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Abstract

Recently, it has been demonstrated that an arbitrary linear quantum stochas-
tic system can be realized as a cascade connection of simple one degree of freedom
quantum harmonic oscillators together with a direct interaction Hamiltonian which is
bilinear in the canonical operators of the oscillators. However, from an experimental
point of view, realizations by pure cascading, without a direct interaction Hamilto-
nian, would be much simpler to implement and this raises the natural question of
what class of linear quantum stochastic systems are realizable by cascading alone.
This paper gives a precise characterization of this class of linear quantum stochastic
systems and then it is proved that, in the weaker sense of transfer function realizabil-
ity, all passive linear quantum stochastic systems belong to this class. A constructive
example is given to show the transfer function realization of a two degrees of freedom
passive linear quantum stochastic system by pure cascading.

Keywords: Linear quantum stochastic systems, quantum system realization, quantum
networks, quantum control, linear quantum optics

1 Background and Motivation

Recently, there has been interest in the literature on control of a linear quantum stochastic
system with a controller which is a quantum system of the same type [1, 2, 3, 4], often
referred to as “coherent-feedback control”. The potential applications for linear quantum
stochastic systems include quantum information processing and photonic signal processing.
For instance, they can act as the coherent photonic circuitry subsystem in a cavity QED
system, the latter system being realized by placing suitable atoms inside the optical cavities
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in a linear quantum stochastic system. Cavity QED networks are of interest for quantum
information processing (see, e.g., [5]), such as in the quantum internet [6], whilst the
controller realized in [4] is an early sample application of linear quantum stochastic systems
to photonic signal processing.

The studies on coherent-feedback control naturally led to the consideration of the net-
work synthesis problem for linear quantum stochastic systems [7], which may be viewed
as a quantum analogue of the network synthesis problem for linear electrical systems [8].
Nurdin, James and Doherty [7] have shown that any linear quantum stochastic system
can, in principle, be synthesized by a cascade of simple one degree of freedom harmonic
oscillators together with a direct interaction Hamiltonian between the canonical operators
of these oscillators. Alternative schemes have subsequently been proposed in [9, 10], but we
note that [10] considers a weaker type of realizability than in [7, 9], i.e., transfer function
realizability (cf. section 3), and the results therein limited to a certain sub-class of linear
quantum stochastic systems.

From an experimental perspective, direct bilinear interaction Hamiltonians between
independent harmonic oscillators are challenging to implement for systems that have more
than just a few degrees of freedom and therefore it becomes important to investigate
what kind of systems can be realized by a pure cascade connection. A key result of this
paper is a necessary and sufficient condition for a linear quantum stochastic system to
be realizable by only a cascade connection of one degree of freedom oscillators, without
any direct interaction Hamiltonian. Moreover, we also show that the associated transfer
functions of all passive linear quantum stochastic systems can always be realized by a
cascade connection, proving in general the partial results of [10] without the additional
assumptions made therein.

The organization of this paper is as follows. Section 2 sets up the notations and gives a
brief overview of linear quantum stochastic systems. Section 3 defines the synthesis problem
and discusses the notions of strict realizability and transfer function realizability. Section 4
derives a necessary and sufficient condition for a linear quantum system to be realizable by
a pure cascade connection of one degree of freedom quantum harmonic oscillators, in both
the strict and transfer function sense of realizability. Section 5 then introduces the class
of passive linear quantum systems and proves that all such systems are transfer functions
realizable by a pure cascade connection. Finally, section 6 offers some conclusions of this
paper.

2 Preliminaries

2.1 Notation

We shall use the following notations: i =
√
−1, ∗ denotes the adjoint of a linear operator as

well as the conjugate of a complex number. If A = [ajk] then A# = [a∗jk], and A† = (A#)T ,

where T denotes matrix transposition. <{A} = (A + A#)/2 and ={A} = 1
2i

(A − A#),
and denote the identity matrix by I whenever its size can be inferred from context and
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use In to denote an n× n identity matrix. Similarly, 0 denotes a matrix with zero entries
whose dimensions can be determined from context. diag(M1,M2, . . . ,Mn) denotes a block
diagonal matrix with square matrices M1,M2, . . . ,Mn on its diagonal block, and diagn(M)
a block diagonal matrix with the square matrix M appearing on its diagonal blocks n
times.

2.2 The class of linear quantum stochastic systems

In this paper, we will be concerned with a class of quantum stochastic models of open
(i.e., quantum systems that can interact with an environment) Markov quantum systems
that are widely used and are standard in quantum optics. Such models have been in the
physics and mathematical physics literature since the 1980’s, see, e.g., [11, 12, 13, 14, 15].
In particular, we focus on the special sub-class of linear quantum stochastic models, see,
e.g., [15, section 6.6], [14, sections 3, 3.4.3, 5.3, chapters 7 and 10], [16, section 4], [17,
section 5], [18, 2, 3, 7, 19, 4, 20, 21]. These linear quantum stochastic models describe such
quantum optical devices as optical cavities [22, section 5.3.6][23, chapter 7], linear quantum
amplifiers [14, chapter 7], and finite bandwidth squeezers [14, chapter 10]. Following the
terminology in [2, 3, 7], we shall refer to this class of models as linear quantum stochastic
systems.

Suppose we have n independent quantum harmonic oscillators labelled 1, . . . , n. Each
oscillator j has position and momentum operators qj and pj, respectively. The position
and momentum operators satisfy the canonical commutation relations [qj, pk] = 2iδjk,
[qj, qk] = 0, and [pj, pk] = 0, where δjk denotes the Kronecker delta that takes on the
value 1 only if j = k, but is otherwise 0. Equivalently, we may describe them in terms of
the 2n annihilation and creation operators a1, a

∗
1, a2, a

∗
2, . . . , an, a

∗
n, with aj = (qj + ipj)/2,

satisfying the canonical commutation relations [aj, a
∗
k] = δjk, [aj, ak] = 0 and [a∗j , a

∗
k] = 0.

The independent oscillators can be coupled to one or more external independent quantum
fields, saym of them. In a Markov quantum system, them independent fields are essentially
quantum noises modelled by bosonic annihilation field operators A1(t),A2(t), . . . ,Am(t)
that can be defined on a separate Fock space (over L2(R)) for each field operator [11, 13, 24].
For each Aj(t) there is a corresponding creation field operator A∗j(t) that is defined on the
same Fock space and is the operator adjoint of Aj(t), i.e., A∗j(t) = Aj(t)

∗. The field
operators are adapted quantum stochastic processes with forward differentials dAj(t) =
Aj(t + dt) − Aj(t) and dA∗j(t) = A∗j(t + dt) − A∗j(t) that have the quantum Itô products
[11, 13, 24]:

dAj(t)dAk(t)∗ = δjkdt; dA∗j(t)dAk(t) = 0; dAj(t)dAk(t) = 0;

dA∗j(t)dA∗k(t) = 0; dAk(t)dt = 0; dA∗k(t)dt = 0.

More informally, as in the quantum Langevin formalism, we can express Aj(t) =
∫ t

0
ηj(s)ds

and A∗j(t) =
∫ t

0
η∗j (s)ds, where ηj(t) for j = 1, . . . ,m are independent quantum white noise

processes satisfying the informal commutation relations [ηj(s), η
∗
k(t)] = δjkδ(t − s) and

[ηj(s), ηk(t)] = [ηj(s)
∗, η∗k(t)] = 0, where η∗j (t) = ηj(t)

∗, and δ(t) denotes the Dirac delta
function.
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Let us collect the position and momentum operators in the column vector x defined
as x = (q1, p1, q2, p2, . . . , qn, pn)T . Note that in terms of x, we may write the canoni-
cal commutation relations as xxT − (xxT )T = 2iΘ with Θ = diagn(J). We take the
composite system of n quantum harmonic oscillators to have a quadratic Hamiltonian
H given by H = 1

2
xTRx, where R is a real 2n × 2n symmetric matrix. The oscilla-

tors are coupled to the quantum field m via the informal singular interaction Hamil-
tonian Hm = i(Lmη

∗
m(t) − L∗mηm(t)) [12, 14], where Lm = Kmx with Km ∈ C1×2n is

a linear coupling operator of the oscillator position and momentum operators to ηm(t).
Collect the coupling operators L1, L2, . . . , Lm together in one linear coupling vector L =
(L1, L2, . . . , Lm)T = Kx, with K = [ KT

1 KT
2 . . . KT

m ]T , and the field operators to-
gether as A(t) = (A1(t),A2(t), . . . ,Am(t))T . Then the joint evolution of the oscillators
and the quantum fields is given by a unitary adapted process U(t) satisfying the Hudson-
Parthasarathy quantum stochastic differential equation (QSDE) [11, 13, 24, 25]:

dU(t) = (tr((S − I)TdΛ(t)) + dA(t)†L− L†SdA(t)− (iH +
1

2
L†Ldt))U(t),

where S ∈ Cm×m is a complex unitary matrix (i.e., S†S = SS† = I) called the scattering
matrix, and Λ(t) = [Λjk(t)]j,k=1,...,m. The processes Λjk(t) for j, k = 1, . . . ,m are adapted
quantum stochastic processes that are referred to as gauge processes, and the forward
differentials dΛjk(t) = Λjk(t+ dt)−Λjk(t) j, k = 1, . . . ,m have the quantum Itô products:

dΛjk(t)dΛj′k′(t) = δkj′dΛjk′(t), dAj(t)dΛkl(t) = δjkdAl(t), dΛjkdAl(t)
∗ = δkldA∗j(t),

with all other remaining cross products between dΛjk(t) and either of dt, dAj′(t) or dA∗k′(t)
being zero. Informally, we may express Λjk(t) =

∫ t

0
η∗j (s)ηk(s)ds.

For any adapted processes V (t) and W (t) satisfying a quantum Ito stochastic differen-
tial equation, we have the quantum Ito rule d(V (t)W (t)) = V (t)dW (t) + (dV (t))W (t) +
dV (t)dW (t). Using the quantum Ito rule and the quantum Ito products given above, as
well as exploiting the canonical commutation relations between the operators in x, the
Heisenberg evolution X(t) = U(t)∗xU(t) of the canonical operators in the vector x satisfies
the quantum stochastic differential equation, see [16, section 4], [17, section 5], [2, 7]:

dX(t) = d(U(t)∗xU(t)) = ÃX(t)dt+ B̃

[
dA(t)
dA(t)#

]
;X(0) = x,

dY (t) = d(U(t)∗A(t)U(t)) = C̃x(t)dt+ D̃dA(t), (1)

with Ã = 2Θ(R + ={K†K}), B̃ = 2iΘ[ −K†S KTS# ], C̃ = K, and D̃ = S, where
Y (t) = (Y1(t), . . . , Ym(t))T = U(t)∗A(t)U(t) is a vector of output fields that results from
the interaction of the quantum harmonic oscillators and the incoming quantum fields A(t).
Note that the dynamics of X(t) is linear, while Y (t) depends linearly on X(t) and A(t).
We refer to n as the degrees of freedom of the oscillators. If n = 1, we shall often refer to
the linear quantum stochastic system as a one degree of freedom (open quantum harmonic)
oscillator.

Following [25], we denote a linear quantum stochastic system with Hamiltonian H,
coupling vector L and scattering matrix S simply as G = (S, L,H) or G = (S,Kx, 1

2
xTRx).
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We also recall the concatenation product � and series product / for open Markov quantum
systems [25] defined by G1 � G2 = (diag(S1, S2), (L

T
1 , L

T
2 )T , H1 + H2), and G2 / G1 =

(S2S1, L2+S2L1, H1+H2+={L†2S2L1}). Since both products are associative, the products
G1 �G2 � . . .�Gn and Gn / Gn−1 / . . . / G1 are unambiguously defined.

3 Synthesis of linear quantum stochastic systems

The network synthesis problem for linear quantum stochastic systems can be stated (in a
strict sense, as explained below) as the problem of how to systematically realize a given
linear quantum stochastic system with a given fixed set of matrix parameters S,K,R from
a bin of certain basic quantum optical components; see [7] for details of these basic compo-
nents. A particular solution was proposed to the synthesis problem, see [7, Theorem 5.1]:
Any linear quantum stochastic system with n degrees of freedom can be synthesized via a
quantum network consisting of a cascade connection of n one degree of freedom harmonic
oscillators together with a direct interaction Hamiltonian that is bilinear in the canonical
operators of the oscillators. Partition R as R = [Rjk]j,k=1,...,n with Rjk ∈ R2×2 and K as
K = [ K1 K2 . . . Kn ] with Kk ∈ Cm×2. Then according to [7, Theorem 5.1] a system
G = (S,Kx, 1

2
xTRx) can be decomposed as G = (Gn/Gn−1/· · ·/G1)�(0, 0, Hd), where the

Gi’s are (simpler) one degree of freedom open harmonic oscillatorsGi = (Si, Kixi,
1
2
xTi Riixi)

(xi = (qi, pi)
T ) with parameter values specified by the theorem, and Hd is a direct bilin-

ear interaction Hamiltonian of the form Hd =
∑n−1

j=1

∑n
k=j+1 x

T
j

(
Rjk −={K†kKj}T

)
xk.

The work [7] then shows how each of the Gi’s can be synthesized from the bin of given
components and how Hd can be realized. However, in current practical experiments, im-
plementation of Hd can be challenging for systems that have more than just a few degrees
of freedom. Therefore, it is of interest to characterize the class of systems that can be
synthesized by pure cascade connection alone, that is, with Hd ≡ 0.

As alluded to at the beginning of this section, we emphasize that [7] considers a strict
type of realization problem, that is, it deals with how to synthesize a given and fixed triplet
{S, L = Kx,H = 1

2
xTRx} that describes a linear quantum stochastic system G. This type

of strict realizability is relevant, for instance, in cases where the internal dynamics X(t)
may represent some (continuous time) quantum information processing algorithm and thus
needs to be realized as given. However, for some linear quantum control problems such
as robust disturbance attenuation [2] and LQG synthesis [3], the internal dynamics are
inconsequential. In this case there is freedom to modify/transform these dynamics and
what is important is the associated (classical) complex transfer function associated with
the system matrices (A,B,C,D)1. As is well known, a transfer function is invariant under a

1As in [2], here we shall not define the transfer function of quantum systems, but associate to a
quantum system G with system matrices (A,B,C,D) a classical, doubled-up [26], transfer function G(s) =
[ CT C† ]T (sI − A)−1B + diag(D,D#). However, we also remark that G(s) can actually be properly
interpreted as a genuine transfer function for the quantum system following [26, 21, 27, 1], this being a
common practice in the physics community via Fourier transform methods [23, 14]. In any case, we are
dealing with the same object G(s) and thus the particular interpretation attached to it becomes immaterial
for our purpose.
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similarity transformation of the system matrices (A,B,C,D) 7→ (V AV −1, V B,CV −1, D)
for any invertible matrix V . However, for linear quantum systems the transformation
matrix V for a similarity transformation is restricted in that it has to be a symplectic matrix:
V is real and satisfies the condition VΘV T = Θ. This ensures that the transformed variable
Z(t) = V X(t) satisfies the required canonical commutation relations (CCR) of quantum
mechanics: Z(t)Z(t)T − (Z(t)Z(t)T )T = 2iΘ, so the system remains physical. Note that
the set of all symplectic matrices of a fixed dimension form a group and in particular
V −1 is again a symplectic matrix. Such a similarity transformation in quantum systems
corresponds to replacing G = (S,Kx, 1

2
xTRx) with G′ = (S,KV −1x, 1

2
xTV −TRV −1x).

This motivates us to introduce the following definition:

Definition 1 Let G = (S,Kx, 1
2
xTRx) and G′ = (S ′, K ′x, 1

2
xTR′x) be two linear quantum

stochastic systems. Then G′ is said to be transfer function equivalent to G or is a transfer
function realization of G if S ′ = S and there exists a symplectic matrix V such that
R′ = V −TRV −1, K ′ = KV −1 (or, equivalently, R = V TR′V and K = K ′V ). G is then
said to be transfer function realizable by G′, and vice-versa.

Remark 2 It is important to note that two transfer function equivalent systems G and
G′ will not necessarily generate the same input-output dynamics (A(t), Y (t)) for all t ≥ 0.
This is because although they can have different parameters, they always have the same
initial value X(0) = x, whilst for quantum systems x clearly cannot be zero due to the
CCR condition. If the A matrix of G is Hurwitz then the input-output dynamics of G and
G′ converge in the limit t → ∞. However, as remarked earlier, for some linear quantum
control design objectives internal dynamics and initial conditions do not play an essential
role, only the transfer function does.

4 Conditions for realizability by a pure cascade con-

nection

In this section we state and prove a theorem that characterizes the class of linear quantum
stochastic systems that can be realized simply by a cascade connection of one degree of
freedom (open quantum harmonic) oscillators. Let us first introduce the following notation:
Sk�j = Sk · · ·Sj+1Sj for all j < k, Sk�k = Sk and Sk�k+1 = Im, and let xi = (qi, pi)

T for
i = 1, . . . , n so that x = (xT1 , . . . , x

T
n )T , where xxT −(xxT )T = 2iΘ. Moreover, we introduce

the following terminology: A square matrix F is said to be lower 2× 2 block triangular if
it has a lower block triangular form when partitioned into 2× 2 blocks:

F =


F11 02×2 02×2 . . . 02×2
F21 F22 02×2 . . . 02×2

...
. . . . . . . . .

...
Fn1 Fn2 . . . . . . Fnn

 ,
where Fjk, j ≤ k, is of dimension 2× 2. We start with the following lemma:

6



Lemma 3 The cascade connection Gn /Gn−1 / · · · /G1 of one degree of freedom harmonic
oscillators Gi = (Si, Kixi,

1
2
xTi Rixi) (i = 1, . . . , n) realizes a linear quantum stochastic

system G = (S,Kx, 1
2
xTRx) with S = Sn�1, K =

[
Sn�2K1 Sn�3K2 . . . Kn

]
, R =

[Rij]i,j=1,...,n, where Rjj = Rj, Rkj = ={K†kSk�j+1Kj} whenever k < j and Rjk = RT
kj

whenever j > k. In particular, R + ={K†K} is lower 2× 2 block triangular.

Proof. The proof proceeds along the lines of the proof of [7, Theorem 5.1]. By the series
product formula (cf. section 2.2) for the cascade of two one degree of freedom oscillators
G1 = (S1, K1x1,

1
2
xT1R1x1) and G2 = (S2, K2x2,

1
2
xT2R2x2), we get the oscillator G(2) =

G2 / G1 = (S2S1, S2K1x1 +K2x2,
1
2
xT1R1x1 + 1

2
xT2R2x2 + xT2={K

†
2S2K1}x1). Letting x(2) =

(xT1 , x
T
2 )T , the latter may be compactly written as: G(2) = (S(2), K(2)x(2),

1
2
xT(2)R(2)x

T
(2)) with

S(2) = S2�1 = S2S1, K(2) = [ S2K1 K2 ] and R(2) =

[
R1 ={K†2S2�2K1}T

={K†2S2�2K1} R2

]
.

Repeating the computation for G(k) = Gk / G(k−1) iteratively for k = 3, . . . , n − 1 and
writing x(k) = (xT1 , x

T
2 , . . . , x

T
k )T and G(k) = (S(k), K(k)x(k),

1
2
xT(k)R(k)x(k)) at each iteration

k, we arrive at the desired result with G = G(n), S = S(n), K = K(n) and R = R(n) as
stated in the lemma.

To see that R + ={K†K} is lower 2 × 2 block triangular, we note that K†K may be
expressed as follows:

K†K =


K†1K1 K†1S

†
2K2 K†1S

†
3�2K2 . . . K†1S

†
n�2Kn

K†2S2K1 K†2K2 K†2S
†
3K3 . . . K†2S

†
n�3Kn

...
. . .

. . .
. . .

...

K†nSn�2K1 K†nSn�3K2 . . . K†nSnKn−1 K†nKn

 .

Note that since K†K is by definition a Hermitian matrix, the 2× 2 block elements above
the diagonal blocks are the Hermitian transpose of the corresponding elements below the
diagonal blocks. It follows therefore that the imaginary part of the block (K†K)jk at
block row j and block column k must satisfy the relation: ={(K†K)jk} = −={(K†K)kj}T .
However, from the expression for R derived above and its symmetry, we already have that
if k > j:

Rjk = RT
kj = ={K†kSk�j+1Kj}T = ={(K†K)kj}T .

Therefore, the off-diagonal upper block elements of R cancel those of ={K†K} when they
are summed and we conclude that the matrix R+={K†K} is a lower 2×2 block triangular
matrix.

Recall again the partitioning of R as R = [Rjk]j,k=1,...,n with Rjk ∈ R2×2 and of K as
K = [ K1 K2 . . . Kn ] with Kk ∈ Cm×2. We may now state the following result:

Theorem 4 A linear quantum stochastic system G = (S,Kx, 1
2
xTRx) with n degrees of

freedom is realizable by a pure cascade of n one degree of freedom harmonic oscillators
(without a direct interaction Hamiltonian) if and only if the A matrix given by A = 2Θ(R+
={K†K}) is a lower block triangular matrix with blocks of size 2 × 2. If this condition is

7



satisfied then G can be explicitly constructed as the cascade connection Gn /Gn−1 / . . . /G1

with G1 = (S,K1x1,
1
2
xT1R11x1), and Gk = (I,Kkxk,

1
2
xTkRkkxk) for k = 2, . . . , n.

Proof. The proof of the only if part follows directly from Lemma 3, as follows. If G can
be realized by a pure cascade connection of n one degree of freedom harmonic oscillators
then by the lemma, R+={K†K} is a lower 2× 2 block triangular matrix. However, since
Θ is 2× 2 block diagonal, it follows that the matrix A = 2Θ(R+={K†K}) is also a lower
2× 2 block triangular matrix.

Conversely, the if part of the proof can be shown by explicitly constructing a pure
cascade connection of n one degree oscillators that realizes G. If the A matrix associated
withG is lower 2×2 block triangular then so is the matrix 1

2
Θ−1A = −1

2
ΘA = R+={K†K}.

As we already saw in the proof of Lemma 3, this structure implies that Rjk = ={K†jKk}
whenever k > j and Rkj = ={K†jKk}T if k < j. Now, using the notation of Lemma
3, let us define the one degree of freedom harmonic oscillators Gk for k = 1, . . . , n as
G1 = (S,K1x1,

1
2
xT1R11x1), and Gk = (I,Kkxk,

1
2
xTkRkkxk) for k = 2, . . . , n. It follows from

Lemma 3 that Gn / Gn−1 / · · · / G1 = (S,Kx, 1
2
xTRx). That is, this cascade connection

realizes G.

Theorem 4 has a direct consequence on the weaker notion of transfer function realization
of a linear quantum system. The main result is the following corollary:

Corollary 5 A linear quantum system G = (S,Kx, 1
2
xTRx) is transfer function realizable

by a pure cascade connection of one degree of freedom harmonic oscillators if and only
if there is a symplectic transformation matrix V such that the linear quantum stochastic
system G′ = (S,KV −1x, 1

2
xTV −TRV −1x) has an A matrix which is lower 2 × 2 block

triangular.

Proof. By Definition 1, G is transfer function realizable by a pure cascade connection if
and only if there exists a symplectic matrix V such that G′ = (S,KV −1x, 1

2
xTV −TRV −1x)

is realizable by a pure cascade connection. But from Theorem 4 this is true if and only
if the A matrix associated with G′ (i.e., A = 2Θ(R′ + ={K ′†K ′}) is lower 2 × 2 block
triangular.

5 Passive linear quantum stochastic systems

In this section it will be shown that the class of passive linear quantum stochastic systems
(as defined below) are transfer function realizable by a cascade connection. In [10] it
has been shown by a constructive algorithm that a “generic” sub-class of such systems are
transfer function realizable by pure cascading, the generic systems being required to satisfy
assumptions on the distinctness of the eigenvalues and invertibility of certain matrices. In
this section we remove such assumptions, and show by exploiting the algebraic structure
of passive systems that the result is valid in general for all passive systems.
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For k = 1, . . . , n, let ak = (qk + ipk)/2 be the annihilation operators for mode k and de-

fine a = (a1, . . . , an)T . Then a satisfies the CCR

[
a
a#

]
[ a† aT ]−

([
a#

a

]
[ aT a† ]

)T

=

diag(In,−In). Moreover, note that (aT , a†)T = [ ΣT Σ† ]Tx with

Σ =


1
2

1
2
i 0 0 0 . . . 0

0 0 1
2

1
2
i 0 . . . 0

...
. . . . . . . . . . . . . . .

...
0 . . . . . . . . . 0 1

2
1
2
i

 .

We also make note that

[
Σ

Σ#

]−1
= 2 [ Σ† ΣT ] and from the relation

[
Σ

Σ#

]
2 [ Σ† ΣT ] =

I we have the identities:

ΣΣ† = I/2 = Σ#ΣT ; ΣΣT = 0 = Σ#Σ†. (2)

Therefore, we also have

x =

[
Σ

Σ#

]−1 [
a
a#

]
= 2 [ Σ† ΣT ]

[
a
a#

]
.

A system G = (S,Kx, 1
2
xTRx) is said to be passive if we can write H = 1

2
xTRx = 1

2
a†R̃a+c

and L = Kx = K̃a for some complex n × n Hermitian matrix R̃ , a complex m × n
(here m again denotes the number of input and output fields in and out of G) matrix K̃,
and some real constant c. As discussed in [9], here the term passive for such systems is
physically motivated since they can be implemented using only passive components like
optical cavities, mirrors, beamsplitters and phase shifters; this follows from Theorem 5.1
of [7] and the constructions shown in section 6 of that paper. Also shown in [9], we can
express 1

2
a†R̃a and K̃a in the form 1

2
a†R̃a = 1

2
xT<{Σ†R̃Σ}x− 1

4

∑n
j=1 R̃jj and K̃a = K̃Σx.

Therefore, we may set R = <{Σ†R̃Σ} and K = K̃Σ. Note also from [9] that the 2 × 2
block diagonal elements {Rjj; j = 1, . . . , n} is of the form Rjj = λjI2 for some λj ∈ R for
all j. Now we shall derive some properties of A and show that there exists a unitary and
symplectic matrix that transforms it into a lower 2× 2 block triangular matrix.

Lemma 6 [ ΣT Σ† ]TA [ Σ† ΣT ] = diag(M,M#), where M = 1
2
ΣΘΣ†(R̃− iK̃†K̃).

Proof. For the proof, we exploit the identities (2) as well as the following easily verified
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identities: ΣΘΣT = 0 = Σ#ΘΣ†. Using these identities, we have the following:

[ ΣT Σ† ]TA [ Σ† ΣT ] = 2[ ΣT Σ† ]TΘ(R + ={K†K}) [ Σ† ΣT ]

= 2[ ΣT Σ† ]TΘ(<{Σ†R̃Σ}+ ={Σ†K̃†K̃Σ}) [ Σ† ΣT ]

= 2[ ΣT Σ† ]TΘ

(
1

2
(Σ†R̃Σ + ΣT R̃#Σ#)

− i

2
(Σ†K̃†K̃Σ− ΣT K̃T K̃#Σ#)

)
[ Σ† ΣT ]

= 2[ ΣT Σ† ]TΘ
[

1
4
Σ†R̃− i

4
Σ†K̃†K̃ 1

4
ΣT R̃# + i

4
ΣT K̃T K̃#

]
= diag

(
1

2
ΣΘΣ†R̃− i

2
ΣΘΣ†K̃†K̃,

1

2
Σ#ΘΣT R̃# +

i

2
Σ#ΘΣT K̃T K̃#

)
.

Then we have the following theorem:

Theorem 7 Let U be the complex unitary matrix in a Schur decomposition of the matrix
M of Lemma 6: M = U †M̂U , where M̂ is a lower triangular matrix. Then the matrix

V = 2 [ Σ† ΣT ] diag(U,U#)[ ΣT Σ† ]T

is a real, unitary, and symplectic matrix that transforms A into a lower 2× 2 block trian-
gular matrix: V AV † = Â, where Â is a real lower 2 × 2 block triangular matrix. There-
fore, every passive linear quantum system has a transfer function realization by pure cas-
cading and such a realization is obtained by applying the construction of Theorem 4 to
G′ = (S,KV Tx, 1

2
xTV RV Tx). Moreover, each of the one degree of freedom oscillator in

the cascade will also be passive.

Proof. The existence of U is guaranteed by the well known result that every complex
matrix M has a Schur decomposition of the form M = U †M̂U with M̂ lower triangular.
Note then that we also have M̂# = U#M#UT . Let V be as defined in the theorem. Then
by Lemma 6 the following is true:

V AV † = 4 [ Σ† ΣT ] diag(M̂, M̂#)[ ΣT Σ† ]T = 4(Σ†M̂Σ + ΣTM̂#Σ#) = 8<{Σ†M̂Σ}.

Now, since M̂ is a lower triangular matrix, it follows by inspection (using the special struc-
ture of Σ) that Â = 8<{Σ†M̂Σ} is a lower 2× 2 block diagonal matrix, as claimed. That
V is real follows from the fact that we may write V = 2(Σ†UΣ + ΣTU#Σ#) = 4<{Σ†UΣ}.

That it is unitary follows from the observation that
√

2[ Σ† ΣT ] and
√

2

[
Σ

Σ#

]
are uni-

tary (as a consequence of (2)) and that diag(U,U#) is also unitary. To see that V is also
symplectic define b = Ua and z = V x. By the unitarity of U we have that b and b# satisfy
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the same the commutation relations as a and a# (i.e., b is again an annihilation operator).
Then we have

z = V x = V 2[ Σ† ΣT ]

[
a
a#

]
= 2[ Σ† ΣT ]diag(U,U#)

[
a
a#

]
= [ Σ† ΣT ]

[
b
b#

]
.

Now, this implies that z consists of the canonical position and momentum operators as-
sociated with the modes in b and satisfies the same CCR as x. But since z = V x and V
is real, preservation of the CCR implies that V is necessarily a symplectic matrix (this is
standard knowledge in quantum mechanics; see, e.g., [28, section III]).

Using the fact that V −1 = V T = V † established above, it follows from Theorem 4 that
the passive quantum systemG is transfer function equivalent toG′ = (S,KV Tx, 1

2
xTV RV Tx)

whose A matrix is lower 2 × 2 block triangular. Let K ′ = KV T = [ K ′1 K ′2 . . . K ′n ]
and R′ = V RV T = [R′jk]j,k=1,...,n. By Theorem 4 we have G′ = Gn / Gn−1 / . . . / G1 with

Gk = (Sk, K
′
kxk,

1
2
xTkR

′
kkxk), S1 = S and Sk = I for k > 1. We now show that each Gk is

passive. Recall that K = K̃Σ and write K̃ = [ K̃1 . . . K̃n ] with K̃k ∈ Cm×1. Using (2)

we have that K ′x = KV †x = K̃U †a. By expanding both sides of the equality K ′x = K̃U †a
and collecting and equating terms of the same index, it follows that K ′kxk = (K̃U †)kak,
where (K̃U †)k is the k-th Cm×1 block component of K̃U †. On the other hand, since G is
passive we have that Rkk = λkI2 for some λk ∈ R, and recalling that R = <{Σ†R̃Σ}, it
follows by inspection (after some algebraic manipulations using (2)) that R′kk = λ′kI2 for
some λ′k ∈ R. Thus, xTkR

′
kkxk = λ′ka

∗
kak + c for some constant c and we conclude that each

Gk is also passive.

Example 8 Let G = (I, K̃a, 1
2
a†R̃a+ 5

4
) be a passive system with R̃ =

[
2 1 + i

1− i 3

]
and

K̃ =

[
1 + 0.5i −2 + i
−5− 2i 3− 4i

]
. Here K =

[
0.5 + 0.25i −0.25 + 0.5i −1 + 0.5i −0.5− i
−2.5− i 1− 2.5i 1.5− 2i 2 + 1.5i

]
and

R =

[
0.5I2 0.25(I2 − J)

0.25(I2 + J) 0.75I2

]
. By Lemma 6 and Theorem 7, we have that U =[

−0.6933 + 0.0039i 0.2244− 0.6849i
0.7204 + 0.0209i 0.2312− 0.6536i

]
and M̂ =

[
−14.8390− 0.7912i 0

0.6344− 0.2225i −0.2235− 0.4588i

]
.

Then by the formula of Theorem 7 we have

V =

 −0.6933 0.0039 0.2244 0.6849
−0.0039 −0.6933 −0.6849 0.2244
0.7204 −0.0209 0.2312 0.6536
0.0209 0.7204 −0.6536 0.2312

 .
Let K ′ = KV −1 = [ K ′1 K ′2 ], then

K ′ =

[
−0.9144− 0.7441i 0.7441− 0.9144i −0.1926− 0.3684i 0.3684− 0.1926i
3.4433 + 1.2621i −1.2621 + 3.4433i −0.1679− 0.1501i 0.1501− 0.1679i

]
,
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and

R′ = V RV −1 =

[
R′11 R′12

(R′12)
T R′22

]
=

 0.7912 0 0.1113 0.3172
0 0.7912 −0.3172 0.1113

0.1113 −0.3172 0.4588 0
0.3172 0.1113 0 0.4588

 .
Therefore, by the theorem, G is transfer function realizable by G′ = (I,K ′x, 1

2
xTR′x). It is

easily checked that R′ + ={K ′K} is lower 2× 2 block triangular:

R′ + ={K ′†K ′} =

 0.7912 14.8390 0 0
−14.8390 0.7912 0 0

0.2225 −0.6344 0.4588 0.2235
0.6344 −0.2225 −0.2235 0.4588

 ,
therefore G′ can be realized by a pure cascade connection of one degree of freedom harmonic
oscillators. According to Theorem 4, G′ = G2 / G1 with G1 = (I,K ′1x1,

1
2
xT1R

′
11x1) and

G2 = (I,K ′2x2,
1
2
xT2R

′
22x2). It is easily inspected that both G1 and G2 are passive. A

quantum optical realization of G′ is illustrated in Fig. 1.

e iθ
11 ei

θ 12

e iθ
21

G1

G2

Optical cavity

α

Phase shifter

G
1

G
2

Quantum
 �eld

Quantum
 �eld

Quantum
 �eld

A  (t)

Y (t)

A  (t)

ei
θ 22

21

1
Y (t)

2

Steering mirror 
(fully re�ecting)

M11 M12

M 21 M 22

Figure 1: Realization of G′ as the cascade connection of G1 and G2. G1 and G2 are each
realized by an optical cavity and a phase shifter; see, e.g., [22, 23, 7] for a discussion of
these devices. Dark rectangles depict fully reflecting mirrors, while light rectangles depict
partially transmitting mirrors; an optical cavity is formed by bouncing light back and
forth between two mirrors. Here θ11 = −2.4585, θ12 = 0.3513, θ21 = −2.0525, and θ22 =
−2.4121, and the partially transmitting mirror Mjk in the optical cavity Gj, j, k = 1, 2,
have the coupling coefficients γ11 = 1.3898, γ12 = 13.4492, γ21 = 0.1728 and γ22 = 0.0507,
respectively. The resonance frequencies of the optical cavities of G1 and G2 have a detuning
of 0.7912− 0.4588 = 0.3324, with G1 having the higher resonance frequency.
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6 Conclusions

We have derived a characterization of linear quantum stochastic systems that can be real-
ized, in a strict or transfer function sense, by a cascade connection of one degree of freedom
quantum oscillators alone, without requiring any direct bilinear interaction Hamiltonian
between these oscillators. The results are constructive in that if a system can be realized
by a cascade connection, it is explicitly shown how to construct it. Then it was shown
that the sub-class of passive linear quantum stochastic systems is always transfer function
realizable by a pure cascade connection.
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