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Abstract— By considering the behaviour of stabilizable and
detectable, linear time-varying state-space models over doubly-
infinite continuous time, we establish the existence of so-called
normalized coprime representations for the system graphs;
that is, stable and stably left (resp. right) invertible, image
(resp. kernel) representations that are normalized with respect
to the inner product on L2(−∞,∞); this is consistent with
the notion of normalization used in the time-invariant setting.
The approach is constructive, involving the solution of time-
varying differential Riccati equations with single-point bound-
ary conditions at either +∞ or −∞. The contribution lies
in accommodating state-space models that may not define an
exponential dichotomy.

Index Terms— Time-varying systems, normalized coprime
factorization, gap metric robustness analysis

I. I NTRODUCTION

Normalized coprime representations of the graph play an
important role in robustness analysis with the gap metric [8],
[16]. The corresponding issue of existence of normalized
coprime factorizations for time-varying linear state-space
models has been considered in several papers over the last
two decades [15], [13], [1]. In [15], systems which are
uniformly completely controllable and observable, and which
define an exponential dichotomy, are considered. In [13],
only solutions over[0,∞) are considered, but more con-
cerningly, the main results lead to theerroneousconclusion
that directed gaps are equal for finite-dimensional state-
space models [4]. Finally, although not explicitly assumed,
the proofs in [1] rely on the state-space model defining
an exponential dichotomy, as is necessary for the ‘plant
operator’, employed therein, to be well-defined.

In this paper, the existence of normalized, stable and stably
invertible (i.e. coprime), image and kernel representations
of the graph is established for the class of stabilizable and
detectable linear time-varying state-space models. This is
achieved without requiring that the models define an expo-
nential dichotomy, thereby extending existing results. The
absence of an exponential dichotomy arises, for example, in
the case of imaginary axis ‘poles’ in the special case of time-
invariance. The approach is constructive and involves the
solution of time-varying differential Riccati equations with
single-point boundary conditions. As may be expected, exis-
tence of the required Riccati solutions is established via an
optimal control problem. This serves to construct stabilizing
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state feedback or output injection for the system, in a way
that permits characterisation of the graph with objects that
define exponentially stable dichotomies. Importantly, such
objects can be manipulated in an algebraic fashion to then
obtain the main results.

The paper evolves along the following line. First, some
preliminaries on linear time-varying state-space models are
provided. Then the existence of the required solutions to
Riccati equations over doubly-infinite time is considered via
optimal control problems. This is then exploited to construct
the normalized coprime representations described above.

II. PRELIMINARIES

Here we recall several basic notions and results needed
throughout the paper, and refer to [6] and [9] for more details.

Define, forn,m ∈ N, CBn,m the set of continuous and
bounded matrix valued functions, where the norm of a matrix
is induced by the euclidean norm, i.e. forA ∈ R

n×m applies
‖A‖ = supx∈Rm ‖Ax‖/‖x‖.

Consider the time-varying linear system

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t),

}
(1)

where, forn,m, p ∈ N, the matrix valued functionsA ∈
CBn,n, B ∈ CBn,m, C ∈ CB(R → R

p,n) andD ∈ CBp,m.
We will refer to the system by writing the tuple(A,B,C,D).
To simplify notation in the following we define the set

Mn,m,p :=

{
(A,B,C,D)

A ∈ CBn,n, B ∈ CBn,m

C ∈ CBp,n, D ∈ CBp,m

}
,

wheren,m, p ∈ N.
For t, s ∈ R, we letΦA(t, s) denote the transition matrix

associated with the homogeneous part of system (1). Recall,
thatΦA(t, s) is defined via

d

dt
ΦA(t, s) = A(t)ΦA(t, s), ΦA(t, t) = In,

and satisfiesΦA(t, τ)ΦA(τ, s) = ΦA(t, s) for all t, s, τ ∈
R. Also, recall that for boundedA the homogeneous time-
varying systeṁx(t) = A(t)x(t) does not have solutions with
finite escape time.

One may consider solutions of the initial value problem

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 ∈ R
n.

If a solution x(·; t0, x
0, u) of this problem exists on an

interval [t0, t1] ⊂ R for a given inputu ∈ [t0, t1] → R
m

and initial conditionx(t0) = x0, satisfies

x(t; t0, x
0, u) = ΦA(t, t0)x

0 +

∫ t

t0

ΦA(t, s)B(s)u(s) ds,



which also defines the outputy(·; t0, x0, u) =
C(·)x(·; t0, x

0, u).
Since we will consider systems(A,B,C,D) as opera-

tor on L2-signal spaces we employ another concept for a
solution of a linear time-varying system. First recall the
definition for exponentially dichotomic, exponentially stable
and exponentially anti-stable evolutions [9, Def. 2.1.]:

Definition 2.1: The matrix valued functionA ∈ CBn,n

defines anexponentially dichotomyif, and only if,

∃ t0 ∈ R ∃ ̺ ≥ 1 ∃σ > 0 ∃P ∈ R
n×n with P 2 = P :

{
‖ΦA(t, t0)PΦA(t0, s)‖ ≤ ̺e−σ(t−s), t ≥ s,

‖ΦA(t, t0)(In − P )ΦA(t0, s)‖ ≤ ̺e−σ(s−t), s ≥ t.

(2)

If P = In thenA defines anexponentially stableevolution.
On the other hand,A defines anexponentially anti-stable
evolution whenP = 0.

Note that if A defines an exponentially stable or an
exponentially anti-stable evolution, resp., then there exist
̺ ≥ 1 and σ > 0 in (2) independent oft0 ∈ R, and
therefore (2) holds for allt0 ∈ R in these cases.

The system(A,B,C,D) is said to bestabilizableif, and
only if, there exists a matrix valued functionF ∈ CBm,n

such thatA+BF defines an exponentially stable evolution.
(A,B,C,D) is said to bedetectableif, and only if, there
existsL ∈ CBn,p such thatA+LC defines an exponentially
stable evolution.

We will associate a matrix valued functionF ∈ CBn,m

with the multiplication operatorF : L2(R → R
m) →

L2(R → R
n), (t 7→ x(t)) 7→

(
t 7→ (Fx)(t) := F (t)x(t)

)
,

where, forn ∈ N,

L2(R → R
n) :=







x1

...
xn




xi : R → R is
Lebesgue measurable and∫∞

−∞
|xi(t)|

2dt < ∞,

i ∈ {1, . . . , n}





.

Note that all operators associated with matrix valued func-
tions are denoted with bold letters to prevent confusion. The
adjoint of the multiplication operatorF is F

∗ : L2(R →
R

n) → L2(R → R
m), (t 7→ z(t)) 7→

(
t 7→ (F∗z)(t) :=

F (t)⊤z(t)
)
. The differential operatorD : domD → L2(R →

R) is defined by

(t 7→ x(t)) 7→
(
t 7→ (Dx)(t) := d

dtx(t)
)
,

domD =

{
x ∈ L2(R → R)

x locally absolutely cnts,
ẋ ∈ L2(R → R)

}
.

We also consider application of the differential operator to
vector valued function, i.e. setDx =

[
Dx1 · · · Dxn

]⊤
= ẋ

for x ∈ L2(R → R
n),

ForA ∈ CBn,n and the associated multiplication operator,
[2, Thm. 1.1.] yields that the operatorD−A has a bounded
inverse on domD if, and only if,A defines an exponentially
dichotomic evolution. Moreover, [2, Thm. 1.1.] states that
the inverse(D − A)−1 : L2(R → R

n) → L2(R → R
n) is

then given by

(t 7→ z(t)) 7→

(
t 7→

(
(D −A)−1z

)
(t)=

∫ ∞

−∞

k̃(t, s)z(s) ds

)
,

where

k̃(t, s) :=

{
ΦA(t, t0)PΦA(t0, s), t ≥ s,

−ΦA(t, t0)(I − P )ΦA(t0, s), s ≥ t,

and t0 ∈ R, P ∈ R
n×n are such that (2) is satisfied.

When A defines an exponentially dichotomic evolution
for the linear time-varying state-space model(A,B,C,D)
of the form (1), the plant operatorH = D + C(D −
A)−1

B : L2(R → R
m) → L2(R → R

p) is defined by

(t 7→ u(t)) 7→

(
t 7→ y(t) = (Hu)(t)

=

∫ ∞

−∞

k(t, s)u(s) ds+D(t)u(t)

)
,

where

k(t, s) :=

{
C(t)ΦA(t, t0)PΦA(t0, s)B(s), t ≥ s,

−C(t)ΦA(t, t0)(I−P )ΦA(t0, s)B(s), s ≥ t,

and t0 ∈ R, P ∈ R
n×n are such that (2) is satisfied forA.

The manipulation and composition of systems in this form
can be achieved in an algebraic fashion.

Recall that the differential operatorD, although un-
bounded, is densely defined inL2(R → R

n). Therefore,
see [14, Ch. 13],D has a linear adjointD∗; see also [9,
Sec. 2.1.] for more details. Specifically, domD∗ = domD
andD∗x = −ẋ = −Dx. WhenA defines an exponentially
dichotomic evolution, the solutionx ∈ L2(R → R

n) of
ẋ = Ax + f , for f ∈ L2(R → R

n), is in domD∗ and we
have(D−A)∗ = −D−A

∗ and(D−A)−∗ = (−D−A
∗)−1.

In the following we will utilize the concept of duality
for linear time-varying linear systems, see [9, Sec. 2] and
[11, Sec. 1.8] for example; note that the expression for the
dual in [9, Eq. (2.18)] is not entirely consistent with the
definitions provided for the operators used to define it; we
simply use the definition from [11, Sec. 1.8]. To this end,
the following notation is used: for anyB ∈ CBn,m the
matrix valued functionB# : R → R

m×n is defined such
thatB#(t) := B(−t)⊤ for all t ∈ R.

III. O PTIMAL CONTROL AND THE TIME-VARYING

DIFFERENTIAL RICCATI EQUATION

First we introduce thedeterministic linear optimal reg-
ulator problem for time-varying linear systems, see [11,
Sec. 3.3] or [10, Sec. 3]. This is central to our construction
of normalized coprime representations of the system graph.
The optimal regulator/stabilizer forA is obtained by con-
sidering the case ofD = 0. This suffices to construct the
representations for models withD 6= 0 as shown later.

Definition 3.1: Consider, for n,m, p ∈ N and
(A,B,C, 0) ∈ Mn,m,p the linear time-varying system (1)
with D = 0. Then, fort0, t1 ∈ R with t0 < t1, P1 ∈ R

n×n

positive semi-definite,R2 ∈ CBm,m and R3 ∈ CBp,p

symmetric and positive definite for allt ∈ R, and the
solution x(·) := x(·; t0, x

0, u) : [t0, t1] → R
n and output

y(·) := y(·; t0, x
0, u) : [t0, t1] → R

p of (1) with initial



condition x(t0) = x0, the deterministic linear optimal
regulator problemcan be expressed as:

inf
u∈C1([t0,t1]→Rm)

{∫ t1

t0

[
y(s)⊤R3(s)y(s)

+ u(s)⊤R2(s)u(s) ds
]
+ x(t1)

⊤P1x(t1)

}
.

(3)

We denote the input which achieves the optimum of (3)
by t 7→ uopt(t) and for t1 ∈ R, P1 ∈ R

n×n, τ ∈ [t0, t1] and
xτ := x(τ ; t0, x

0, uopt) ∈ R
n, define

(τ, xτ , t1, P1) 7→ V opt(τ, xτ , t1, P1)

:=

∫ t1

τ

[
y(s)⊤R3(s)y(s) + (uopt(s))⊤R2(s)u

opt(s) ds
]

+ x(t1)
⊤P1x(t1),

wherex(·) and y(·) are the solution of (1) for the optimal
input uopt and initial conditionx(t0) = x0 ∈ R

n.
A solution for the deterministic linear optimal regulator

problem (3) is obtained by solving a certain time-varying
Riccati equation.

Proposition 3.2:Let t1 ∈ R. For the time-varying linear
system(A,B,C, 0) ∈ Mn,m,p, of the form (1), there exist
a t0 < t1 such that the optimal controluopt : [t0, t1] → R

m

for (3) is given by

uopt(t) = −R2(t)
−1B(t)⊤P (t; t1, P1)x(t), (4)

whereP (·; t1, P1) : [t0, t1] → R
n×n is the solution of the

single-point boundary-value problem

−
d

dt
P (t) = R1(t) +A(t)⊤P (t) + P (t)A(t)

− P (t)B(t)R2(t)
−1B(t)⊤P (t), P (t1) = P1,

(5)

and R1(t) := C(t)⊤R3(t)C(t). Moreover, for all τ ∈
[t0, t1], any initial conditionx(t0) = x0 ∈ R

n for (1), and
xτ = x(τ ; t0, x

0, uopt) ∈ R
n,

V opt(τ, xτ , t1, P1) = (xτ )⊤P (τ ; t1, P1)x
τ . (6)

A proof is omitted here. We refer the reader to [12] which
holds detailed proofs for all statements of the present note.

Proposition 3.3:For all t1 ∈ R and all symmetric and
positive semi-definiteP1 ∈ R

n×n, the Riccati initial value
problem (5) has a unique solution

P : (−∞, t1] → R
n×n, t 7→ P (t; t1, P1).

Proposition 3.4: If the system(A,B,C,D) is stabilizable
then there exists a bounded solution

Π: R → R
n×n, t 7→ Π(t) = Π(t;∞, 0) := lim

t1→∞
P (t; t1, 0)

of the Riccati equation (5) with boundary condition
limt1→∞ P (t1) = 0.

See [12] for proofs for Props. 3.3 and 3.4.
It remains to show that applying the control lawuopt(t) =

−R2(t)
−1B(t)⊤Π(t;∞, 0)x(t) to (1) yields a stable system,

i.e. thatA(·) − B(·)R2(·)
−1B(·)⊤Π(·;∞, 0) defines an ex-

ponentially stable evolution.

Proposition 3.5: If the time-varying linear system
(A,B,C,D) is stabilizable and detectable, and if
R2 ∈ CBm,m and R3 ∈ CBp,p are positive definite
for all t ∈ R, then

t 7→ A(t)−B(t)R2(t)
−1B(t)⊤Π(t;∞, 0) (7)

defines an exponentially stable evolution;Π(·;∞, 0) here is
the solution of the Riccati equation (5) with single-point
boundary conditionlimt1→∞ P (t1) = 0.

To prove this we use the following lemma.
Lemma 3.6:If the time-varying linear system

(A,B,C,D) is detectable and if, for anyt0 ∈ R,
u ∈ L2([t0,∞) → R

m) and y ∈ L2([t0,∞) → R
p) then

the solution x(·; t0, x
0, u) of (1) with initial condition

x(t0) = x0 ∈ R
n is in L2([t0,∞) → R

n) and there exist
c1, c2 > 0 such that

‖x(·; t0, x
0, u)‖2L2[t0,∞)

≤ c1‖x
0‖2 + c2

(
‖u‖2L2[t0,∞) + ‖y‖2L2[t0,∞)

)
. (8)

See [12] for a proof.
Proof of Prop. 3.5. Recall functionV opt from Def. 3.1.

In view of Prop. 3.2 we have, fort1 = ∞ andP1 = 0, that

(x0)⊤Π(t0;∞, 0)x0 = V opt(t0, x
0,∞, 0)

=

∫ ∞

t0

y(s)⊤R3(s)y(s) + uopt(s)⊤R2(t)u
opt(s) ds,

whereΠ(·;∞, 0) is a solution of the Riccati equation (5)
with single-point boundary conditionlimt1→∞ P (t1) = 0.
Boundedness ofΠ(·;∞, 0) (see Prop. 3.4) and positive
definiteness ofR2(t) and R2(t) for all t ∈ R, gives the
existence ofc1 > 0 such that

‖y‖2L2[t0,∞) ≤ c1‖x
0‖2 and ‖uopt‖2L2[t0,∞) ≤ c1‖x

0‖2.

Thus, Lem. 3.6 yields the existence of a constantc2 > 0
such that

‖x(·; t0, x
0, uopt)‖2L2[t0,∞) ≤ c2‖x

0‖2. (9)

Since, in view ofuopt = Fx with F := −R−1
2 B⊤Π(·;∞, 0),

we havex(·; t0, x0, uopt) = ΦA+BF (·, t0)x0, and since (9)
holds for arbitraryx0 ∈ R

n, in particular for all unit vectors,
we obtain that theL2-norm of all rows ofΦA+BF (·, t0)
is bounded byc2, hence there exists a constantc3 > 0
independent oft0 and t1 such that

∫ t1

t0

‖ΦA+BF (t, t0)‖
2 dt ≤ c3 (10)

for all t1 ≥ t0. Now, we may conclude the proof applying [3,
Thm. 29.3.]: inequality (10) is sufficient for thatA + BF
defines an exponential stable evolution.

To summarize, we have the following result.
Corollary 3.7: If the time-varying linear system

(A,B,C,D) is stabilizable then the optimal control
uopt : R → R

m for the deterministic linear optimal regulator
problem (3) onR is given by

uopt(t) = −R2(t)
−1B(t)⊤Π(t;∞, 0)︸ ︷︷ ︸

=:F (t)

x(t), (11)



whereΠ(·;∞, 0) is the solution of the Riccati equation (5)
with boundary conditionlimt1→∞ P (t1) = 0 andR2 is given
as in Prop. 3.2. Moreover, if(A,B,C,D) is detectable then
A + BF defines an exponentially stable evolution. In this
case we call the solutionΠ(·;∞, 0) of the Riccati single-
point boundary-value problemstabilizing.

This result is used to construct normalized right coprime
representations of the graph of the system(A,B,C,D).
Normalized left coprime representations are obtained via a
similar result, obtained by considering the so-called dual

ż(t) = A(−t)⊤z(t) + C(−t)⊤v(t)
w(t) = B(−t)⊤z(t) +D(−t)⊤v(t)

}
; (12)

see [11, Sec. 1.8]. This is denoted by(A#, C#, B#, D#).
Lemma 3.8:(i) The time-varying bounded matrixA ∈

CBn,n defines an exponentially stable evolution if, and
only if, A# defines an exponentially stable evolution.
(ii) The time-varying system(A,B,C,D) of form (1) is
stabilizable (detectable) if, and only if, the dual system
(A#, C#, B#, D#) of form (12) is detectable (stabilizable).

See [12] for a proof.
Applying Cor. 3.7 to the dual system (12) – under the

assumption that(A#, C#, B#, D#) is stabilizable – gives
us an optimal control

vopt(t) = −R̃2(−t)−1C(−t)Ψ̃(t;∞, 0) z(t)

for the corresponding deterministic linear optimal regulator
problem, wheret 7→ Ψ̃(t;∞, 0) is the solution of the Riccati
single-point boundary-value problem

−
d

dt
Q̃(t) = R̃1(−t) +A(−t)Q̃(t) + Q̃(t)A(−t)⊤

−Q̃(t)C(−t)⊤R̃2(−t)−1C(−t)Q̃(t), lim
t1→∞

Q̃(t1) = 0,

(13)
and whereR̃1(−t) := B(−t)R̃3(−t)B(−t)⊤, R̃2 ∈ CBp,p

andR̃3 ∈ CBm,m are symmetric and positive definite for all
t ∈ R.

We may rewrite the Riccati equation (13) by setting

Q(t) = Q̃(−t). This implies Q̇(t) = −
˙̃
Q(−t). Applying

τ = −t, transforms (13) into

d

dτ
Q(τ) = R̃1(τ) +A(τ)Q(τ) +Q(τ)A(τ)⊤

−Q(τ)C(τ)⊤R̃2(τ)
−1C(τ)Q(τ), lim

τ0→−∞
Q(τ0) = 0.

(14)
This leads to the optimal control

vopt(t) = −R̃2(−t)−1C(−t)Ψ(−t;−∞, 0)︸ ︷︷ ︸
=:L#(t)

z(t)

whereΨ(·;−∞, 0) is the solution of Riccati equation (14)
with single-point boundary conditionlimt0→−∞ Q(t0) = 0.
In view of the second part of Cor. 3.7 we obtain that, if
(A#, C#, B#, D#) is detectable,A# + C#L# defines an
exponentially stable evolution. Thus, in view of Lem. 3.8(i)
and for L(t) = −Ψ(t;−∞, 0)C(t)⊤R̃2(t)

−1, A + LC
also defines an exponentially stable evolution. As such, the
solution Ψ(·;−∞, 0) of the Riccati single-point boundary-
value problem (14) is calledstabilizing.

IV. M AIN RESULT: NORMALIZED COPRIME

REPRESENTATIONS FOR THE SYSTEM GRAPH

In the previous section, we consider linear time-varying
state-space models(A,B,C,D) that are stabilizable and
detectable, but do not require these to define exponentially
dichotomic evolutions. This remains the case in what follows.
As such, the class of systems considered is larger than in the
related papers [15], [1], as discussed in the introduction.

Theorem 4.1:For n,m, p ∈ N, consider the time-varying
linear system(A,B,C,D) ∈ Mn,m,p of the form (1), and
suppose(A,B,C,D) is stabilizable and detectable. Let

G :=

{(
y
u

)
∈

L2(R → R
p)

×L2(R → R
m)

∃x ∈ L2(R → R
n) for

which (1) is satisfied

}
,

be the system graph, andR, R̃ ∈ CBm,m be defined by
R(t) := Im + D(t)⊤D(t) and R̃(t) := Ip + D(t)D(t)⊤.
Let G : L2(R → R

m) → L2(R → R
p × R

m) := q 7→ ( y
u )

be the operator generated by the stable system

η̇ = (A+BF )η +BR−1/2q(
y
u

)
=

(
C +DF

F

)
η +

(
DR−1/2

R−1/2

)
q



 , (15)

whereF := −R−1
(
B⊤Π(·;∞, 0) + D⊤C

)
andΠ(·;∞, 0)

is the solution of the time-varying Riccati single-point
boundary-value problem

−Ṗ =
[
A−BR−1D⊤C

]⊤
P + P

[
A−BR−1D⊤C

]

+ C⊤R̃−1C − PBR−1B⊤P, lim
t1→∞

P (t1) = 0. (16)

Furthermore, let̃G : L2(R → R
p ×R

m) → L2(R → R
p) :=

( y
u ) 7→ v be the operator generated by the stable system

ξ̇ = (A+ LC)ξ +
[
− L,B + LD

]
( y
u )

v = R̃−1/2Cξ +
[
− R̃−1/2, R̃−1/2D

]
( y
u )

}
, (17)

whereL := −
(
Ψ(·;∞, 0)C⊤+BD⊤

)
R̃−1 andΨ(·;−∞, 0)

is the solution of the time-varying Riccati single-point
boundary-value problem

Q̇ =
[
A−BD⊤R̃−1C

]
Q+Q

[
A−BD⊤R̃−1C

]⊤

+BR−1B⊤ −QC⊤R̃−1CQ, lim
t0→−∞

Q(t0) = 0. (18)

Then G is left-invertible by a stable system,̃G is right-
invertible by a stable system and they are both represen-
tations of the system graph in the sense that:

G = img G = GL2(R → R
m); (19a)

G = ker G̃ = G̃−1({0}). (19b)

Moreover, these representations are normalized:

G∗G = I; (20a)

G̃G̃∗ = I. (20b)
Proof: Step 1: In view of (16) and Cor. 3.7 it follows

that F is stabilizing for A − BR−1D⊤C. Similarly, in
view of (18), applying Cor. 3.7 to the dual system via
Lem. 3.8 and the discussion following this result, we have



that L is stabilizing for A − BD⊤R̃−1C. Therefore, the
systems (15) and (17) that define the operatorsG =: [ N

M
]

and G̃ =:
[
− M̃, Ñ

]
are exponentially stable as claimed.

Step 2.1: We now show thatX : L2(R → R
p × R

m) →
L2(R → R

m), defined by the system

ż = (A+KC)z +
[
−K,B +KD

]
w,

p = −R1/2Fz +
[
0, R1/2

]
w,

whereK ∈ CBn,p is such thatA+KC defines an exponen-
tially stable evolution, satisfiesXG = I. Note suchK exist
since(A,B,C,D) is detectable.

SinceA + BF andA + KC define exponentially stable
evolutions, the inverses of the operatorsD− (A+BF) and
D − (A+KC) exist, hence we may write

G :=

[
N
M

]
:=

[
DR

− 1

2 + (C+DF)
(
D − (A+BF)

)−1
BR

− 1

2

R
− 1

2 + F
(
D − (A+BF)

)−1
BR

− 1

2

]
,

X :=
[
0,R

1

2

]
+R

1

2F
(
D − (A+KC)

)−1[
K,−(B+KD)

]
.

Applying the rules of the algebra for operators of systems
from [9, Sec. 2], we obtain

XG = I+R
1

2F

[(
D − (A+BF)

)−1
−

(
D − (A+KC)

)−1
+

(
D − (A+KC)

)−1[
KC−BF

](
D − (A+BF)

)−1
]
BR

− 1

2

= I+R
1

2F

[(
D − (A+BF)

)−1
−

(
D − (A+KC)

)−1
+

(
D − (A+KC)

)−1[
(D − (A+BF))− (D − (A+KC))

]

·
(
D − (A+BF)

)−1
]
BR

− 1

2

= I

Step 2.2: Here we show thatG ⊂ img G. Let ( y
u ) ∈ G ⊂

L2(R → R
p)×L2(R → R

m) be arbitrary. Then there exists
x ∈ L2(R → R

n) such thatẋ = Ax+Bu andy = Cx+Du.
Furthermore, letq = X ( y

u ). Then there existsz ∈ L2(R →
R

n) such that

ż = (A+KC)z +
[
−K,B +KD

]
( y
u ) ,

q = −R1/2Fz +
[
0, R1/2

]
( y
u ) .

In particular,z = x, sinceAx + Bu = (A + KC)x +
[
−

K,B + KD
][
Cx + Du, u

]⊤
. As such,q = R1/2[u − Fx]

and
η̇ = (A+BF )η +BR−1/2q(
y
u

)
=

(
C +DF

F

)
η +

(
DR−1/2

R−1/2

)
q.

That is,( y
u ) ∈ GL2(R → R

m), as claimed.
Step 2.3: We now show the reverse inclusion:img G ⊂ G .

Suppose( y
u ) ∈ img G. Then there existsη ∈ L2(R → R

n)
andq ∈ L2(R → R

m) such that

η̇ = (A+BF )η +BR−1/2q(
y
u

)
=

(
C +DF

F

)
η +

(
DR−1/2

R−1/2

)
q.

So we haveu = Fη +R−1/2q, wherebyy = Cη +Du and
η̇ = Aη + B(Fη + R−1/2q) = Aη + Bu. Hence,x = η ∈
L2(R → R

n) satisfiesẋ = Ax + Bu and y = Cx + Du,
whereby( y

u ) ∈ G , as required.

Step 3: Here we show that the right coprime representation
G = [ N

M
] is normalized, i.e.G∗G = N ∗N + M∗M = I,

whereG∗,N ∗,M∗ denote the adjoints with respect to the
L2 inner-product. Note that:

N ∗ =(DR
− 1

2 )∗ + (BR
− 1

2 )∗
(
−D − (A+BF)∗

)−1
(C+DF)∗;

M∗ =(R− 1

2 )∗ + (BR
− 1

2 )∗
(
−D − (A+BF)∗

)−1
F

∗.

To simplify, we use the short hand(D− (A+BF)) =: (X )
in what follows. SinceR(t) is symmetric for allt ∈ R, we
haveR(t)−1/2 is symmetric for allt ∈ R. Thus,

G∗G =N ∗N +M∗M

=R
− 1

2D
∗
DR

− 1

2 +R
− 1

2D
∗(C+DF)(X )−1

BR
− 1

2

+R
− 1

2B
∗(X )−∗(C∗ + F

∗
D

∗)DR
− 1

2 +R
− 1

2B
∗(X )−∗

· [C∗
C+C

∗
DF+ F

∗
D

∗
C+ F

∗
D

∗
DF](X )−1

BR
− 1

2

+R
− 1

2F(X )−1
BR

− 1

2 +R
− 1

2B
∗(X )−∗

F
∗
R

− 1

2

+R
− 1

2R
− 1

2 +R
− 1

2B
∗(X )−∗

F
∗
F(X )−1

BR
− 1

2 .

Now usingR = I+D
∗
D andF = −R

−1(B∗
Π+D

∗
C),

G∗G

= R
− 1

2

[
R+

[
I−D

∗
DR

−1 −R
−1

]
︸ ︷︷ ︸

=I−RR−1=0

D
∗
C(X )−1

B

+
[
−D

∗
DR

−1 −R
−1

]
B

∗
Π(X )−1

B

+B
∗(X )−∗

C
∗
D

[
I−R

−1
D

∗
D−R

−1
]

︸ ︷︷ ︸
=I−R−1R=0

+B
∗(X )−∗

ΠB
[
−R

−1
D

∗
D−R

−1
]

+B
∗(X )−∗

[
C

∗
[
I−DR

−1
D

∗ −DR
−1

D
∗

+DR
−1

D
∗
DR

−1
D

∗ +DR
−1

R
−1

D
∗
]
C

+C
∗
D

[
−R

−1 +R
−1

D
∗
DR

−1 +R
−1

R
−1

]
︸ ︷︷ ︸

=−R−1+R−1RR−1=0

B
∗
Π

+ΠB

︷ ︸︸ ︷[
−R

−1 +R
−1

D
∗
DR

−1 +R
−1

R
−1

]
D

∗
C

+ΠB
[
R

−1
D

∗
DR

−1 +R
−1

R
−1

]
B

∗
Π

]
(X )−1

B
]
R

− 1

2 .

SinceR(t) is invertible for all t ∈ R, and omitting thet for
convenience,

Ip −DR−1D⊤ = [Ip +DD⊤]−1 = R̃−1. (21)

In view of the Riccati equation (16), this leads to

G∗G = R
− 1

2

[
R

−B
∗(X )−∗(D −A+BR

−1
B

∗
Π+BR

−1
D

∗
C)∗Π(X )−1

B

−B
∗(X )−∗

Π(D −A+BR
−1

B
∗
Π+BR

−1
D

∗
C)(X )−1

B

+B
∗(X )−∗

[
C

∗
[
I+DR

−1[I+D
∗
D− 2R]R−1

D
∗
]
C

+ΠBR
−1

B
∗
Π

]
(X )−1

B
]
R

− 1

2

= I+R
− 1

2B
∗(X )−∗

[
−D∗

Π− Π̇−ΠD
]
(X )−1

BR
− 1

2 .

Noting that for everyx ∈ domD,

(D∗
Π+ Π̇+ΠD)(x) = −D(Πx) + Π̇x+Π(ẋ)

= −Π̇x−Πẋ+ Π̇x+Πẋ = 0,

so thatD∗
Π+ Π̇+ΠD = 0, we have that (20a) holds.

Step 4.1: In view of Step 1,G̃ defined by the system (17)
is stable. We now show thatY : L2(R → R

p) → L2(R →
R

p × R
m), defined by the system

ż = (A+BE)z + LR̃1/2q,(
p
w

)
=

(
C +DE

E

)
z +

(
−R̃1/2

0

)
q,



where E ∈ CBm,n is such thatA + BE defines an
exponentially stable evolution, satisfies̃GY = I. SuchE
exist since(A,B,C,D) is stabilizable.

SinceA + LC andA + BE define exponentially stable
evolutions, the inverses of the operatorsD− (A+LC) and
D − (A+BE) exist, hence we may write

G̃ :=
[
− M̃, Ñ

]

:=R̃
− 1

2

[
− I,D

]
+ R̃

− 1

2C
(
D − (A+ LC)

)−1[
− L,B+ LD

]
,

Y :=

[
−R̃

1

2 + (C+DE)
(
D − (A+BE)

)−1
LR̃

1

2

E
(
D − (A+BE)

)−1
LR̃

1

2

]
.

Following the analysis of Step 2.1,

G̃Y =I+ R̃
− 1

2C
[
−

(
D − (A+BE)

)−1
+

(
D − (A+ LC)

)−1

+
(
D − (A+ LC)

)−1[
LC−BE

](
D − (A+BE)

)−1]
BR̃

1

2

=I

Step 4.2: Here we show thatG ⊂ ker G̃. Suppose( y
u ) ∈ G .

Then there existsx ∈ L2(R → R
n) such thatẋ = Ax+Bu

andy = Cx+Du. So ξ = x ∈ L2(R → R
n) satisfies

ξ̇ = Aξ +Bu = Aξ + LCξ − LCx− LDu+Bu+ LCu

= (A+ LC)ξ + [−L,B + LC] ( y
u )

and

v = R̃−1/2Cξ +
[
− R̃−1/2, R̃−1/2D

]
( y
u )

= R̃−1/2Cξ − R̃−1/2[Cξ +Du] + R̃−1/2Du = 0.

Thus ( y
u ) ∈ ker G̃, as required.

Step 4.3: We now show the reverse inclusion:kerG ⊂ G .
Suppose( y

u ) ∈ ker G̃. Then there existsξ ∈ L2(R → R
n)

such that

ξ̇ = (A+ LC)ξ + [−L,B + LD] ( y
u )

0 = R̃−1/2Cξ − R̃−1/2y + R̃−1/2Du.

So we havey = R̃1/2
[
R̃−1/2Cξ + R̃−1/2Du

]
= Cξ +Du

and ξ̇ = Aξ+LCξ−L(Cξ+Du)+[B+LD]u = Aξ+Bu,
and hence there existsx = ξ ∈ L2(R → R

n) which satisfies
ẋ = Ax+Bu andy = Cx+Du. Thus( y

u ) ∈ G .
Step 5: Finally we show that the left coprime representa-

tion G̃ =
[
− M̃, Ñ

]
is normalized, i.e.G̃G̃∗ = M̃M̃∗ +

Ñ Ñ ∗ = I, where G̃∗, Ñ ∗,M̃∗ denote the adjoints with
respect to theL2 inner-product.

Similar algebraic manipulation (see also [12] for more de-
tails) as in Step 3 and application of the Riccati equation (18)
leads to

G̃G̃∗= I+ R̃
− 1

2C(X )−1
[

−
(
D −A+ΨC

∗
R̃

−1
C+BD

∗
R̃

−1
C
)
Ψ

−Ψ
(
D −A+ΨC

∗
R̃

−1
C+BD

∗
R̃

−1
C
)∗

+BR
−1

B
∗ +ΨC

∗
R̃

−1
CΨ

]
(X )−∗

C
∗
R̃

− 1

2

= I+ R̃
− 1

2C(X )−1
[
−DΠ+ Ψ̇−ΨD∗

]
(X )−∗

C
∗
R̃

− 1

2 .

For everyx ∈ domD, we have

(DΨ− Ψ̇+ΨD∗)(x) = D(Ψx)− Ψ̇x+Ψ(−ẋ)

= Ψ̇x+Ψẋ− Ψ̇x−Ψẋ = 0,

and soDΨ − Ψ̇ + ΨD∗ = 0, whence (20b), as claimed.
This completes the proof.

V. CONCLUDING REMARKS

We have shown that for a time-varying linear system with
stabilizable and detectable finite-dimensional state-space re-
alization, there exist normalized coprime representations
of the system graph. While the analysis is carried out
over doubly-infinite continuous-time, as required to properly
define a notion of normalization that is consistent with
the time-invariant case, the requirement that the coprime
representations be stable, and stably invertible, means they
act causally on the singly-infinite time axis, and therefore
provide a mechanism for suitably characterising theL2[0,∞)
graph, as well as theL2(−∞,∞) graph considered here.
This work is part of a broader effort to extend theν-gap
metric robustness analysis framework of [16] to the time-
varying setting, with a view to also extending the recent
marriage of IQC (integral-quadratic-constraint) andν-gap
metric based analysis in [5] to such a setting.
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