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Abstract— By considering the behaviour of stabilizable and ~ state feedback or output injection for the system, in a way
detectable, linear time-varying state-space models over doubly- that permits characterisation of the graph with objects tha
infinite continuous time, we establish the existence of so-called jofine exponentially stable dichotomies. Importantly, rsuc

normalized coprime representations for the system graphs; . . . . .
that is, stable and stably left (resp. right) invertible, image objects can be manipulated in an algebraic fashion to then

(resp. kernel) representations that are normalized with respect obtain the main results.

to the inner product on L?(—o0,c0); this is consistent with The paper evolves along the following line. First, some
the notion of nc')rmalization.useq in the time-invari.ant settjng. pre”minaries on linear time_varying state-space modeds a
The approach is constructive, involving the solution of time- provided. Then the existence of the required solutions to

varying differential Riccati equations with single-point bound- . . - o . - .
ary conditions at either +00 of —oco. The contribution lies Riccati equations over doubly-infinite time is consideréal v

in accommodating state-space models that may not define an Optimal control problems. This is then exploited to consttru

exponential dichotomy. the normalized coprime representations described above.
Index Terms— Time-varying systems, normalized coprime
factorization, gap metric robustness analysis 1. PRELIMINARIES
Here we recall several basic notions and results needed
. INTRODUCTION throughout the paper, and refer to [6] and [9] for more dstail

Normalized coprime representations of the graph play an Define, forn,m € N, CB™™ the set of continuous and
important role in robustness analysis with the gap metiic [8bounded matrix valued functions, where the norm of a matrix
[16]. The corresponding issue of existence of normalizei$ induced by the euclidean norm, i.e. fare R™*™ applies
coprime factorizations for time-varying linear state-apa ||A| = supgcp= ||Az||/|z|l.
models has been considered in several papers over the las€onsider the time-varying linear system
twc_> decades [15], [13], [1]. In [15], systems which are #(t) = A(t)a(t) + B(b)u(t)
uniformly completely controllable and observable, andakhi y(t) = C(D)z(t) + D(t)ult) } ()
define an exponential dichotomy, are considered. In [13], ’
only solutions over[0, co) are considered, but more con-where, forn,m,p € N, the matrix valued functions! €
cerningly, the main results lead to teeroneousconclusion CB™", B € CB™™, C € CB(R — R”") and D € CB""™.
that directed gaps are equal for finite-dimensional statdVe will refer to the system by writing the tuplel, B, C, D).
space models [4]. Finally, although not explicitly assumedTo simplify notation in the following we define the set
the proofs in [1] rely on the state-space model defining AcCB™™. BeCBM™
an exponential dichotomy, as is necessary for the ‘plantMln,m.p := {(A,B,GD) C eCB”™ D e CBP™ },
operator’, employed therein, to be well-defined. ’

In this paper, the existence of normalized, stable andystapivheren, m,p € N.
invertible (i.e. coprime), image and kernel representatio FOrt,s € R, we let®,(t, s) denote the transition matrix
of the graph is established for the class of stabilizable arffSociated with the homogeneous part of system (1). Recall,
detectable linear time-varying state-space models. Tis that®a(t, s) is defined via
achieved without requiring that the models define an expo- d
nential dichotomy, thereby extending existing resultse Th aq’A(t’s) = At)®a(t,s), Da(t,t) = In,
absence of an e?(ponent?alldicho’tt')my arises., for examp]e, (j:‘r}] d satisfiesb 4
the case of imaginary axis ‘poles’ in the special case oftim

invarance. The app_roach_ IS constructive. and 'UVOI\_/GS tr\?arying systemi(t) = A(t)x(t) does not have solutions with
solution of time-varying differential Riccati equationgthv finite escape time

single-point boundary conditions. As may be expected-exis One may consider solutions of the initial value problem
tence of the required Riccati solutions is established wia a
optimal control problem. This serves to construct staioi§jz i(t) = A(t)z(t) + B(t)u(t), =x(to) = 2" € R™.

(t, T)PA(T,8) = Da(t,s) for all t,s,7 €
Also, recall that for bounded! the homogeneous time-
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which also defines the outputy(-;ty, 2%, u) = where
C()z(5tg, 20, u).

Since we will consider systemgA4, B,C, D) as opera- Tt s) = {‘I’A(tatO)P‘I’A(thS)a t>s,
tor on L2-signal spaces we employ another concept for a —Da(t, to)(I — P)Pa(to,s), s>t
solution of a linear time-varying system. First recall the , . o
definition for exponentially dichotomic, exponentiallabte @Ndfo € R, P € R**" are such that (2) is satisfied.
and exponentially anti-stable evolutions [9, Def. 2.1.]: When A defines an exponentially dichotomic evolution

Definition 2.1: The matrix valued functiond € c¢g™" for the linear time-varying state-space modé, B, C, D)
defines arexponentially dichotomif, and only if, of the form (1), the plant operatof{ = D + C(D —

, A)"'B: L2(R — R™) — L2(R — RP) is defined by
JtyecRIp>130>03IP c R*" with P2=P :

{||<I>A(t,t0)P<I>A(to, s)|| < ge(t=9) t>s, (t = u(t)) (t = y(t) = (Hu)(t)
|®a(t,to)(I, — P)®a(to,s)]| < 0e D, s>t 0
AT A0 ) = /_ . k(t, s)u(s) ds+D(t)u(t)>,

If P =1, then A defines arexponentially stablevolution.
On the other handA defines anexponentially anti-stable
evolution whenP = 0. C(t)Pa(t,to) PP a(to,s)B(s), t>s,
: : - k(t,s) =
Note that if A defines an exponentially stable or an OB a(t, to)(I—P)®A(to, s)B(s), s>t
exponentially anti-stable evolution, resp., then theréstex ’ ' oo
¢ > lando > 0 in (2) independent ofty, € R, and andt, € R, P € R™*" are such that (2) is satisfied fot.

where

therefore (2) holds for all, € R in these cases. The manipulation and composition of systems in this form
The system(A, B,C, D) is said to bestabilizableif, and  can be achieved in an algebraic fashion.
only if, there exists a matrix valued functiofi € CB™" Recall that the differential operatoP, although un-

such thatd + BF defines an exponentially stable evolutionhounded, is densely defined i?(R — R"). Therefore,
(A, B,C, D) is said to bedetectableif, and only if, there see [14, Ch. 13]D has a linear adjoinD*; see also [9,
existsL € CB™? such thatAd + LC defines an exponentially Sec. 2.1.] for more details. Specifically, d&th = donD
stable evolution.. . . , andD*z = —i = —Dxz. When A defines an exponentially
We will associate a matrix valued functiofi € CB™™  (ichotomic evolution, the solution: & L2(R — R") of
with the multiplication operatorF: L?(R — R™) — ;5 _ Az + f, for f € L2(R — R"), is in donD* and we
L*R = R"), (¢t = a(t)) = (t = (Fz)(t) == F(t)z(t)), have(D—A)* = —D—A* and(D—A)~* = (—D—A*)"1.

where, forn € N, In the following we will utilize the concept of duality
T zi: R—Ris for linear time-varying linear systems, see [9, Sec. 2] and
L2(R = R") = Lebesgue measurable an [11, Sec. 1.8] for example; note that the expression for the
: ffooo |z (t)]?dt < oo, ' dual in [9, Eqg. (2.18)] is not entirely consistent with the
Tnl | ie{l,...,n} definitions provided for the operators used to define it; we

Note that all operators associated with matrix valued fun@MPly use the definition from [11, Sec. 1.8]. TS ntlh's end,
tions are denoted with bold letters to prevent confusiore THN€ following notation is used: for any € CB™™ the
adjoint of the multiplication operatoF is F*: L2(R — matnx#valued f“”Ct'?”B#: R — R™*" is defined such
Rn) - LQ(R - Rm), (t s Z(t)) s (t s (F*Z)(t) — that B (t) = B(—t) for all t € R.

F(t)"2(t)). The differential operatoP: domD — L?(R —
R) is defined by

(t—z(t) — (t — (Dz)(t) := %x(t))7

Ill. OPTIMAL CONTROL AND THE TIME-VARYING
DIFFERENTIAL RICCATI EQUATION

First we introduce thedeterministic linear optimal reg-
domD = Jue 2R = R) g:loca2lly absolutely cnts| ulator problem for time-varying linear systems, see [11,

_ Sz elFR=>R) Sec. 3.3] or [10, Sec. 3]. This is central to our construction
We also consider application of the differential o erawr tuf normalized coprime representations of the system graph.
vector va2lued fungtlon, Le. s@y = [Dr1-- Dry] =i The optimal regulator/stabilizer fod is obtained by con-
for z € L*(R — R"), . S sidering the case ob = 0. This suffices to construct the

For A € CB™" and the associated multiplication operatoryepresentations for models with # 0 as shown later.

[2, Thm. 1.1.] yields that the operatdr— A has a bounded  pefinition 3.1: Consider. for n.m »p € N and

inverse on dor® if, and only if, A defines an exponentially (A,B,C,0) € M the linear time-varying system (1)
) ) n,m,p

)

dichotomic evolution. Moreover, [2, Thm. 1.1] states thaliih p — 0. Then forty,t; € R with to < t;, P, € R"X"
the inverse(D — A)~" : L*(R — R") — L*(R — R") is positive semi-definite, R, € CB™™ and R; € CBPP

then given by symmetric and positive definite for al € R, and the
N Y solution z(-) := x(-;to, 2% u): [to,t1] — R™ and output
(t = 2(t)) H(tH (D-A) Z)(t)—/ook(tvs)z@ds)’ y(-) = y(to,a%u): [to,t1] — RP of (1) with initial



condition x(ty) = 2z, the deterministic linear optimal
regulator problemcan be expressed as:

/ " [y(s) T Ra(s)y(s)

to

inf {
weC ([to,t1]—>R™)

@)
+ u(s) " Ry(s)u(s) ds] +I(t1)TP1:L'(t1)}.

We denote the input which achieves the optimum of (3

by ¢ — u°Pt(¢) and fort; € R, P, € R™*"™, 7 € [to,t1] and
27 = x(7;tg, 2%, u°Pt) € R", define

(7’, J)T, tl, Pl) — VOpt(T, JTT, tl, Pl)
/ " [y(5) T Rs(8)(s) + (u(5)) T Ra(5)uP* (5) ds]
+ x(tl)TPla:(tl),

wherez(-) andy(-) are the solution of (1) for the optimal
input ©°P* and initial conditionz(ty) = 2° € R™.

A solution for the deterministic linear optimal regulator

Proposition 3.5:1f the time-varying linear system
(A,B,C,D) is stabilizable and detectable, and
Ry € CB™™ and Ry € CBPP are positive definite
for all t € R, then

t — A(t) — B(t)Ra(t) "1 B(t) "TI(t; 00, 0) 7

defines an exponentially stable evolutidi-; oo, 0) here is

e solution of the Riccati equation (5) with single-point

oundary conditiodimy, . P(t1) = 0.

To prove this we use the following lemma.

Lemma 3.6:If the time-varying linear system
(A,B,C,D) is detectable and if, for any, € R,
u € L*([to,00) — R™) andy € L?([tg,o0) — RP) then
the solution x(-;ty, 2% u) of (1) with initial condition
z(tg) = 2° € R™ is in L%([tp,o0) — R™) and there exist
c1, ¢ > 0 such that

if

||'I(7 th IO, u)”%/Q[to,oc)

< ealla®l? + e (lull 2y 00y + 19l1E210,00))- (8

problem (3) is obtained by solving a certain time-varying See [12] for a proof.

Riccati equation.

Proposition 3.2:Let t; € R. For the time-varying linear
system(A, B,C,0) € My, p, Of the form (1), there exist
ato < t; such that the optimal contral°?®: [to,t;] — R™
for (3) is given by

uCPt(t) = —Ro(t) 1 B(t) T P(t; ty, Py) z(t), 4)

where P(;t1, P1): [to,t1] — R™*™ is the solution of the
single-point boundary-value problem

_Ep(t) = Ry (t) + A(t) T P(t) + P(t) A(t)

dt
— P(t)B(t)Re(t) "' B(t)" P(t), P(t1) =1(31,)
5

and Ry (t) C(t)"R3(t)C(t). Moreover, for allT ¢
[to, t1], any initial conditionz(tg) = z° € R™ for (1), and
27 = x(7;tg, 20, u°Pt) € R",

Vopt(Ta $T,t1,P1) = (xT)TP(T;tl,Pl).’ET.

(6)

A proof is omitted here. We refer the reader to [12] which"
holds detailed proofs for all statements of the present.not

Proposition 3.3:For all t; € R and all symmetric an
positive semi-definite?; € R™*", the Riccati initial value
problem (5) has a unique solution

P: (—OO,tl] —)Rnxn, t'—)P(t;tl,Pl).
Proposition 3.4:If the system( A, B, C, D) is stabilizable
then there exists a bounded solution

II: R = R™") ¢ — II(¢) = II(¢; 00,0) := tlim P(t;t1,0)
1—>00

of the Riccati equation (5) with boundary condition

limtlﬂoo P(fl) = 0.

See [12] for proofs for Props. 3.3 and 3.4.

It remains to show that applying the control lafP® ()
—Ry(t) "1 B(t) TTI(t; 00, 0) z(t) to (1) yields a stable system,
i.e. thatA(-) — B(-)Ra2(-) "1 B(-) TTI(:; 00, 0) defines an ex-
ponentially stable evolution.

Proof of Prop. 3.5 Recall functionV°Pt from Def. 3.1.
In view of Prop. 3.2 we have, far, = co and P, = 0, that

(IU)TH(tO; 00, O)IO = Vopt (t07 x[)’ 00, 0)

= [ ) Ra(o)us) + w0 (5) Rty () s,
to

whereIl(-; 00,0) is a solution of the Riccati equation (5)
with single-point boundary conditiotim;, ., P(t;) = 0.
Boundedness oflI(-;00,0) (see Prop. 3.4) and positive
definiteness ofR;(¢) and R (t) for all ¢ € R, gives the
existence ofc; > 0 such that

°II? < crfla”)*.

19172 1t0,00) < call2®* and [Ju®*72

Thus, Lem. 3.6 yields the existence of a constant> 0
such that

tQ,OO)

0”2'

©)

Since, in view ofu®® = Fz with F := —R; ' BTTI(-; 00, 0),
e havez(-;tg, 2%, u°P) = ® 4, pr(-,to)x?, and since (9)

||I(, th xov qut)”ig[to’oo) < CQ”,I

Qolds for arbitraryz® € R”, in particular for all unit vectors,
d we obtain that theL?-norm of all rows of ® 4, g (-, o)

is bounded bycy, hence there exists a constant > 0
independent of, and¢; such that

ty
/ | atpr(tto)||>dt < cs (10)
to

for all t; > t3. Now, we may conclude the proof applying [3,
Thm. 29.3.]: inequality (10) is sufficient for that + BF

defines an exponential stable evolution. [ ]
To summarize, we have the following result.
Corollary 3.7: If the time-varying linear system
(A,B,C,D) is stabilizable then the optimal control

u°P': R — R™ for the deterministic linear optimal regulator
problem (3) onR is given by

u’Pt(t) = —Ro(t) "L B(t) TTI(t; 00, 0) x(t),

=:F(t)

11)




wherell(-; 00, 0) is the solution of the Riccati equation (5) IV. MAIN RESULT: NORMALIZED COPRIME
with boundary conditiotim,, —,~, P(t1) = 0 andRx is given REPRESENTATIONS FOR THE SYSTEM GRAPH
as in Prop. 3.2. Moreover, {t4, B, C', D) is detectable then | the previous section, we consider linear time-varying
A + BF defines an exponentially stable evolution. In th'%tate-space modeléA, B, C, D) that are stabilizable and
case we call the solutiofl(-; o0, 0) of the Riccati single- getectable, but do not require these to define exponentially
point boundary-value problestabilizing _ _dichotomic evolutions. This remains the case in what folow
This result is used to construct normalized right coprime\g gych, the class of systems considered is larger than in the
representations of the graph of the system B,C, D).  rglated papers [15], [1], as discussed in the introduction.
Normalized left coprime representations are obtained via a Theorem 4.1:For n. m p € N, consider the time-varying
similar result, obtained by considering the so-called dual |inear system(A, B,C, D) € M., of the form (1), and
2(t) = A(=t) T 2(t) + C(—t) T (t) } ) (12) supposeg A4, B, C, D) is stabilizable and detectable. Let
— T T )
w(t) = B(=#)"2(t) + D(=1) "v(?) g [(¥) c PR—=RY) |3z€2R—R") for
see [11, Sec. 1.8]. This is denoted py*, C#, B#, D¥). Tl \u x L2(R — R™) | which (1) is satisfied [’
Lemma 3.8:(i) The time-varying bounded matrid € ~ . i
CB™" defines an exponentially stable evolution if, and®® e system graph, anfl, B € CB™™ be defined by

— T D) T
only if, A# defines an exponentially stable evolution Z(t) = QI’" + D(QL D(t) 2and R(t)p'_ Ifﬂ"" D(t)D(t)y'
(i) The time-varying system(A, B,C, D) of form (1) is Let G: L*(R — R™) = L*(R —» R? x R™) := ¢ = (§)
stabilizable (detectable) if, and only if, the dual systenP® the operator generated by the stable system

(A:, 0?1721]9?7 D#) of ;orm (12) is detectable (stabilizable). i = (A+ BF)y+ BR /2%

ee or a proof. C+DF DR-1/2 ’ 15
Applying Cor. 3.7 to the dual system (12) — under the (Z) = ( +F )77+ < R-1/2 >q (19)
assumption thatA#, C#, B#, D#) is stabilizable — gives

us an optimal control where F := —R~*(B'II(;;00,0) + D' C) andII(;c0,0)

oDt B =Ll NT(g is the solution of the time-varying Riccati single-point
V) = —Ra(=t) T C(=1)¥(t00,0) 2(1) boundary-value problem
for the corresponding deterministic linear optimal re¢mia

. : _ T —
problem, wherée — W (¢; 0o, 0) is the solution of the Riccati —P=[A-BR 1DTO] P+P[A-BR 1DTC]

single-point boundary-value problem +CTR™'C -~ PBR'B'P, lim P(t;)=0. (16)
t1—o0
dso_ 7 T, T ~
Q) = Bi(=) + A(=1)Q(t) + Q) A(=1) Furthermore, leG: L?(R — R? x R™) — L*(R — R?) :=
—@(t)C(—t)TEQ(—t)‘lc(—t)f)(tL lim @(tl) =0, (%)~ v be the operator generated by the stable system
t1—00
~ ~ _ (13) £ =(A+LC)E+ [~ L,B+LD](Y)
and whereR, (~t) := B(~t)Rs(~t)B(~t)", Ry € CB"" o= B2CE 4 [ B2, 12D) (1) [ 17)
and R3 € CB™™ are symmetric and positive definite for all ’ “

teR. _ o . _ whereL := —(¥(00,0)CT +BDT)R~" and¥(+; —o0, 0)
We may rewrite the Riccati equation (13) by settings the solution of the time-varying Riccati single-point

Q(t) = Q(~t). This impliesQ(t) = —Q(~t). Applying  boundary-value problem
T = —t, transforms (13) into

%Q(T) = Ri(7) + A(1)Q(T) + Q(T)A(r) T

—Q(r)C(r) " Ro(m) 71 C(7)Q(7), lim Q(m0) = 0. ~
o (14) Then G is left-invertible by a stable systeng is right-

Q=[A-BDTR'C]Q+Q[A-BDTR'C]"
+BR'BT —QCTR'CQ, lim Q(to) = 0. (18)

This leads to the optimal control invertible by a stable system and they are both represen-
~ tations of the system graph in the sense that:
VP (t) = —Ry(—t) 1O (—t)¥(—t; —00,0) z(t)
—or ) ¢ =imgG =GL*(R — R™); (19a)
' 4 =kerG = G ({0}). (19b)

where U (-; —00,0) is the solution of Riccati equation (14)

with single-point boundary conditioim;,, ., @(to) = 0.  Moreover, these representations are normalized:
In view of the second part of Cor. 3.7 we obtain that, if

(A# C# B# D#) is detectable A# + C#L# defines an %ig =L (20a)
exponentially stable evolution. Thus, in view of Lem. 3)8(i Ggg*r =1L (20b)
and for L(t) = —¥(t;—00,0)C()  Ra(t)" Y, A + LC Proof: Step 1In view of (16) and Cor. 3.7 it follows

also defines an exponentially stable evolution. As such, thkat F is stabilizing for A — BR~'DTC. Similarly, in
solution ¥(-; —c0,0) of the Riccati single-point boundary- view of (18), applying Cor. 3.7 to the dual system via
value problem (14) is calledtabilizing Lem. 3.8 and the discussion following this result, we have



that L is stabilizing for A — BDTR='C. Therefore, the
systems (15) and (17) that define the operatprs:: [ﬁ]
andg =: [f M, /\7] are exponentially stable as claimed.

Step 2.1 We now show thatt: L?(R — R? x R™) —
L?(R — R™), defined by the system

i =(A+KC)z+ |- K,B+ KD]w,
p=—RY2Fz+ [0, RY/?]|w,
whereK € CB™? is such thatd + K C defines an exponen-
tially stable evolution, satisfied’G = I. Note suchK exist
since(A, B,C, D) is detectable.

Since A + BF and A + KC define exponentially stable
evolutions, the inverses of the operat@rs- (A + BF) and

D — (A + KC) exist, hence we may write
G {N} _|DR"% 4 (C+DF)(D- (A +BF)) 'BR %
M| R™: +F(D - (A +BF)) 'BR?
X:=[0,R3] + R*F(D - (A +KC)) ' [K,~(B + KD)].

)

Step 3 Here we show that the right coprime representation
G = [%,] is normalized, i.eG*G = N*N + M*M =1,
where G*, N'*, M* denote the adjoints with respect to the
L? inner-product. Note that:

N*=(DR"%)* 4+ (BR"%)*( - D — (A +BF)*) ' (C+DF)";

M*=(R"%)" + (BR™%)*(— D — (A + BF)*) 'F~.

To simplify, we use the short har® — (A + BF)) =: (X)

in what follows. SinceR(t) is symmetric for allt € R, we

have R(t)~'/? is symmetric for allt € R. Thus,

G*G =N*N + M*M

—R 2D*DR"% + R 2D*(C + DF)(X)'BR"2
+ R zB*(X) *(C* + F*D*)DR "z + R 2B*(X)~*

-[C*C + C*DF + F*D*C + F*D*DF|(X) 'BR "2

+R :F(X)"'BR"% + R"2B*(X) *F*R":
+R3R" % + R 3B*(X) *F*F(X)"'BR 3.

M= N

Now usingR = I+ D*D andF = —R~}(B*II + D*C),

Applying the rules of the algebra for operators of systemg-+g

from [9, Sec. 2], we obtain

Xg =1+RiF[(D-(A+BF) ' - (D (A+KC)) ™

+
(D~ (A+KC))"'[KC - BF|(D - (A +BF)) ' |BR "}
~1+RIF[(D—(A+BF)" - (D (A+KC) '+
(D - (A +KC)) '[(D - (A +BF)) — (D - (A +KC))]
(D-(A+BF)) ' |BR ?

—1

Step 2.2 Here we show tha¥ C imgG. Let (¥) e ¥ C

L?*(R — RP) x L%(R — R™) be arbitrary. Then there exists

x € L?*(R — R™) such thati = Az+ Bu andy = Cz+ Du.
Furthermore, leyy = X (¥). Then there exists € L*(R —
R™) such that

i=(A+KOC)z+[-K,B+KD](Y),
q=—R'Y2Fz+[0,R?] (4).

In particular,z = z, since Az + Bu = (A+ KC)z + [ —
K, B+ KD][Cx + Du,u] . As such,qg = R/2[u — Fa
and

7 = (A+BF)y+ BR /%

C+DF DR™1/2
()= (5o ()

Thatis, (¥) € GL*(R — R™), as claimed.

Step 2.3We now show the reverse inclusiomig G C ¢.
Suppose( ¥) € imgG. Then there existy € L*(R — R"™)
andg € L?(R — R™) such that

7 =(A+BF)p+ BR Y%
y C + DF DR~/
()= (32 (50
So we havey, = Fp + R~'/2¢, wherebyy = C'n + Du and
n = An+ B(Fn+ R™Y2¢) = An + Bu. Hence,xz = 7 €

L*(R — R") satisfiesi = Az + Bu andy = Cz + Du,
whereby(¥) € ¢, as required.

=R 7[R+ [I-D'DR*-R'|D*C(¥)"'B

=I-RR~-1=0
+[-D'DR' -R|B*IL(X)"'B
+B*(X)*C'D[I-R'D'D-R"|

=I-R-1R=0
-R'D'D-R™]
[[I - DR 'D* - DR!'D*
+DR'D*DR'D* + DR™'R!D*|C
+C*D[-R'+R'D'DR '+ R 'R7!| B*II

+B*(X)~*TIB
+ B (x)*[C

=—R-14+R-1RR-1=0
+IB[-R'+R 'D'DR '+ R 'R7'|D*C
+IB[R'D*DR! + R'R!|B*II](X)'B|R 3.

Since R(t) is invertible for allt € R, and omitting the for
convenience,

I,-DR'DT =[I,+DD']"' =R~ (21)

In view of the Riccati equation (16), this leads to

G*6=R:[R
—B*(X)"*(D — A + BR"'B*Il + BR"!D*C)*II(X)"'B
—B*(X)"*II(D — A + BR™'B*II + BR"'D*C)(X) 'B
+B*(X)"*[C*[I+ DR '[I+D*D - 2RJR"'D*|C
+IIBR'B*II|(X)'B]R"%
=I+R™3B*(X)*[- DI -II-IID](X)'BR 3.

Noting that for everyr € domD,
(D*II + I1 + IID) ()

—D(Ilx) + Iz 4 TI(i)
= —Ilz — & + Iz + & = 0,

so thatD*II + I + IID = 0, we have that (20a) holds.

Step 4.11In view of Step 1,G defined by the system (17)
is stable. We now show th@t: L*(R — RP) — L*(R —
RP x R™), defined by the system

= (A+ BE)z+ LR'/?q,

C + DE —RY/2
g )*tl o )@

Z

(+)



where £ € CB™" is such thatA + BE defines an
exponentially stable evolution, satisfi€¢sy) = I. Such E
exist since(A, B, C, D) is stabilizable.

Since A + LC and A + BE define exponentially stable

evolutions, the inverses of the operat@rs- (A + LC) and
— (A + BE) exist, hence we may write

G:=[-MN]
=R 3[-1,D] +R*C(D - (A+LC)) '[-L,B+LD],
v ~R? 4+ (C+DE)(D - (A +BE)) 'LR?
. E(D- (A +BE)) 'LR:
Following the analysis of Step 2.1,
GY=I+R3C[~ (D— (A+BE))" + (D~ (A+LC))""

+(D - (A+LC)) " (A +BE)) '|BRz

[LC - BE|(D -

Step 4.2Here we show tha¥? C ker G. Suppos€ ¥) € 4
Then there exists € L?(R — R") such thati = Az + Bu
andy = Cz + Du. So¢ = x € L*(R — R") satisfies

€ = A¢ + Bu = Af + LCE¢ — LCx — LDu + Bu+ LCu
=(A+LC)E+[-L,B+ LC] ()
and
v=R12C¢+ [— RTY2 RTVPD] (1)
= R7Y2C¢ — R7V?[C¢ + Du] + R™/?Du = 0.
Thus (%) € ker G, as required.
Step 4.3We now show the reverse inclusioker G C ¢.

Suppose(¥) € kerG. Then there exist§ € L2(R — R™)
such that

£=(A4+LC)E+[-L,B+LD]|(Y)
0=RY20¢ — R™V/2y + R~Y/2Du.
So we havey = RY/2[R~Y/2C¢ + R™Y/2Du] = C¢ + Du
andé = A6+ LCE — L(CE+ Du) 4 [B+ LD]u = A¢ + Bu,

and hence there exists= ¢ € L?(R — R") which satisfies
&= Az + Bu andy = Cx + Du. Thus(}) € 9.

Step 5 Finally we show that the left coprime representa-

tion G = [ - M, N} is normalized, i.eGG* = MM* +
NN* = 1, where G*, N'*, M* denote the adjoints with
respect to thel? inner-product.

V. CONCLUDING REMARKS

We have shown that for a time-varying linear system with
stabilizable and detectable finite-dimensional statespa-
alization, there exist normalized coprime representation
of the system graph. While the analysis is carried out
over doubly-infinite continuous-time, as required to prbpe
define a notion of normalization that is consistent with
the time-invariant case, the requirement that the coprime
representations be stable, and stably invertible, meags th
act causally on the singly-infinite time axis, and therefore
provide a mechanism for suitably characterising ZRf, o)
graph, as well as thd.?(—oco,00) graph considered here.
This work is part of a broader effort to extend thegap
metric robustness analysis framework of [16] to the time-
varying setting, with a view to also extending the recent
marriage of IQC (integral-quadratic-constraint) anejap
metric based analysis in [5] to such a setting.
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