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Opinion dynamics for agents with opinion-dependent connections

Vincent D. Blondel, Julien M. Hendrickx and John N. Tsitsiklis

Abstract— We study a simple continuous-time multi-agent
system related to Krause’s model of opinion dynamics: each
agent holds a real value, and this value is continuously attracted
by every other value differing from it by less than 1, with an
intensity proportional to the difference.

We prove convergence to a set of clusters, with the agents
in each cluster sharing a common value, and provide a lower
bound on the distance between clusters at a stable equilibrium,
under a suitable notion of multi-agent system stability.

To better understand the behavior of the system for a large
number of agents, we introduce a variant involving a continuum
of agents. We show, under some conditions, the existence of a
solution to the system dynamics, convergence to clusters, and
a non-trivial lower bound on the distance between clusters.
Finally, we establish that the continuum model accurately
represents the asymptotic behavior of a system with a finite
but large number of agents.

I. INTRODUCTION

We study a continuous-time multi-agent model: each of n
agents, labeled 1, . . . , n, maintains a real number (“opinion”)

xi(t), which is a continuous function of time and evolves

according to the integral equation version of

ẋi(t) =
∑

j: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) . (1)

This model has an interpretation in terms of opinion dynam-

ics: an agent considers another agent to be a neighbor if

their opinions differ by less than 1, and agent opinions are

continuously attracted by their neighbors’ opinions. Numer-

ical simulations show that the system converges to clusters

inside which all agents share a common value. Different

clusters lie at a distance of at least 1 from each other, and

often approximately 2, as shown in Figure 1. The minimal

distance of 1 between clusters is easily explained by the fact

that clusters separated by a distance smaller than 1 would be

attracting each other. The observation that the typical inter-

cluster distance is close to 2 is however more surprising.

We focus on understanding these convergence properties and
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Fig. 1. Evolution with time of the values xi(t) for 1000 agents, with
initial values randomly and uniformly distributed on [0, 10]. Observe the
convergence to 4 clusters separated by slightly more than 2.

the structure of the set of clusters, including the asymptotic

behavior for large n.

Observe that the network of interactions between agents in

(1) explicitly depends on the agent states, as xj(t) influences

xi(t + 1) only if |xi(t)− xj(t)| < 1. Many multi-agent

systems involve a changing interaction topology; see e.g.

[1], [10], [11], [16], [19], [20], and [17], [18] for surveys.

In some cases, the interaction topology evolves randomly or

according to some exogenous scheme, but in other cases it is

modeled as a function of the agent states. The latter is typi-

cally the case for models of animals or robots with limited

visibility. With some exceptions [7], [8], [12], however, this

state-dependence is not taken into account in the analysis,

probably due to the technical difficulties that it presents.

To address this issue, we have recently analyzed [2],

[3] one of the simplest discrete-time multi-agent systems

with state-dependent interaction topologies, namely, Krause’s

model1 of opinion dynamics [13]: n agents maintain real

numbers (“opinions”) xi(t), i = 1, . . . , n, and synchronously

update them as follows:

xi(t+ 1) =

∑

j: |xi(t)−xj(t)|<1 xj(t)
∑

j: |xi(t)−xj(t)|<1 1
.

This model was particularly appealing due to its simple

formulation, and due to some peculiar behaviors that it ex-

hibits, which cannot be explained without taking into account

the explicit dynamics of the interaction topology. Indeed, a

first analysis using results on infinite inhomogeneous matrix

products, as in [10], [14], shows convergence to clusters

1The model is sometimes referred to as the Hegselmann-Krause model.
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in which all agents share the same opinion, and that the

distance between any two clusters is at least 1. Numerical

simulations, however, show a qualitative behavior similar to

the one shown in Figure 1 for the model (1): the distance

between consecutive clusters is usually significantly larger

than 1, and typically close to 2 when n is sufficiently large,

a phenomenon for which no explanation was available.

Our goal in [2], [3] was thus to develop a deeper un-

derstanding of Krause’s model and of these observed phe-

nomena, by using explicitly the dynamics of the interaction

topology. To this effect, we introduced a new notion of sta-

bility, tailored to such multi-agent systems, which provided

an explanation for the observed inter-cluster distances when

the number of agents is large. Furthermore, to understand

the asymptotic behavior as the number of agents increases,

we also studied a model involving a continuum of agents.

We obtained partial convergence results for this continuum

model, and proved nontrivial lower bounds on the inter-

cluster distances, under some conditions.

Our results in [2], [3] were however incomplete in certain

respects. In particular, the question of convergence of the

continuum model remains open, and some of the results

involve assumptions that are not easy to check a priori. We

see two main reasons for these difficulties. First, the system

is asymmetric, in the sense that the influence of xj(t) on

xi(t+1) can be very different from that on xi(t) on xj(t+1),
when i and j do not have the same number of neighbors.

Second, the discrete time nature of the system allows, for

the continuum model, buildup of an infinite concentration of

agents with the same opinion, thus breaking the continuity

of the agent distribution.

For the above reasons, we have chosen to analyze here the

system (1), a continuous-time symmetric variant of Krause’s

model, for which we provide crisper and more complete

results. One reason is that, thanks to the symmetry, the

average value 1
n

∑

i xi(t) is preserved, and the average value

of a group of agents evolves independent of the interactions

taking place within the group, unlike Krause’s model. In

addition, when two agent values approach each other, their

relative velocity decays to zero, preventing the formation

of infinite concentration in finite time. The continuous-

time nature of the system brings up however some new

mathematical challenges, related for example to the existence

and uniqueness of solutions.

To summarize, the objective of the present paper is

twofold. First, to advance our understanding of multi-agent

systems with state-dependent interactions, by analyzing in

full detail one simple but nontrivial such system. Second, to

explain the convergence of agents to clusters separated by

approximately twice the interaction distance, a phenomenon

that often arises in such opinion dynamics models.

A. Outline and contributions

In Section II, we give some basic properties of the model

(1), and prove convergence to clusters in which all agents

share the same value. We then analyze the distance between

consecutive clusters building on an appropriate notion of sta-

bility with respect to perturbing agents, introduced in [2], [3].

This analysis leads to a necessary and sufficient condition for

stability that is consistent with the experimentally observed

inter-cluster distances, and to a conjecture that the probability

of convergence to a stable equilibrium tends to one as the

number of agents increases. In Section III, we introduce

a variant involving a continuum of agents, to approximate

the model for the case of a finite but large number of

agents. Under some smoothness assumptions on the initial

conditions, we show the existence of a unique solution,

convergence to clusters, and nontrivial lower bounds on

the inter-cluster distances, consistent with the necessary and

sufficient for stability in the discrete-agent model. Finally,

in Section IV, we explore the relation between the two

models, and establish that the behavior of the discrete model

approaches that of the continuum model over finite but

arbitrarily long time intervals, provided that the number of

agents is sufficiently large.

The results summarized above differ from those those

obtained in [2], [3] for Krause’s model, in three respects:

(i) we obtain the convergence of the continuum model, in

contrast to the partial results obtained for Krause’s model; (ii)

all of our stability and approximation results are valid under

some simple and easily checkable smoothness assumptions

on the initial conditions, unlike the corresponding results in

[3] which require, for example, the distance between the

largest and smallest opinions to remain larger than 2 at all

times; (iii) finally we settle the problem of existence and

uniqueness of a solution to our equations, a problem that did

not arise for Krause’s discrete-time model. These stronger

results were obtained by using proof techniques relying on

the continuous evolution of the opinions, on the preservation

of their average, and on the the symmetry of the interactions.

Most proofs are omitted here for space reasons. We refer

the reader to [5] for a complete version of our results.

B. Related work

Our model (1) is closely related to that treated by Canuto

et al. [6] who consider a continuum of multi-dimensional

opinions, while treating discrete agents as a special case. In

the case of discrete agents with one-dimensional opinions,

the evolution is described by

ẋi(t) =
∑

j

ξ (xi(t)− xj(t)) (xi(t)− xj(t)) ,

where ξ is a continuous nonnegative symmetric and decaying

function, taking positive values only for arguments with am-

plitude smaller than a certain constant R. They also consider

a discrete-time approximation of their model, described in

the case of discrete agents with one-dimensional opinion

by xi(t + δt) = xi(t) + δtẋi(t). Our model is therefore

a particular case of their continuous-time model in one

dimension, except that a step function does not satisfy their

continuity assumption.

The authors of [6] prove convergence of the opinions, in

distribution, to clusters separated by at least R for both dis-
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crete and continuum-time models. Their convergence proof

relies on the decrease of the measured variance of the opinion

distribution, and is based on an Eulerian representation that

follows the density of agent opinions, in contrast to the

Lagrangian representation used in this paper, which follows

the opinion x of each agent. It is interesting to note that

despite the difference between these two methods for proving

convergence, they both appear to fail in the absence of

symmetry, and cannot be used to prove convergence for the

continuum-agent variant of Krause’s model.

Finally, the models in this paper are also related to

other classes of rendezvous methods and opinion dynamics

models, as described in [3], [15] and the references therein.

Several more complex decentralized control laws are built

on such rendezvous methods.

II. DISCRETE AGENTS

The differential equation (1) usually has no differentiable

solutions. Indeed, observe that the right-hand side of the

equation can be discontinuous when the interaction topology

changes, which can prevent x from being differentiable. To

avoid this difficulty, we consider functions x : ℜ+ → ℜn

that are solutions of the integral version of (1), namely

xi(t) = xi(0) +

∫ t

0

∑

j: |xi(τ)−xj(τ)|<1

(xj(τ)− xi(τ)) dτ.

(2)

Observe however that for all t at which ẋi(t) exists, it can

be computed using (1).

A. Existence and convergence

Time-switched linear systems are of the form x(t) =
x(0) +

∫ t

0
Aτx(τ) dτ , where At is a piecewise constant

function of t. They always admit a unique solution provided

that the number of switches taking place during any finite

time interval is finite. Position-switched systems of the form

ẋ(t) = x(0)+
∫ t

0
Ax(τ)x(τ) dτ may on the other hand admit

none or multiple solutions. Our model (2) belongs to the

latter class, and indeed admits multiple solutions for some

initial conditions. Observe for example that the two-agent

system with initial condition x̃ = (− 1
2 ,

1
2 ) admits a first

solution x(t) = x̃, and a second solution x(t) = x̃e−t. The

latter solution satisfies indeed the differential equation (1)

at every time except 0, and thus satisfies (2). We will see

however that such cases are exceptional.

We say that x̃ ∈ ℜn is a proper initial condition of (2) if:

(a) There exists a unique x : ℜ+ → ℜn : t → x(t) satisfying

(2), and such that x(0) = x̃.

(b) The subset of ℜ+ on which x is not differentiable is at

most countable, and has no accumulation points.

(c) If xi(t) = xj(t) holds for some t, then xi(t
′) = xj(t

′),
for every t′ ≥ t.

We then say that the solution x is a proper solution of (2).

Theorem 1: Almost all x̃ ∈ ℜn (in the sense of Lebesgue

measure) are proper initial conditions.

It follows from condition (c) and from the continuity of

proper solutions that if xi(t) ≥ xj(t) holds for some t, then

this inequality holds for all subsequent times. For the sake of

clarity, we assume thus in the sequel that the components of

proper initial conditions are sorted, that is, if i > j, then x̃i ≥
x̃j , which also implies that xi(t) ≥ xj(t) for all t. Moreover,

an explicit computation, which we perform in Section III

for a more complex system, shows that |xi(t)− xj(t)| ≥
|x̃i − x̃j | e

−nt. Observe finally that if xi+1(t
∗)−xi(t

∗) > 1
holds for some t∗ for a proper solution x, then ẋi+1(t) ≥
0 and ẋi(t) ≤ 0 hold for almost all subsequent t, so that

xi+1(t)− xi(t) remains larger than 1. The system can then

be decomposed into two independent subsystems, consisting

of agents 1, . . . , i, and i+ 1, . . . , n, respectively.

There are several convergence proofs for the system (2).

We present here a simple one, which highlights the impor-

tance of the average preservation and symmetry properties,

and extends nicely to the continuum model [5]. Let F be

the set of vectors s̃ ∈ ℜn such that for all i, j ∈ {1, . . . , n},

either s̃i = s̃j , or |s̃i − s̃j | ≥ 1. We refer to vectors in F as

equilibria.

Theorem 2: Every proper solution x of (2) converges to a

limit x∗ ∈ F ; i.e., for any i, j, if x∗
i 6= x∗

j , then |x∗
i −x∗

j | ≥ 1.

Proof: Observe that by symmetry, the equality

k
∑

i=1

∑

j≤k: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) = 0

holds for any k and any t. Therefore, it follows from (2) that

for all t but possibly countably many,

d

dt

k
∑

i=1

xi(t) =
k

∑

i=1

∑

j>k: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) , (3)

which is nonnegative because j > k > i implies xj(t) −
xi(t) ≥ 0. Since xi(t) ≤ maxj xj(0), for all i and t ≥ 0,
∑k

i=1 xi(t) is bounded and therefore converges monotoni-

cally, for any k. It then follows that every xi(t) converges to

a limit x∗
i . We assume that x∗

k 6= x∗
k+1 and suppose, to obtain

a contradiction, that x∗
k+1 − x∗

k < 1. Then, since every term

xj(t) − xi(t) on the right-hand side of (3) is nonnegative,

the derivative on the left-hand side is asymptotically positive

and bounded away from 0, preventing the convergence of
∑k

i=1 xi(t). Therefore, x∗
k+1 − x∗

k ≥ 1.

B. Stable equilibria and inter-cluster distances

By the term clusters, we will mean the limiting values

to which the agent opinions converge. With some abuse of

terminology, we also refer to a set of agents whose opinions

converge to the same value as a cluster. Theorem 2 implies

that clusters are separated by at least 1. On the other hand,

extensive numerical experiments indicate that the distance

between adjacent clusters is typically significantly larger than

one, and if the clusters contain the same number of agents,

usually close to 2. We believe that this phenomenon can,

at least partially, be explained by the fact that clusters that

are too close to each other can be forced to merge by the

presence of a small number of agents between them, as in

Figure 2. To formalize this idea we introduce a generalization
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Fig. 2. Example of a temporary, “meta-stable,” equilibrium. Initially, two
clusters are formed and do not interact with each other, but they both
interact with a small number of agents in between. As a result, the distance
separating them eventually becomes smaller than 1. The clusters then attract
each other directly and merge into a single, larger cluster.

of the system (2) in which each agent i has a weight wi, and

its opinion evolves according to

xi(t) = xi(0) +

∫ t

0

∑

j: |xi(τ)−xj(τ)|<1

wj (xj(τ)− xi(τ)) dτ.

(4)

The convergence result of Section II-A carries over to the

weighted case (the proof is the same). We will refer to the

sum of the weights of all agents in a cluster, as its weight. If

all the agents in a cluster have exactly the same opinion, the

cluster behaves as a single agent with this particular weight2.

Let s̃ ∈ F be an equilibrium vector. Suppose that we add

a new agent of weight δ and initial opinion x0, consider

the resulting configuration as an initial condition, and let the

system evolve according to some solution x(t) (we do not

require uniqueness). We define ∆(δ, s̃) as the supremum of

|xi(t)− s̃i|, where the supremum is taken over all possible

initial opinions x0 of the perturbing agent, all i, all times

t, and all possible solutions x(t) of the system (2). We say

that s̃ is stable if limδ↓0 ∆(δ, s̃) = 0. An equilibrium is thus

unstable if some modification of fixed size can be achieved

by adding an agent of arbitrarily small weight. This notion

of stability is almost the same as the one that we introduced

for Krause’s model in [2], [3].

Theorem 3: An equilibrium is stable if and only if for

any two clusters A and B with weights WA and WB , re-

spectively, their distance is greater than d =1+ min{WA,WB}
max{WA,WB} .

Proof: The proof is very similar to the proof of

Theorem 2 in [3]. The main idea is the following. A

perturbing agent can initially be connected to at most two

clusters, and cannot perturb the equilibrium substantially if

it is connected to none or one. If it is connected to two

2In the case of non-proper initial conditions leading to multiple solutions,
there exists at least one solution in which each cluster behaves as a single
agent with the corresponding weight.

clusters A,B, it moves in the direction of their center of

mass WAs̃A+WB s̃B
WA+WB

, while the two clusters move at a much

slower pace, proportional to the perturbing agent’s weight.

We note that, by a simple algebraic calculation, the center

of mass of two clusters is within unit distance from both

clusters if and only if their distance is no more than d.

If the distance between the two clusters is more than

d, then the center of mass of the two clusters is more

than unit distance away from one of the clusters, say from

B. Therefore, eventually the perturbing agent is no longer

connected to B, and rapidly joins cluster A, having modified

the cluster positions only proportionally to its weight. Thus,

the equilibrium is stable.

On the other hand, if the distance between the two

clusters is less than d, then the center of mass is less than

unit distance away from both clusters. We can place the

perturbing agent at the center of mass. Then, the perturbing

agent does not move, but keeps attracting the two clusters,

until eventually they become connected and then rapidly

merge. Thus, the equilibrium is not stable.

If the distance between clusters is exactly equal to d, the

center of mass is at exactly unit distance from one of the two

clusters. Placing a perturbing agent at the center of mass

results in nonunique solutions. In one of these solutions,

the clusters start moving towards their center of mass, and

the subsequent behavior is the same as in the case where

the distance between clusters is smaller than d, thus again

showing instability. Such a solution violates the differential

version of (2) only at time t = 0 and thus satisfies (2).

Theorem 3 characterizes stable equilibria in terms of a

lower bound on inter-cluster distances. It allows for inter-

cluster distances at a stable equilibrium that are smaller than

2, provided that the clusters have different weights. This is

consistent with experimental observations for certain initial

opinion distributions (see [9] for example). On the other

hand, for the frequently observed case of clusters with equal

weights, stability requires inter-cluster distances of at least

2. Thus, this result comes close to a full explanation of the

observed inter-cluster distances of about 2.2. Of course, there

is no guarantee that our system will converge to a stable

equilibrium. (A trivial example is obtained by initializing

the system at an unstable equilibrium.) However, we have

observed that for a given distribution of initial opinions, and

as the number of agents increases, we almost always obtain

convergence to a stable equilibrium. This leads us to the

following conjecture.

Conjecture 1: Suppose that the initial opinions are chosen

randomly and independently according to a bounded proba-

bility density function with connected support, which is also

bounded below by a positive number on its support. Then,

the probability of convergence to a stable equilibrium tends

to 1, as the number of agents increases to infinity.

In addition to extensive numerical evidence (see [9]), this

conjecture is supported by the intuitive idea that if the

number of agents is sufficiently large, convergence to an

unstable equilibrium is made impossible by the presence of
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at least one agent connected to the two clusters. It is also

supported by results obtained in the next sections. A similar

conjecture has been made for Krause’s model [2], [3].

III. AGENT CONTINUUM

To further analyze the properties of (2) and its behavior as

the number of agents increases, we now consider a variant

involving a continuum of agents. We use the interval I =
[0, 1] to index the agents, and denote by Y the set of bounded

measurable functions x̃ : I → ℜ, attributing an opinion

x̃(α) ∈ ℜ to every agent in I . As an example, a uniform

distribution of opinions is given by x̃(α) = α. We use the

function x : I × ℜ+ → ℜ : (α, t) → xt(α) to describe the

collection of all opinions at different times. 3 We denote by

xt the function in Y obtained by restricting x to a certain

value of t. For a given initial opinion function x̃0 ∈ Y , we

are interested in functions x satisfying

d

dt
xt(α) =

∫

β:|xt(α)−xt(β)|<1

(xt(β)− xt(α)) dβ, (5)

Note that x0, the restriction of x to t = 0, should not be

confused with x̃0, an arbitrary function in Y intended as an

initial condition, but for which they may possibly exist none

or several corresponding functions x.

The existence or uniqueness of a solution to (5) is not guar-

anteed, and there may moreover exist functions that satisfy

this equation in a weaker sense, without being differentiable

in t. For this reason, it is more convenient to formally define

the model through an integral equation. For an initial opinion

function x̃0 ∈ Y , we are interested in measurable functions

x : I ×ℜ+ → ℜ : (α, t) → xt(α) such that

xt(α) = x̃0(α)+

∫ t

0

∫

β:|xτ (α)−xτ (β)|<1

(xτ (β)− xτ (α)) dβdτ

(6)

for every t and for every α ∈ I . One can easily prove that

for any solution x of (6), x̄t :=
∫ 1

0
xt(α) dα is constant, and

∫ 1

0
(xt(α)− x̄t)

2
dα is nonincreasing in t.

For the sake of simplicity, we will restrict attention to

nondecreasing opinion functions, and define X as the set of

nondecreasing bounded functions x̃ : I → ℜ. This is no

essential loss of generality, because the only quantities of

interest relate to the distribution of opinions; furthermore,

monotonicity of initial opinion functions can be enforced

using a measure-preserving reindexing of the agents; finally,

monotonicity is preserved by the dynamics under mild con-

ditions. We will refer to element of X as nondecreasing

functions. if x : I × [0,∞) → ℜ is such that xt ∈ X for all

t, we will also say that x is nondecreasing.

A. Existence and uniqueness of solutions

The existence of a unique solution to (6) is in general

not guaranteed, as there exist initial conditions allowing for

multiple solutions. Consider for example x̃0(α) = −1/2
if α ∈ [0, 1

2 ], and x̃0(α) = 1/2 otherwise. Similar to our

3Note the reversal of notational conventions: the subscript now indicates
time rather than an agent’s index.

discrete-agent example, xt = x̃0 and xt(α) = x̃0(α)e
−t

are two possible solutions of (6). Nevertheless, we will see

that a unique solution exists when the initial condition, as a

function of α, has a positive and bounded increase rate; this

is equivalent to assuming that the density of initial opinions

is bounded from above and from below on its support, which

is connected. It is convenient to introduce some additional

notation. For positive real numbers m,M , we call XM
m ⊂ X

the set of nondecreasing functions x̃ : I → ℜ such that

M ≥
x̃(β)− x̃(α)

β − α
≥ m

holds for every β 6= α, and say that a function x̃ ∈ X
is regular if it belongs to XM

m for some m,M > 0. The

following existence and uniqueness result, proved in [5],

relies on the continuity at every regular function of the

operator defining the integral equation (6).

Theorem 4: Suppose that the initial opinion function sat-

isfies x̃0 ∈ XM
m , for some m,M > 0. Then the models

(5) and (6) admit a unique and common solution x, and x
satisfies

me−t ≤
xt(β)− xt(α)

β − α
≤ Me4t/m, (7)

for every t and β 6= α. xt is regular at all time.

B. Convergence to clusters, and inter-cluster distances

In this section, we analyze the convergence of the opinions

to clusters and characterize the fixed points and the possible

limit points of the system, exhibiting the importance of

the distances between clusters. In particular, we show that

for regular initial conditions, the limit to which the system

converges satisfies a condition on the inter-cluster distance

similar to the one in Theorem 3, and give a necessary

condition for the the stability of a fixed point.

Let F ⊂ X be the set of nondecreasing functions s̃
such that for every α, β ∈ I , either s̃(α) = s̃(β) or

|s̃(α)− s(β)| > 1. Similarly, let F be the set of nondecreas-

ing functions s̃ such that for almost every pair (α, β) ∈ I2,

either s̃(α) = s̃(β) or |s̃(α)− s(β)| ≥ 1. Finally, we say

that s̃ ∈ X is a fixed point if the integral equation (6) with

initial condition s̃ admits a unique solution xt = s̃ for all t.
The idea behind the proof of the next convergence theorem

presents many similarities with that of Theorem 2.

Theorem 5: Let x be a solution of the integral equation

(6) such that x0 is regular. There exists a function ỹ ∈ F
such that limt→∞ xt(α) = ỹ(α) holds for almost all α.

Moreover, the set of nondecreasing fixed points contains F
and is contained in F .

As in the discrete case, we call clusters the discrete

opinion values held by a positive measure set of agents at a

fixed point s̃. For a cluster A, we denote by WA, referred to

as the weight of the cluster, the length of the interval s̃−1(A).
By an abuse of language, we also call a cluster the interval

s̃−1(A) of indices of the associated agents. The following

result states that, for regular initial conditions, the limit to
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which the system converges satisfies a condition on the inter-

cluster distance similar to the one in Theorem 3. Its proof

uses the continuity of xt at each t to garantee the presence

of perturbing agents between any two emerging clusters [5].

Theorem 6: Let x̃0 ∈ X be an initial opinion function, x
the solution of the integral equation (6), and s̃ = limt→∞ xt

the fixed point to which x converges. If x̃0 is regular, then

|B −A| ≥ 1 +
min{WA,WB}

max{WA,WB}
(8)

holds for any two clusters A and B of s̃.

We now analyze the stability of the fixed points, under a

classical definition of stability (in contrast to the nonstandard

stability notion introduced for the discrete-agent system. Let

s̃ be a fixed point of (6). We say that s̃ is stable, if for every

ǫ > 0 there is a δ > 0 such that if ||s̃− x̃0||1 ≤ δ, then

||s̃− xt||1 ≤ ǫ for every t and every solution x of the integral

equation (6) with x̃0 as initial condition. It can be shown that

this classical notion of stability is stronger than the stability

with respect to the addition of a perturbing agent used in

Section II-B. More precisely, if we view the discrete-agent

system as a special case of the continuum model, stability

under the current definition implies stability with respect to

the definition used in Section II-B.

Proposition 1: Let s̃ be a fixed point of (6). If s̃ is stable,

then for any two clusters A and B,

|B −A|>1 +
min{WA,WB}

max{WA,WB}
. (9)

The proof relies on modifying the positions of an appro-

priate set of agents and “creating” some perturbing agents at

the weighted average of the two clusters, inducing dynamics

similar to those described in the proof of Theorem 3. See

Chapter 10 of [9] or Theorem 6 in [3] for the same proof

applied to Krause’s model. We conjecture that the necessary

condition in Proposition 1 is also sufficient.

Conjecture 2: A fixed point s̃ of (6) is stable according

to the norm || · ||1 if and only if, for any two clusters A,B,

|B −A| > 1 +
min{WA,WB}

max{WA,WB}
,

Conjecture 2 is a fairly strong statement. It implies, for

example, that multiple clusters are indeed possible starting

from regular initial conditions, which is an open question at

present.

IV. RELATION BETWEEN THE DISCRETE AND

CONTINUUM-AGENT MODELS

We now formally establish a connection between the

discrete-agent and the continuum-agent models, and use this

connection to argue that the validity of Conjecture 2 implies

the validity of Conjecture 1.

The following result shows that continuum-agent model

can be interpreted as the limit when n → ∞ of the discrete-

agent model, on any time interval of finite length. Its proof

relies on the continuity of the opinion evolution with respect

to the initial conditions. To avoid any risk of ambiguity, we

use ξ to denote discrete vectors in the sequel. Moreover, we

assume that such vectors are always sorted (i.e., j > i ⇒
ξj ≥ ξi). We define the operator G that maps a discrete

(nondecreasing) vector to a function by G(ξ)(α) = ξi if α ∈
[ i−1

n , i
n ), and G(ξ)(1) = ξ(n), where n is the dimension of

the vector ξ. Let ξ be a solution of the discrete-agent model

(2) with initial condition ξ(0). One can verify that G(ξ(t)) is

a solution to the continuum-agent integral equation for a (6)

with G(ξ(0)) as initial condition. The discrete-agent model

can thus be simulated by the continuum-agent model.

Theorem 7: Consider a regular initial opinion function x̃0,

and let (ξ〈n〉)n>0 be a sequence of (nondecreasing) vectors

in ℜn such that limn→∞

∣

∣

∣

∣G(ξ〈n〉(0))− x̃0

∣

∣

∣

∣

∞
= 0, and

such that for each n, ξ〈n〉(0) is a proper initial condition,

admitting a unique solution ξ〈n〉(t). Then, for every T and

every ǫ> 0, there exists n′ such that
∣

∣

∣

∣

∣

∣
G(ξ〈n〉(t))− xt

∣

∣

∣

∣

∣

∣

∞
≤ ǫ

holds for all t ∈ [0, T ] and n ≥ n′.

When x̃ is regular, a simple way of building such a se-

quence (ξ〈n〉(0))n>0 is to take ξ
〈n〉
i (0) = x̃0(i/n). Theorem

7 implies that the discrete-agent model approximates arbitrar-

ily well the continuum model for arbitrarily large periods of

time, provided that the initial distribution of discrete opinions

approximates sufficiently well the initial conditions of the

continuum model. Now recall that according to Theorem

6, and for regular initial conditions, the continuum-agent

model converges to a fixed point satisfying the inter-cluster

distance condition (8). The conjunction of these two results

seems thus to support our Conjecture 1, that the discrete-

agent model converges to an equilibrium satisfying this same

condition, provided that the number of agents is sufficiently

large and that their initial opinions approximate some regular

function. This argument, however, is incomplete because

the approximation result in Theorem 7 is only valid over

finite, not infinite, time intervals. Nevertheless, we will see

that this reasoning would be valid, with some exceptions, if

Conjecture 2 holds.

Proposition 2: Suppose that x̃0 is regular, and suppose

that the limit s̃ of the resulting solution x of (6) is stable

and its clusters satisfy

|B −A| > 1 +
min{WA,WB}

max{WA,WB}
. (10)

Let ξ(0) ∈ ℜn be a vector whose n entries are randomly

and independently selected according to a probability density

function corresponding to x̃0. Then, the clusters of the

limit of the corresponding solution of (2) satisfy (10), with

probability that tends to 1 as n → ∞.

We can now establish the connection between our two

conjectures. Suppose that Conjecture 2 holds. Let x̃0 be a

regular initial condition. By Theorem 6, the resulting trajec-

tory converges to a fixed point s̃ that satisfies the nonstrict

inequality (8). We expect that generically the inequality will

actually be strict, in which case, according to Conjecture 2,
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s̃ is stable. Therefore, subject to the genericity qualification

above, Proposition 2 implies the validity of Conjecture 1.

V. CONCLUSIONS

We have analyzed a simple continuous-time multi-agent

system for which the interaction topology depends on the

agent states. We worked with the explicit dynamics of the

interaction topology, which raised a number of difficulties, as

the resulting system is highly nonlinear and discontinuous.

This is in contrast to the case of exogenously determined

topology dynamics, which result into time-varying but linear

dynamics.

After establishing convergence to a set of clusters in

which agents share the same opinion, we focused on the

inter-cluster distances. We proposed an explanation for the

experimentally observed distances based on a notion of

stability that is tailored to our context. This also led us to

conjecture that the probability of convergence to a stable

equilibrium (in which certain minimal inter-cluster distances

are respected), tends to 1 as the number of agents increases.

We then introduced a variant of the model, involving

a continuum of agents. For regular initial conditions, we

proved the existence and uniqueness of solutions, the con-

vergence of the solution to a set of clusters, and a nontrivial

bound on the inter-cluster distances, of the same form as the

necessary and sufficient condition stability for the discrete-

agent model. Finally, we established a link between the

discrete and continuum models, and proved that our first

conjecture was implied by a seemingly simpler conjecture.

The results presented here are parallel to, but much

stronger than those that we obtained for Krause’s model of

opinion dynamics [3]. Indeed, we have provided here a full

analysis of the continuum model, under the mild and easily

checkable assumption of regular initial conditions.

The tractability of the model in this paper can be attributed

to (i) the inherent symmetry of the model, and (ii) the

fact that it runs in continuous time, although the latter

aspect also raised nontrivial questions related to the existence

and uniqueness of solutions. We note however that similar

behaviors have also been observed for systems without such

symmetry. One can therefore wonder whether the symmetry

is really necessary, or just allows for comparatively simpler

proofs. One can similarly wonder whether our results admit

counterparts in models involving high-dimensional opinion

vectors, where one can no longer rely on monotonic opinion

functions and order-preservation results.

As in our work on Krause’s model, our study of the system

on a continuum and the distances between the resulting

clusters uses the fact that the density of agents between the

clusters that are being formed is positive at any finite time.

This however implies that, unlike the discrete-agent case,

the clusters always remain indirectly connected, and it is

not clear whether this permanent connection can eventually

force clusters to merge. In fact, it is an open question whether

there exists a regular initial condition that leads to multiple

clusters, although we strongly suspect this to be the case. A

simple proof would consist of an example of regular initial

conditions that admit a closed-form formula for xt. However,

this is difficult because of the discontinuous dynamics. The

only available examples of this type converge to a single

cluster, as for example, in the case of any two dimensional

distribution of opinions with circular symmetry (see [6]).
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