biomolecular systems, just as it occurs in

many engineering systems [8]–[10], [24], [25]. Retroactiv-

ity can dramatically affect the behavior of a system upon

interconnection and hence challenges a modular approach

to understand biological complexity [8], [17]. In view of

engineering complex biomolecular systems starting from a

library of building blocks, it is thus necessary to quantify the

effects of retroactivity on important system features and to

device solutions to attenuate retroactivity effects. Toward the

latter end, it was proposed to engineer insulation devices to

be placed between an upstream system sending the signal and

a downstream one receiving the signal to buffer them from

retroactivity effects [7], [8], [18]. In this paper, we focus on

the first problem and carry our analysis for a phosphorylation

system, the fundamental building block of any signaling

network.

Numerous cellular signaling systems consist of cycles

of protein phosphorylation, and in several cases multiple

cycles are linked to form cascade systems [23], [27]. The

importance of these signaling systems has long been realized,

and a wealth of theoretical work has established the potential

behaviors of such systems and the mechanisms by which

parameters and circuitry affect system behavior [1], [6],

[11], [13], [14], [28]. These works described how a cycle
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Fig. 1. Phosphorylation cycle representation. The output of the cycle
XB is taken as an input by a downstream system. Even though the
information travels from upstream to downstream, the presence of a physical
interconnection causes retroactivity on the upstream system.

would behave in the absence of any loading caused by

interconnection with downstream systems, that is, how the

cycle would behave as an isolated signaling module. But,

of course signaling systems are usually connected to the

downstream targets they regulate. These targets, in turn,

cause retroactivity on the upstream system and can thus

change the upstream system behavior. It is thus important

to determine the effect of these targets on the response of

the upstream system. Specifically, it was recently shown

that the dynamic properties of signaling systems, such as

bandwidth, play a key role in important cellular functions

such as preventing crosstalk mechanisms, which can often

lead to diseases such as cancer [4], [5]. Here, we thus focus

on the transfer function of a phosphorylation cycle and show

how the poles are affected by retroactivity.

In this paper, we report a modeling study to quantify

the effects of retroactivity on the dynamic and steady state

responses of a signaling component with the aim of obtaining

predictions that are experimentally testable. We show that the

steady state response decreases for every input stimulation

when the load is applied and that the poles of the transfer

function shift toward the imaginary axis.

This paper is organized as follows. In Section II, we

introduce the model of the system. In Section III, we quantify

the steady state and dynamic effects of retroactivity. In
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Section IV, we discuss the implications of the modeling

results.

II. SystemModel

Phosphorylation cycles can be depicted according to the

general scheme of Figure 1, in which an effector (a small

signaling molecule) EZ converts the enzyme Z from its

inactive form ZA to its active form ZB through an allosteric

modification [12]. The activated enzyme Z B in turn converts

the signaling protein X from its form XA to its form XB,

which is in turn converted back by enzyme Y once it is in its

active form YB. The effector EY brings about the activation of

the enzyme Y, taking it from an inactive form Y A to an active

form YB through another allosteric modification. Protein X

when in form XB can transmit the signal to downstream

systems (for example, other signaling targets or DNA binding

sites) by binding with targets denoted p [2], [19], [20].

In signaling systems, it is usually the active form of the

protein (i.e., the phosphorylated form) to carry information

to downstream systems and to thus bind to downstream

targets. In this case, referring to the diagram of Figure 1,

XB would be the phosphorylated protein and X A would be

the unphosphorylated one. In other cases, however, the inac-

tive protein can carry information and bind to downstream

signaling targets [22]. In this case, protein X B would be

the inactive (unphosphorylated) protein. In either case, the

protein that can be usually experimentally detected (directly

or indirectly) is the active protein. Therefore, it is relevant

in the configuration of Figure 1 to characterize the effects of

retroactivity not only on XB but also on XA.

For any species W, we denote in italics W its con-

centration. The cycle can be modeled by the following

one-step reactions [16], in which we have neglected the

complexes formed between XA and ZB and between XB

and YB, as these are not relevant for the result that we

seek to show here: ZA + EZ

f1
−⇀↽−

f2

ZB, with ZA + ZB = Ztot,

YA + EY

f̄1
−⇀↽−

f̄2

YB, with YA + YB = Ytot, XA + ZB

k1

−→

XB + ZB, XB + YB

k2

−→ XA + YB, with XA + XB = Xtot.

Since the allosteric modification reactions are much faster

than phosphorylation reactions [12], we employ the quasi-

steady state approximation (QSSA) with kD := f2/ f1 and

k̄D := f̄2/ f̄1 to obtain ZB =
ZtotEZ

kD+EZ
, and YB =

YtotEY

k̄D+EY
[26].

Therefore, the ODE model describing the phosphorylation

system is given by

dXB

dt
= k1(Xtot − XB)

ZtotEZ(t)

kD + EZ(t)
− k2XB

YtotEY

k̄D + EY

, (1)

in which we view EY as constant, while EZ(t) is a time-

varying input for our study. However, note that in practice

also EY can be a time-varying input as it is an effector just

like EZ [1]. We will refer to the ODE system model (1)

as the isolated system. For shortening notation, we denote

V(t) :=
ZtotEZ (t)

kD+EZ (t)
and V ′ := YtotEY

k̄D+EY
.

When the phosphorylation cycle transmits its signal

through XB to the downstream system, we add to the isolated

system model the reversible binding reaction of X B with

downstream target sites denoted p. These sites can either

belong to a substrate that is modified by XB through another

phosphorylation cycle as it occurs in the MAPK cascades

[23], [27], or they can belong to promoter regions on the

DNA if XB is an active transcription factor [2]. We model

this additional binding reaction as XB+p
kon

−−⇀↽−−
koff

C, with p+C =

ptot, in which C denotes the complex of XB with p. The

conservation law for X thus modifies to XA + XB +C = Xtot.

Note that if the phosphorylation cycle is not the last stage

in a signaling cascade, the binding reaction to downstream

targets would be another phosphorylation reaction. One can

show that even in this case the impact of retroactivity on

the upstream phosphorylation system is significant [30]. The

new ODE model describing the phosphorylation system with

its downstream system is thus given by

dXB

dt
= k1(Xtot − XB − C )

ZtotEZ

kD + EZ

− k2XB

YtotEY

k̄D + EY

−konXB(ptot − C) + koffC

dC

dt
= konXB(ptot − C) − koffC, (2)

which we refer to as the connected system. Retroactivity

enters the dynamics of the phosphorylation cycle in two

places indicated by the boxes. Specifically, the term in the

small box causes an effect on the steady state response of the

system, while the term in the large box does not have any

effect on the steady state and it affects the dynamics only.

III. Effect of Retroactivity on System Response

In this section, we study in detail the effect of retroactivity

on the steady state response of the system and on the

dynamic response of the system.

A. Steady State Effect of Retroactivity

The effect of retroactivity on the steady state of the system

in correspondence to a constant input stimulus E Z(t) = ĒZ is

measured by the difference of the two steady states for the

isolated and connected systems, that is, we have:

isolated system steady state: X̄B =
k1Xtot

Ztot ĒZ

kD+ĒZ

k2
YtotEY

k̄D+EY
+ k1

Ztot ĒZ

kD+ĒZ

, (3)

connected system steady state: X̄B,c =
k1(Xtot − C̄) Ztot ĒZ

kD+ĒZ

k2
YtotEY

k̄D+EY
+ k1

Ztot ĒZ

kD+ĒZ

,

(4)

in which C̄ > 0 is the equilibrium value of the complex C,

which is given by

C̄ = γ(X̄B,c) :=
ptotX̄B,c

X̄B,c + kM

. (5)

By substituting equation (5) into equation (4), we obtain the

expression of the equilibrium of the connected system as a
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Fig. 2. (Left) Increasing the load amount decreases monotonically the steady state value of XB for each value of the input stimulation. (Center) Decreasing
the dissociation constant kM , for constant amount of load, decreases the steady state value of XB for every value of the input stimulation. (Right) The
percentage difference ∆ between the isolated and connected system steady states can be decreased by increasing the amounts of total protein Xtot.

function of the input stimulation V = k1
ZtotĒZ

kD+ĒZ
and of the

reverse reaction speed V ′ as

X̄B,c =
−((V + V ′)kM + V(ptot − Xtot))

2(V + V ′)
+

√

((V + V ′)kM + V(ptot − Xtot))2 + 4(V + V ′)VXtotkM)

2(V + V ′)
.

Figure 2 shows the behavior of this steady state response

to V for different values of the load p tot and for different

values of the affinity 1/kM of the load to protein XB. The

equilibrium value of the output X B of the connected system

is lower than that of the isolated system and it monotonically

decreases as ptot increases and/or as kM decreases. That

is, the larger the load amount (p tot) or the “flux” amount

given by the affinity of the binding sites 1/k M, the more

the steady state value is drained. In the same figure, we

show the effect of increasing the total protein concentration

Xtot on the percentage difference between the connected and

isolated systems steady states ∆ :=
X̄B−X̄B,c

X̄B
. As the amount of

total protein is increased, the percentage difference decreases

and therefore the effects of retroactivity on the steady state

response decrease. Note that having X tot ≫ ptot does not

imply that the value of XB is large compared to the load

amount ptot, as it can be still much smaller than the load

(in such a case the value of XA would be much larger than

the load ptot). The effects of the downstream load on the

steady state response of XA are qualitatively the same as

those obtained for XB. Therefore, we do not include them

here.

Note that if a two-step reaction model for the phosphoryla-

tion system was considered, the steady state calculations here

performed would be affected. This case has been addressed in

detail in [29], which shows that the apparent Hill coefficient

of the characteristics decrease due to the addition of the

downstream target.

B. Effects on the Transfer Function

While retroactivity has similar effects on XA and XB steady

state responses, it has qualitatively different consequences on

the dynamic response of these two variables. In this section,

we first analyze these differences on the nonlinear ODE

models and then we perform linearization about the steady

state and compute the frequency response of the system.

By exploiting the time-scale difference between the phos-

phorylation reactions and the binding and unbinding reac-

tions, that is, ko f f ≫ V ′ and kon ≫ V, we can apply singular

perturbation with small parameter ǫ := V ′/ko f f and obtain

(see, for example [7], [8]) the dynamics of X B from system

(2) on the slow manifold as

ẊB =
(

(Xtot − XB − γ(XB))V − V ′XB

)

(

1

1 + dγ(XB)/dXB

)

.

(6)

It follows that (by comparison to equation (1)) the dynamic

response of XB to input stimulations V or V ′ is affected by

the presence of the load even when X tot ≫ ptot (so that

γ(XB) ≪ Xtot), that is, even when the load does not affect

the steady state.

We now turn to the dynamics of XA. From the conservation

law XA = Xtot − XB − C with C = γ(XB), we have that ẊA =

−ẊB(1 +
dγ(XB)

dXB
). As a consequence, the dynamics of XA on

the slow manifold for the connected system are given by

ẊA = −VXA + V ′(Xtot − XA − γ(XB)), (7)

which is the same equation as in the isolated system except

for the presence of the term γ(XB). If Xtot ≫ ptot so that

the load does not affect the steady state of the system, in

equation (7) the term γ(XB) can be neglected with respect

to Xtot and therefore there is no effect of retroactivity on the

dynamic response of XA to the inputs V and V ′. This is a first

important difference between the ways retroactivity affects

the dynamics of XA and XB. While retroactivity has effects on

the dynamics of XB even when it has no steady state effects,

retroactivity affects the dynamics of XA if and only if it has

steady state effects. This fact implies that the best way to

experimentally measure the dynamic effects of retroactivity

is to measure the behavior of XB (as opposed to the behavior

of XA) employing Xtot ≫ ptot so that no discernible steady

state effects are observed. Another consequence of equation

(7) is that even when γ(XB) cannot be neglected compared

to Xtot, retroactivity has no effect on the response of X A

when the system operates with V ′ = 0. Therefore, if one can

measure XA only, to measure dynamic effects of retroactivity,
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Fig. 3. (Left) Effect of increasing the amount of ptot on the frequency response of the system. The parameters are k1 = k2 = 0.01,
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indicated by the arrow in the left plots for the value ptot = 100.

the system should operate with sufficiently high values of V ′

and for values of Xtot sufficiently smaller than ptot.

In order to more precisely quantify how the dynamic

response of the system is affected by retroactivity, we next

linearize the system about its steady state and compute the

transfer function for both the isolated and connected systems.

Linearization is a good approximation of the system dynam-

ics for sufficiently small amplitudes of the input stimulus. A

detailed study on how large the amplitude of the input can be

for maintaining a good approximation can be found in [14].

For the isolated system, let (ĒZ , X̄B) be the equilibrium point

and let ẼZ(t) = EZ(t) − ĒZ and X̃B(t) = XB(t) − X̄B denote

the variations about the equilibrium value. The linearized

dynamics are thus given by

˙̃XB = βẼZ − αX̃B, (8)

in which we have defined

β := k1(Xtot−X̄B)
ZtotkD

(kD + ĒZ)2
, α :=

(

k1

Ztot ĒZ

kD + ĒZ

+ k2

YtotEY

k̄D + EY

)

.

(9)

The transfer function from ẼZ to X̃B is given by

T (s) =
β

s + α
,

in which T (s) := X̃B(s)/ẼZ(s), so that amplitude and phase

lag are given by

A(ω) =
√

T ( jω)T (− jω) =
β

√
ω2 + α2

φ(ω) = arctan

(

Im(T ( jω))

Re(T ( jω))

)

= arctan(−ω/α). (10)

The bandwidth is thus given by

ωbandwidth = α.

For the connected system, let the equilibrium point be

given by (ĒZ , X̄B,c, C̄) and the variations about this equilib-

rium be denoted by ẼZ(t) = EZ(t)− ĒZ , X̃B,c(t) = XB,c − X̄B,c,

and C̃(t) = C(t) − C̄. The linearized system is thus given by

˙̃XB = β̄ẼZ − (α + γ)X̃B − (σ + η) C̃

˙̃C = γX̃B − ηC̃, (11)

in which we have denoted

β̄ := k1(Xtot − X̄B,c − C̄)
ZtotkD

(kD + ĒZ)2
, σ := k1

Ztot ĒZ

kD + ĒZ

,

γ := kon(ptot − C̄), η := konX̄B,c + koff.

The transfer function T c(s) := X̃B(s)/ẼZ(s) is given by

Tc(s) =
β̄(s + η)

s2 + s(η + α + γ) + ηα + σγ
.

Exploiting the fact that the binding and unbinding process

of a protein to binding sites is usually much faster than

phosphorylation reactions [12], we set η = η̄/ǫ and γ = γ̄/ǫ,

in which ǫ ≪ 1 and γ̄ and η̄ are of the same order as k 1 and

k2. By using the expressions of η̄ and γ̄ and setting ǫ = 0,

we obtain the reduced transfer function for the connected

system as

Tc(s) =
β̄

s(1 + µ) + α + σµ
, with µ =

ptotkM

(X̄B,c + kM)2
.

The amplitude and phase lag corresponding to T c(s) are

given by

Ac(ω) =
√

Tc( jω)Tc(− jω) =
β̄

√

ω2(1 + µ)2 + (α + σµ)2

φc(ω) = arctan

(

Im(Tc( jω))

Re(Tc( jω))

)

= arctan

(

−ω(1 + µ)

α + σµ

)

,(12)

so that the bandwidth of the connected system is given by

ωbandwidth,c = α
1 + µ(σ/α)

1 + µ
.

Therefore, ωbandwidth,c < ωbandwidth, that is, the bandwidth of

the connected system is strictly smaller than the bandwidth

of the isolated system and the connected system displays

a phase lag with respect to the isolated system. This is
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illustrated in Figure 3. Also, the bandwidth decreases with µ:

for µ = 0 it is equal to that of the isolated system while for

µ→ ∞ it tends to σ. In turn, µ monotonically increases with

ptot and (for kM sufficiently large) it also increases with 1/kM

(the affinity of XB to sites p). For values of kM close to zero,

the value of µ is not informative as the linear approximation

does not hold. We thus conclude that the larger the value

of µ the larger the effect of retroactivity on the dynamical

properties of the cycle, that is, the smaller the frequency

bandwidth and hence the slower the system response.

The bandwidth ωbandwidth,c of the connected system can

be increased by increasing α. One way to increase α is

to equally (so not to alter the equilibrium of the system)

increase the values of both Ztot and Ytot. The result is that

the behavior of the connected system becomes closer to

the one of the isolated system (Figure 4). In the limit in

which Ac(0) = A(0), the behavior of the connected system

approaches the one of the isolated system when both Z tot

and Ytot are increased. That is, the system becomes insulated

from retroactivity. Note that if β̄ is much smaller than β,

that is, Ac(0) ≪ A(0), the dominant effect of retroactivity is

on the steady state. In fact, increasing the frequency of the

input stimulation will not result in a dramatic decrease of the

connected system response compared to the isolated system

response as these two responses are apart from each other

already at zero frequency.

The frequency response analysis was performed for X B

only as similar qualitative results would be obtained for X A

assuming that the linearization is performed at values of X B

different from Xtot or 0.

IV. Discussion

In this modeling study, we have quantified the effect of

retroactivity on both the steady state and transfer function of

a phosphorylation system. Our study indicates that to obtain

discernible effects of retroactivity on the dynamic response of

the measurable quantity XA, we should examine the system

in conditions in which the steady state effects of retroactivity

are also significant (that is, Xtot ≤ ptot). In these conditions,

however, the analysis in the frequency domain indicates

that if the steady state effects are too dramatic, then the

difference between the frequency responses of the isolated

and connected systems are mostly due to the difference in

the steady state as opposed to being due to the difference in

the bandwidth. Therefore, the amount of load p tot should not

be too low compared to X tot otherwise steady state effects are

not observed (and thus dynamic effects on X A would not be

observed either), but it should not be too high compared to

Xtot, otherwise the difference between the bandwidths cannot

be appreciated.

V. Conclusions

We have proposed a modeling study to quantify the effects

of retroactivity on the steady state and transfer function of

a phosphorylation cycle. Our results indicate that the steady

state response to input allosteric effectors becomes less sen-

sitive and that the poles of the transfer function move toward

the imaginary axis. The steady state effects of retroactivity

can be reduced by increasing the total protein amounts while

the dynamic effects can be reduced by increasing the amounts

of converting enzymes.
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