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Singular constant control trajectories and transition degeneracies in a
closed 4-level quantum system

Mohamed Belhadj, Andreea Grigoriu and Gabriel Turinici

Abstract—We analyze in this paper controllability aspects oscillatory) or on the contrary constant (magnetic fields in
for a 4-dimensional quantum system. The "strong regularity ~ NMR applications).
(ct. [1]) has been proven to be sufficient condition for globa ¢ conrollability has been investigated in the context of

controllability. A conjecture in the literature asks whether this the bili i Li d | criteri h
condition (up to the introduction of an additive constant in the e bilinear systems on Li€ groups and several criterione ha

control field) is also necessary. We prove here a negative s~ been put forward [1], [11].

The result also applies to the study of singularity of traje¢o- Controllability can be of two types: local and global.
_ries associated to constant (_:ontrol_ fields. The theoreticaksult Passing from local to global controllability is a delicatek
is supported by numerical simulations. and compactness is one of the arguments that can be invoked.
I. INTRODUCTION Several questions are of interest: around which trajezsori

The development of the laser technology in the 6(),goes local controllability hold, when is the system glopall

brought into the attention of the scientific community thecontrolllz.;\ble,.etc. , .
possibility to use the lasers to control chemical reactians !N finite dimensional systems, global controllability has
a quantum level2], [4], 6], 8], [9], [12]. Latter the control been proved when the system is "strongly regular” cf. [1].

of quantum system has been extended to other types tdpwever the "strong regularity” is only a sufficient condii

interaction such as magnetic fields in NMR experimenté’?nd a natural question arises: can any controllable system

The interest related to this technique is that the contsstle® Proven to be strongly regular (eventually after a shift in
manipulation affects the very structure of molecules and'€ field). This has been formulated as a conjecture in the

has the potential to allow precision far beyond the usudferature. The main re_sult gives a negative answer to the
macroscopic means (temperature, pressure....). posed question if the dimension of the system is larger than

Today the technique has many other applicati8jsin 4. .
various fields: designing logical gates for the next gefimat ~ On the other hand we analyse the local controllability
of quantum computers, medical imaging by nuclear magnetﬂfound a constant field. When local controllability does

resonance (NMR), study of protein dynamics, moleculdfOt hold in the neighborhood of a field we say that the
detection, molecular orientation and alignment, consionc  c0rresponding trajectory is singular. We show in this paper
of ultra-short laser. that systems exist such that all constant fields give rise to

The first experiments proved that controlling quantum phengular trajectories. . . _
nomena by external fields is a rather difficult task to handle 1he balance of the paper is as follows: in section Il the
that the physical intuition alone cannot accomplish. Thig§eneral control concepts and a detailed motivation of the
hinted to the necessity of introducing rigorous controbitye article are introduced, in section Il th_e theoret_lcal ﬂE@
tools. An important preliminary of experimental implement presented supported by some numerical tests in section IV.
tion is the study of the feasibility through theoretical hds
and computer simulations. In such a context informations
on the controllability of the system are crucial to the fetur We consider a quantum system evolving under the

Il. GENERAL SETTING

success of the experiment. Schroddinger equation (we use atomic units,/i.e 1):
Depending on the application, the field that manipulates 9

the quantum system can have tendency to rather be oscilla- igkll(x,t) = H(@)V(z,t)

tory (as in femtosecond chemistry when the laser is highly U, t=0) = Wo(a), 1)
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where H; is the operator connecting the system with the We define the graplir = (V, E), whereV is the set of
laser fielde(t) € R and Hy is the internal Hamiltonian. vertices andE' the set of edges, as follows:
2 - i ion
The L* norm is conserved during the evolution: G=(V.E): V = {pi = 1NV,

¥ (2, )l L2y = Wollz2@vy Y E>0 3) E = {(pi,¢j),i < j,Bij #0} (7)

and the state belongs to the unit sph&(@, 1) of L?(R"): We denote by.w;; = u) —pu9, i,j = 1,..,N, the
2 oy eigenvalues difference for the matrik
S(0,1) = {f € L"®R"); [ fll 2w = 1}- (4) Theorem 2.1:Under the hypothesis:

In order to avoid trivial cases we suppoféy, H,] # 0, H1: The graphG is connected

where the Lie brackdt, -] is defined asfX, Y] = XY -Y X. H>: The graphG doesn't have degenerate transitions, i.e
We work in a finite dimensional setting and consider a  for all (i, j) # (a,b) i # j, a # b such thatB;; # 0,

Galerkin discretization of the Time Dependent Schrodinge ~ Bab # 0, wij # wap

Equation(2). We take the basis functiofs;;i = 1,..., N}, the system(5) is controllable, that is for any € SV (0,1)

e.g. the eigenfunctions offy: Hopr = erpr, the wave- the set of reachable sets&Y (0, 1), whereSY(0,1) is the

function is written as:¥ = Z;yzlcj<pj. We denote byA  unit sphere ofC".

and B the matrices § x N) associated to the operatafg, A system that satisfy hypothesis above is called "strongly

and Hy, (A4),, = (¢x|Howr1), (B),, = (¢r|Hig1), for k,1  regular” [1] or again "with non-degenerate transitions1]1

from 1 to V. For simplicity we preserve the notatidin for  This class of systems has very nice mathematical proper-

the wave-function¥ = (cj)é\;l. ties: the Lie algebra spanned by, iB can be constructed
Here the symboly) represents the bra-ket notatiofy|  explicitly and the global controllability holds [1]; moreer

it's adjoint state and|-) the hermitian product. the system is locally controllable around the null field for
We obtain theV— dimensional system: generically any initial state [11]. A subclass with stronge
d requirements (the "ideal systems”) were showed to be im-
iE\I/(t) = (A+¢€(t)B)¥(t) portant in the study of the Lyapunov stability [13].

Remark 2.1: The "strong regularity” is not a necessary

w(t=0) = o, ®) condition for controllability in the wave-function fornation
where ¥y = (7). The property of norm conservation is (but it is sufficient together with hypothesis ). _
preserved: On the contrary if we consider the density matrix formu-
N lation of (5)
Dol =1 (6) p
i=1 ipt) = (A+e(t)B)a()
In the following without loss of generality we suppose p(t=0) = po, (8)

that A is a diagonal matrix andB a real symmetrical
matrix (Hermitian). We conserve the assumptidn B] # 0,
initially introduced for the operator&, and Hy, in order to
avoid trivial control problems.

then hypothesigi, is necessary.
There are systems, for exampg®, [7] :

0 0 0 0
A. Global controllability and strongly regular systems A= < 8 0'0%)556 0,0905683 8 )
In order to prove the controllability of the finite dimen- 0 0 0 0095683
sional systent5), we can use the Lie algebra rank condition: o s !
the system(5) is controllable if the Lie algebra generated B = 11 } 8 8 ) )

by iA andiB, denoted byl 4 5 has the dimensioW? (or

N? —1if iA andiB are traceless). for which the second hypothesis, is not fulfilled, but the
Recall that the Lie algebra generated by andiB is system is still controllable. The explanation is the foliog

the real vector space spanned by all the combinations 66ee[10], [11] for more details) : take(t) = A + €(t), then

commutations of A andi B and their iterations, for example the triplet(A, B, ¢(t)) is transformed intd A+ B, B, €(t)).

[iA,[iA,iB]], where[iA,iB] = (iA)(iB) — (iB)(iA) = We can find a unitary transformatidii(\) such thatA =

BA - AB. U(XN)(A 4+ AB)U*()) is a diagonal matrix and the dipole
Although it is a very elegant way to prove controllability, matrix B = U(\)BU*(\). Then the N-dimensional systems

for large values ofV this criteria becomes difficult to check (5), that models the evolution is equivalent to:

(and there is no intuition to explain the result once obtdjne d ~ L

In the literature we can find other theoretical res{i, [11], iﬁ‘l’(f) = (A+e®)B)¥(t)

based on graph theory, that give necessary conditions to = o

prove that the syster() is controllable. Since one of this wE=0) = UNTo. (10)

results [1], [10], [11] is relevant for our paper we presdnt iln conclusion, a sufficient condition for controllability the

in the following. finite dimensional syster() is the existence ok such that



the system defined by the triplet + \B, B, €(t)) is strongly Let us takeA a real diagonal matrix anf® a symmetrical

regular. matrix:

The natural question to be asked here is: suppose a system W0 0 o
is controllable @,B), does it exist\ such that 4 + A\B, B) A= 0 py 0 0
is strongl lar ? ituati = I R R B

gly regular ? The situation fd¥ = 3 was analyzed o o ¢ W
4

in [14] (section A.3 page 163) and the answer is affirmative. (13)

Bisz B2s B3z Bsa

Bi1 Biz2 Biz B
B = Bi2 B2z B2z Bag
Bis B2sa Bsa Buag

B. Singular trajectories around constant fields

_Whef‘ the fields are naturally constan_t (as in N_MR) O Without loss of generality (see Remark A.2.3 page 169 in
piecewise constant the study of the singular trajectorle[iél]) we can seflr(A) = Tr(B) — 0, we obtain
around constant fields can be formulated as: is the system ’

Tr(A+AB) =Tr(A)+ AXTr(B)=0 VA€R. (14)

.d
ZE\IJ(LL) = (A+AB+(t)B)¥() This is equivalent to:
Ut=0) = U, (11)

A s ey = 0 (15)
locally controllable ?

From relation(14) for A = 0 and A = 1 we have:
We recall the definition of local controllable around a field

e(t) in a setl, for a giving final statel = U(T) with WS+ +pud = 0

€(t) = €(t) in equation(5). Bi1+ B+ Bsg+ By = 0 (16)
Definition 2.1: The system(5) is called locally control-

lable if there exists neighborhoods of ¥ andY of € in I/ e First case: A is non-degenerate

such that for any € X there exist€ € Y such that the We say thatA is non-degenerate if for every # j,

system(5) has¥(T) = V. G =14y 1 # 415

The local controllability can be analyzed as in [11] Thm.1 In this case lets us take

by considering the matrixl + AB instead of the matrix4.

If for all A € R the transitions ofA + A\B are degenerate
(or equivalentlyA + AB is not strongly regular) then there
exists no constant field around which the system will be  Thus A and B are defined as:
locally controllable.

Pl = = e g =€ =)
Bi1 = —Buya, B2y = —Bss. 17)

-7 0 0 0
0 —e 0 O
A= < 0 0 € O )
[1l. THEORETICAL RESULT 0 0 0 m
Bi1 Bi2  Bis Byy
In the following by su (V) we understand the Lie algebra B= ( g;g ggg _Bg; ggj ) ,  (18)
of N-dimensional null trace hermitian matrices. We dengte b Bia B2 Bsa  —Bn
(1)i=1,.. v the eigenvalues oft + AB and by (u9);=1.. n with Bys 2 0 and Bay £ 0.
the eigenvalues ofl, for example the energies corresponding  \ve can easily note that fok — 0 equality (12) is
to the statesp;. . fulfilled since there exist§l,3) # (2,4), 1 £ 3, 2 # 4
Theorem 3.1:There existsA = (A;j)i j=1,.,4 a real With Bis # 0, Bos # 0 such that

diagonal matrix andB = (Bgp)qp=1,...,4 @ Symmetrical
matrix, both 4-dimensional with the following properties:

e — g = ps — (19)
(i) [A,B]#0 (i.e AB # BA) ) ) ] _
(ii) The real Lie algebra generated by andiB contains Since we are in the 4-dimensional case, relatio)
su(4) (or u(4) if Tr(A) £ 0) together with relatlo_r(15) is equivalent to the existence
_ of (i,7) and(a,b) with i £ j, a £ b, i,j,a,b=1,...,4
such that for every\ € R there existi, j) # (a,b), @ # j, such that:
a # b with B;; # 0, Bey # 0 such that:
A A
Hi = —Hyp
A A A A = - (20)
By — 15 = g — M- (12) J
Proof: We consider the polynomial:
Even if a a construction of a single type of matrix would \ \
be enough, the goal is to detect all the matrices that are PX) = (X —p)(X —p3)

candidate to satisfy the theorem. (X — 3)(X = 13). (21)



If relation (20) is fulfilled for (i,j5) =
(a,b) = (2,4) then:

(1,3) and This implies:

p ey = .

P(X) = X'—X2((u})2+ (1)) + (32)
A\2/7,,2\2
(1) (n2)" (22) and conclusion follows.
The polynomialP(X) is also defined by Let us take two matricesl and B that verify relations
(16) and (25) (see Fig. 1):
P(X) = det(XIs—(A+AB))
X*+aX?-pBX +~ (23)

wherel, is the 4-dimensional identity matrix.

By identification we obtain the following system:
(33)

b

Il
N
|
coo L
cowo

B |
oLo0
coro mmooo
v

N——

A2 A\2
a = —((u1)” + (p , ,
g = 0 ()" + (2)7) We can easily observe tha#l, B] # 0 and the Lie
a NP algebra generated byA,iB has dimension 15, thus
7= (p1)7(k2)" (24) contains su(4). We have for evedye R the existence

of (1,3) 75 (2,4) with B3 75 0, Boy 75 0, such that:
(34)

We computelet(X I,—(A+AB)) by replacingd andB
with (18) and we obtaing, a third order polynomial in
A. We wantg to verify (24) so we obtain the following
conditions:

= py = s — g
Let us take another and B such that relation$16)
(Bi1 + Ba2)(Biy — B3;) = (B — Ba) (B3, — Bis) —
2Bs3(B24Bss + B12Bi3) —
2B14(B13B34 + B12Ba4)
(5 - 77)(334 - 353)- (25,

J

(e+n) (B3 — Bf) =

The system above represents a sufficient condition for
(12) to be fulfilled. In order to become a necessary
condition we have to verify ifs = 0 implies relation

(12).
We denote:
po +py = €
Ay = ¢ (26)

with £ #£ 0. Sinceg is defined by:

B = mpaus + pd paps + s e + pppapy (27)
together with(26) we obtain the following relation:

Fig. 1. Schematic view corresponding toand B defined by (33). Each
eigenvalue ofA is represented as a rectangle with the corresponding value
given inside. The edges drawn between two rectangles aetethiwith the
corresponding value in the coupling matiix

and (25) are verified (see Fig. 2):

1 1 1 1
— 4+ 5 -———+—~=0 (28)
o omy E+py o € pa 2 0 0 0
We have the following equivalences: A= ( o e ),
0 0 0 2
E+m —m §+py — 13 2 1 1 o0
12 (€ + pi) 13 (13 =€) B= ( Lsooo ) (35)
pa(3 =€) = piE+m) (29) 04 2 -2
This follows: Again [A, B] # 0 and the Lie algebra generated by
(u)? — (11))? iA,iB has dimension 15, thus contains su(4).
£ = —ﬁ = 1y — 1y (30) e Second caseA is degenerate
HiT We say thatd is degenerate if there existst 7, i, =
We replace relatior§30) in (26) and we obtain: 1,...,4 such that\) = ,\g?_
Let us take '
py = E=py —m
mApy = == -y (31) pd =0, pg=—0, ug=—6, pg =06. (36)



We can easily observe that, B] # 0 and the Lie algebra
3 generated by A, iB has dimension 15, thus contains su(4).
This implies that for ever\ € R there existg1, 3) # (4,2)

/ with Bis 75 0, Boy 75 0, such that:

2 1 [ — s = py — ey (42)
We have the existence of at least three matrideand B

Fig. 2. Same representation as in Fig. 1 forand B defined by (35).

In this case:

6 0 0

[ 0o -6 o

A=1 9 o o
0 0

0

cooco
SN—

Biz B23 Bsz Bsa

) PBra Baa Bas Bus defined by(13) with conditions(16), (25) or (39), that verify
with By3 # 0 and Bys 7 0. _ . . the hypothesigi) and (ii) such that for every\ € R there
T-hIS implies th_at for\ = 0 equality (12) is fulflllgd, exists (i, j) # (a,b) with relation (12) fulfilled. -
since there exist§l,3) # (4,2), 1 # 3, 4 # 2 with Remark 3.1: We can explain the existence of matri¢es
Biz # 0, Bza # 0 such that and B, especially relation(17) for the non-degenerate case
using perturbation theory [3]. We present the main idea in

By1 Bi2 Biz  Bia ) . N )
B— Bis Bos Bas B 37) Fig. 3. Same representation as in Fig.1 fbrand B defined by (41).

= s = py — ps (38)  the following.
As in the non-degenerate case we wdpt) to be Denote byH(A) = A +i‘B’ with A < 1. We look for
verified, so we obtain the following conditions: the eigenvaluegi(\) = (p;')i=1,....4 and the eigenvectors
Y(A) = (¢i)i=1,...,a Of the operatotH (\):
B11B22 B33 + B11B22Bag + B11B33Baa +
2 2 2 HNWA) > = p(M)YA) >
B9oB33Byy — B11B3, — Boa B3, — ByyBjg —
Bi1 B2, — BuB?% — By3B% — Boy B2, — Using the perturbation theory we suppose thét) can be
developed in power series of
BuBi; — BuB3, — B33 B, — BBl — P P .
Bs3 B}, + 2B3(BosBss + B12Bis) + pA) = ot Aer 4 Mg (43)
2B14(B13B34 + B12Bay) =0 By identification ( see [3] for more details) we have a second
B2, = B2, (39) order development:
Denoting: gy = i+ A< @il Blpi > +0(N?), (44)
A A where (p;);=1,...4 are the eigenvectors associated to the
ph ety = 9 o

eigenvalueg/?)i=1.. 4.

A A g 2 . .
p3+py = —0 (40) We replace relatiorj44) in (12) and we obtain:
with 6 # 0, in the same way as in the non-degenerate

0 0
. . . Mi+/\<<PiBSDi>_M-—/\<(p‘BQD'> =
case we can proof that = 0 implies relation(12). 1] J il Bles

0 0
Let us takeA and B such that relation$16) and (39) Ha + A < @alBlpa > =, = A < | Blgp > . (45)
are verified (see Fig. 3 ): Since< ¢;|Blyp; >= By; for everyi = 1,..4 it follows:
0 0 =
5 0 0 0 Wi + ABy; M ABJ
A= < 8 _02 02 8 )7 /1'2 + ABaa — Mg — ABpp. (46)
o 0 0 2 In fact by analyticity relation(46) is true for every\ € R.
Aoz Let us take = 0 and we obtain:
B= 4 1 -3 =2 (41) 0 o 0 0
-1 4 -2 3 N O e U (47)



We replacg(47) in (46) and we have: %
Bii — Bjj = Baa — Bbb- (48) 60 _ui
Thus (12) implies relationg(47) and (48).

‘HZ

A
2

IS
S

=
-13-0.9, 1

N
S

A
1

IV. NUMERICAL RESULTS

Simulations in Fig. 4, left figure describe the eigenvalueg
pd, i = 1,..,4 of the matrix A + AB for A\ € [-10,10],
A, B given by(33); the right figure showgy —p3 —0.9and ™
uy — py for X € [-10,10] in order to observe numerically -«
that M{\ - :ug\ = ,LLS\ - Mi -80 s o 1295 1

-10 -5 0 5 0 5
A (arbitrary units) A (arbitrary units)

envalues
°

-20

Eigenvalues difference: !

Fig. 6. Left figure: the eigenvalues of the matdx+ A B, with A, B defined
by (41); X belongs to the interval—10, 10]; right figure: the difference of
eigenvalues of the matrid + AB, p3 — p3 —0.9 andpd — p}, with A, B
defined by(41); A belongs to the interval—10, 10].

A
4

-4

A
2

=
—p’a‘—o.g, [Ty

A
1

V. CONCLUSIONS

In this paper, we focus on global controllability for a 4-
dimensional quantum system. We prove a negative result to a
conjecture formulated earlier in the literature concegriime
B, . . | "strong regularity” cf. [1] (eventually after the introdiien

A (arbitrary units) of a additive constant in the field) of a controllable system.
On the other hand we analyse the local controllability
Fig. 4. Leftfigure: the eigenvalues of the matdx-AB, with A, B defined  ground a constant field. Same result apply and shows that

by (33); A belongs to the interval—10, 10]; right figure: the difference of . . .
eigenvalues of the matrix + A, 2 — i 0.9 and ) — b, with A, B controllable systems exists such that trajectories cpomd-

defined by(33); A belongs to the interval—10, 10]. ing to constant fields are singular.

Eigenvalues

Eigenvalues difference: !

= ) 5
A (arbitrary units)
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