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Abstract— This work focuses on optimal routing for two
camera-equipped UAVs cooperatively tracking a single target
moving on the ground. The UAVs are small fixed-wing aircraft
cruising at a constant speed and fixed altitude; consequently, the
vehicles are modeled as planar Dubins vehicles. A perspective
transformation, relating the image-plane measurements to the
ground, allows derivation of the geolocation (target localization)
error covariance. Using dynamic programming, we compute
optimal coordinated control policies which minimize the fused
geolocation error covariance. A surprising result, and the main
contribution of this work, is that the dominant factor governing
the optimal UAV routes is coordination of the distances to the
target, not of the viewing directions as is traditionally assumed.

I. INTRODUCTION

In recent years, small unmanned aerial vehicles (UAVs)
have found application in tasks such as surveillance, search
and rescue, mapping, and real-time monitoring. We focus on
the problem of optimally coordinating the motions of two
UAVs for the purpose of tracking a target vehicle moving
on the ground. Each UAV flies at a fixed altitude, and is
equipped with a global positioning system (GPS), an inertial
navigation system (INS), and a gimbaled video camera.

To track objects on the ground, video processing algo-
rithms are used to determine the centroid pixel coordinates
of targets that are moving in the image frame [1]. Given
these pixel coordinates, the intrinsic and extrinsic camera
parameters, and the terrain data, one can estimate the three-
dimensional location of the target in inertial coordinates and
compute the associated error covariance. This is the process
of geolocation for video cameras.

The geolocation error covariance is highly sensitive to
the relative position of the UAVs with respect to the target.
When a UAV is far from the target, relative to its height
above the target, the resulting error covariance is significantly
elongated in the viewing direction. The smallest geolocation
error covariance comes when the UAV is directly above the
target, in which case the error covariance is circular. Thus,
the UAVs would ideally hover directly above the target, but
the UAV dynamics preclude this viewing position from being
maintained over a period of time.

Much research has proposed coordinated target tracking
controllers without explicitly considering estimation of the
target. For two UAVs, a good practice is to have the UAVs
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orbit the target at a nominal standoff distance and maintain
an angular separation of 90◦. This 90◦ angle separation
minimizes the instantaneous geolocation error covariance as
the error ellipses are orthogonal [11]. While it is not possible
to continually maintain a 90◦ angle separation with fixed-
speed aircraft, much work has been dedicated to designing
controllers that achieve this goal approximately, see [5]
and [8] for example. Others have developed methods to
achieve and maintain diverse viewing angles, [4], [7]. In [6],
Kingston develop a coordinated controller in which the UAVs
orbit the target periodically, with phases spread uniformly
(splay) in time, while maintaining a fixed standoff distance.

In each of the studies discussed above, the control laws
are designed to produce a coordinated behavior that should
result in improved geolocation estimates as compared to
uncoordinated behaviors (without explicitly considering ge-
olocation). Recent work by Stachura et al. [10] has optimized
a simplified form of the geolocation error covariance for
two UAVs using bearing-only sensors in the presence of
communication packet losses. The controller is of the online
receding horizon type. In this work, the UAVs are restricted
to orbit the target at a nominal standoff distance, in which
case maintaining the 90◦ separation angle is an important
factor.

Our work is optimization-based, like the work mentioned
above, but differs significantly in that we place no restrictions
on the motion of the UAVs, other than kinematics. Instead
of computing the control input online in a receding horizon
manner, we find the optimal (with respect to the fused
geolocation error covariance) joint control policy for a long
horizon using dynamic programming [2]. The utility of this
approach is that we get to see, for the first time, the behavior
of the optimally coordinated UAV trajectories.

In fact, the coordination observed in the optimal UAV
trajectories is surprising in that the distance to the target
dominates the advantage of diverse (i.e. 90◦) viewing angles.
The optimal coordination has the UAVs taking turns passing
over the target. These results may guide the design of
more practical heuristic controllers that are near-optimal for
tracking.

The paper is organized as follows. In Section II, we discuss
the video-based measurement model, the geolocation error
covariance, and the UAV system dynamics. In Section III,
the proposed dynamic programming approach is developed,
including a quantized relative state space and cost function.
Simulation results are presented in Section IV for two
scenarios in which different target speeds are considered.
Conclusions and directions for future work are discussed in
Section V.



II. PROBLEM FORMULATION
Consider a group of two UAVs tasked with estimating

the state of a moving target vehicle. The UAVs fly at a
fixed forward speed while maintaining a constant altitude.
The target vehicle moves on the ground, and has a forward
speed that can be significantly slower than that of the
UAVs. Each UAV makes measurements of the target using a
gimbaled video camera. The main objective is to optimize the
coordination of the UAVs with respect to the joint estimation
error covariance. It is assumed that UAVs communicate with
a base station, where the fusion takes place. In this section,
we first discuss the measurement model and the resulting
geolocation error covariance. We then describe how the
UAVs are modeled as discretized Dubins vehicles.

A. Measurement Model

Each UAV has a video sensor that makes image-plane
measurements of the target. To relate these image-plane mea-
surements to topographical coordinates, we closely follow
the work of Mallick [1]. Video tracking uses two main
coordinate frames: the topographic coordinate frame (T
frame) and the sensor coordinate frame (S frame). The T
frame is the primary coordinate frame, and its X , Y , and
Z axes are along the East, North, and upward directions,
respectively. The S frame is the secondary frame and has its
origin at the optical center of the camera. In the S frame, the
Z axis is along the optical axis and is pointed in the general
downward direction toward the Earth.

In following Mallick’s methods, we also adopt his nota-
tion. Therefore we denote transposes with “ ′ ”, estimated
quantities with “ ˆ ”, and random vectors with “ ˜ ”. Also,
superscript “S” denotes a quantity in the sensor coordinate
frame; however, where Mallick uses superscript “T ” on
vector quantities to indicate that they lie in the topographic
coordinate frame, we omit such notation.

To perform the coordinate transformation from the T
frame to the S frame, we use the orthogonal attitude matrix
TS

T (θ), which is a nonlinear function of the Euler angles
(θ ∈ R3). We note that the Euler angles are those of
the camera sensor and not the aircraft and that its inverse
is denoted by TT

S (θ). Moreover, we assume that image
tracking software is available to control the camera’s gimbal
platform and keep the target in the camera’s field of view.
This software must also report the camera’s Euler angles.

Let s := [sx, sy, sz]′ and o := [ox, oy, oz]′ represent
the true sensor and ground target positions, respectively,
measured from the T -frame origin. The relationship between
the object and image point is defined through the attitude
matrix,

rS := oS − sS = TS
T (θ) (o− s), (1)

and we let r := ‖rS‖ and uS := rS/r. Here, r is the range
from the S frame origin to the target position, and uS is the
unit vector along the camera’s line-of-sight.

The relation between the sensor and target positions can
be estimated as

ô = ŝ + r̂TT
S (θ̂)ûS . (2)

The quantity r̂ is computed using the flat-Earth approx-
imation. To determine ûS we need a model that relates
the video sensor measurements to the world. Here, we
use the perspective transformation, which accounts for the
nonlinearities in this mapping. Let p := [pu pv]′ denote
the noisy pixel location corresponding to the 3D object point
o. The noisy video measurement is modeled as

p = h(o,η) + n, (3)

where h is the nonlinear measurement function, η is the
video camera parameters vector (it includes the extrinsic and
intrinsic camera parameters), and n is a zero-mean Gaussian
measurement noise with covariance R, i.e. n ∼ N(0, R).
In practice, ûS can be determined from the observed pixel
coordinate and the camera parameters.

B. Geolocation Error Covariance

The quality of a particular measurement depends on the
location of the UAV with respect to the target. When the
UAV is far from the target, relative to its height, the esti-
mation error covariance is intuitively elongated. Here, we
again follow [1] in quantifying this covariance for the video
measurements.

The main, uncorrelated sources of error arise from the
estimates for sensor position (̂s), sensor attitude angles (θ̂),
and terrain height (ĥ0). Hence, the error models are:

ŝ = s + s̃, s̃ ∼ N(0, Rs̃), (4)

θ̂ = θ + θ̃, θ̃ ∼ N(0, Rθ̃), (5)

ĥ = h0 + h̃0, h̃0 ∼ N(0, σ2
ter). (6)

Given the estimated geolocation in (2), the corresponding
geolocation error can be written as

õ := ô− o = s̃ + ûr̃ + r̂ũ, (7)

where û = TT
S (θ̂)ûS . Linearizing the attitude matrix TT

S (θ)
about the operating point, we obtain a relation for ũ as
follows:

ũ = TT
S (θ) ũS + C(uS ,θ)θ̃ + C(ũS ,θ)θ̃, (8)

where

C(uS ,θ) =
∂
(
TT

S (θ)ûS
)

∂θ
(9)

is the linearization of the attitude matrix. Ignoring the higher
order term C(ũS ,θ)θ̃ and the effects of the pixel location
error manifested in ũS , we can use the approximation:

ũ ≈ C(uS ,θ)θ̃. (10)

We now need to define a relation for the term r̃ in (7).
Starting from the definition for the estimated object position
(2), and using the flat-Earth approximation,

r̂ =
ĥ0 − ŝz

ûz
. (11)



By substituting h0 + h̃0 for ĥ0, sz + s̃z for ŝz , and uz + ũz

for ûz , we obtain

r̃ =
h̃0 − s̃z

uz + ũz
−
(
h0 − sz

uz

)(
ũz

uz + ũz

)
. (12)

Treating r̃ as a function of ζ =
[
h̃0 s̃z ũz

]′
, and

linearizing about ζ = 0 reveals

r̃ =
h̃0 − s̃z

uz
− h0 − sz

u2
z

ũz. (13)

Now, by substituting (10) and (13) into (7), we obtain

õ = Bs̃ +
u
uz
h̃0 + rBC

(
uS ,θ

)
θ̃, (14)

where B is a matrix defined by:

B = I3×3 − u
[

0 0 1/uz

]
. (15)

By computing the covariance of (14), we arrive at the
geolocation error covariance,

Põ = BRs̃B
′ +

1
u2

z

uu′σ2
ter

+ r2BC
(
uS ,θ

)
Rθ̃C

′ (uS ,θ
)
B′, (16)

where Rs̃, σ2
ter, and Rθ̃ are the covariances for the sensor

position, the terrain height, and the Euler angles, respectively.
The dominant source of error arises from the uncertainty

in the sensor attitude angles. Moreover, we let Rs̃ = 03×3

and σ2
ter = 0, in which case the geolocation error covariance

from (16) simplifies to

Põ = r2BC
(
uS ,θ

)
Rθ̃C

′ (uS ,θ
)
B′. (17)

Because tracking will be done in the ground plane, only the
2× 2 upper-left submatrix of Põ(k) is relevant,

Pi =
[
Põ:1,1 Põ:1,2

Põ:2,1 Põ:2,2

]
. (18)

With two UAVs collecting independent measurements of
the target, the fused geolocation error covariance can be
computed as

P =
(
P−1

1 + P−1
2

)−1
. (19)

C. UAV Modeling

The Dubins vehicle is a planar vehicle that moves forward
at a fixed velocity and has a bounded turning radius. It is
commonly used to provide a simple model for UAVs flying
at a fixed altitude. We assume that all UAVs are flying at a
constant speed of va, and that they have a bounded turning
rate, ωmax > 0. For an individual agent i, let (xi, yi, h)
denote its absolute position in the T frame, where h is fixed,
and let ψi denote its heading. Then the kinematics of the
UAV are described by

ẋi(t) = va cos(ψi(t))
ẏi(t) = va sin(ψi(t)) (20)
ψ̇i(t) = ui(t) , |ui| ≤ ωmax.

We assume that the ith UAV and its camera sensor have the
same position, si = [xi, yi, h]′.

Solutions to the path planning problem are usually done
in continuous time. However in coordinated target tracking,
discrete-time dynamics are appropriate because:

1) Communication constraints, sensor sampling rates, and
onboard computing power limit the frequency of target
geolocation updates,

2) Discrete motion primitives are an efficient solution to
computing optimal trajectories for Dubins vehicles [3].

To discretize the Dubins vehicle dynamics, we apply a zero-
order hold (ZOH) on the control input, with a sampling time
of Ts. For nonzero input, the equations of motion become

x+
i =

va

ui
[sin(uiTs + ψi)− sin(ψi)] + xi

y+
i =

va

ui
[cos(ψi)− cos(uiTs + ψi)] + yi (21)

ψ+
i = uiTs + ψi,

whereas for zero input, we have

x+
i = vaTs cos(ψi) + xi

y+
i = vaTs sin(ψi) + yi (22)

ψ+
i = ψi.

III. DYNAMIC PROGRAMMING

In general, dynamic programming can address a wide
class of applications comprised of many different physical
systems described by dynamical equations of motion that
require optimized trajectories. Here, we apply the technique
of dynamic programming to produce an optimal joint control
policy for a pair of UAVs tracking a target. We first present
the state space and quantization required for tractability, and
then describe the cost function.

A. State Space and Quantization

The computational cost of solving a dynamic programing
problem is highly sensitive to the dimension of the state
space. While each UAV requires three states and the target
requires additional states, the dimension of the state space is
reduced by considering the positions of the UAVs relative to
the target,

zi(k) =

 xr(k)− xi(k)
yr(k)− yi(k)

ψi(k)

 , i = 1, 2. (23)

Here (xr, yr, 0) is the absolute position of the target (or
reference) in the T -frame and k is the discrete time index.
The individual relative coordinates can be stacked to form
the state z(k) = [z′1(k), z′2(k)]′.

Correspondingly, the planar distance of the ith agent to
the target,

di(k) :=
√
z2
i,1(k) + z2

i,2(k), (24)

will play a vital role in the UAV control policy. Here, zi,1(k)
and zi,2(k) are the first two entries of zi(k). Moreover,
di(k) = 0 implies that agent i is directly above the target
at an altitude of h.



The UAV platform under consideration travels at a fixed
speed of va = 15 m/s, and the UAVs communicate to a fusion
center at a frequency of 1 Hz. Consequently, the sampling
time (Ts) is one second. To make the optimization feasible,
we quantize the control and state spaces. Optimal Dubins
paths use only three inputs, so we let

U := {−ωmax, 0, ωmax}
ui(k) ∈ U , i = 1, 2,

with ωmax = 0.5. In quantizing the state space, note that
with Ts = 1 and ωmax = 0.5, the UAV headings will be
well approximated by

Ψ := {0.5n}12n=0

ψi(k) ∈ Ψ, i = 1, 2.

To quantize the relative positions, let zmax > 0 denote the
boundary of the relative spatial coordinates and q > 0 denote
the quantization step between each of the coordinates,

Z := {−zmax + qn}2zmax/q
n=0

zi,1(k) ∈ Z, ∀i = 1, 2
zi,2(k) ∈ Z, ∀i = 1, 2.

The parameters zmax and q should be selected to balance
the fidelity of spatial resolution with practical considerations
such as time and computer memory.

B. Cost Function

The cost function we use for dynamic programming is
designed to produce UAV trajectories that optimize the
estimation performance over a long planning horizon. Here,
the estimation performance is quantified by the trace of the
fused geolocation error covariance (19). The resulting cost
function is evaluated over a planning horizon of Ns stages
(time instances) according to

V0(z) =
1
Ns

Ns−1∑
k=0

L(z(k)), (25)

where
L(z(k)) = trace (P (z(k))) , (26)

is the instantaneous cost in which the fused covariance is
evaluated with respect to the relative coordinates.

The cost function in (25) is based entirely on the objective
of gathering the “best” joint measurements. The joint mea-
surement error covariance (19) is incorporated into the cost
rather than the target state estimate error covariance, as the
use of the latter would yield a problem incompatible with dy-
namic programming. Nonetheless, optimizing measurements
can be interpreted as optimizing state estimates for the case
in which process noise dominates measurement noise.

Dynamic programming uses backwards induction to find
the optimal joint control policy, Πk(z), which maps each
relative state z at time k to the optimal steering input for
each UAV. We apply a standard technique known as value

iteration in which the optimal cost to go is computed using
the recursion

Vk(z) = min
u∈U2

(L(z(k)) + Vk+1(f(z,u))) , ∀z, (27)

from k = Ns − 1 to 0 with VNs
(z) = 0, ∀z. At time k, the

input obtaining the minimum in (27) for each z is stored in
Πk(z). Here, f(z,u) is the relative dynamics derived from
(21) by assuming a particular (known) target motion.

IV. SIMULATION RESULTS
We now demonstrate the effectiveness of dynamic pro-

gramming applied to the optimal coordinated target tracking
problem. Two cases are considered. In the first, the target has
a slow speed compared to that of the UAVs, whereas in the
second, the target is moving faster. In both cases, the target
has a constant velocity along the X-axis at zero altitude. The
second scenario is used to compare the performance of the
optimal controller to Kingston’s splay state controller [6].
The simulation parameters are summarized in Table I.

We simulate continuous UAV trajectories using the Ns-
horizon optimal controller Π0(z). The input for the nearest
quantization point is applied and held over a single sampling
period, after which the control is recomputed. Note that
with dynamic programming, the optimal control policy is
independent from the initial conditions.

A. First Scenario
In the first scenario, the target travels at a speed of 5 m/s,

and we optimize over a horizon of Ns = 90 seconds. UAV
trajectories resulting from an arbitrarily chosen initial state
are shown in Figure 1. Corresponding planar distances to the
target, d1 and d2, the relative angle γ, and the instantaneous
cost, L(z), are shown in Figure 2.

In Figure 1, we observe the UAVs making alternating
passes over the target. It is apparent from Figure 2 that
the two UAVs do not maintain a 90◦ relative angle to the
target. Although the UAVs do occasionally pass though a
90◦ relative angle, the trace of the fused error covariance
has its minimum values when at least one UAV is on top
of the target, i.e., d1(t) = 0 or d2(t) = 0. For example at
the times of 20 and 40 seconds, the values of the trace are
comparatively lower than at other time instants. Thus, we
conclude that the optimal controller maneuvers the UAVs so
that one is always close to the target, independent of the
relative viewing angles. Similar behavior is observed from
any initial condition.

Parameter Description Value Units
h UAV Altitude (AGL) 100 m
va UAV Speed 15 m/s
vr Target Speed {5, 7} m/s
Ns Planning Horizon {90, 60} s
Ts Sampling Time 1 s
Rθ̃ Sensor Attitude Covariance 9I3×3 deg2

ωmax Max. Turning Rate 0.5 rad/s
zmax Max. UAV-Target Distance 75 m

q Quantization Step 5 m

TABLE I: Simulation Parameters
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Fig. 1: Trajectories for two UAVs tracking a single target
with a speed of 5 m/s.
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Fig. 2: Distances, relative angle, and instantaneous cost for
the optimal trajectories shown in Fig. 1.

B. Second Scenario

In the second scenario, the target travels at a speed of 7
m/s, and we optimize over a horizon of Ns = 60 seconds.
The purpose of this second scenario is twofold. First, we
want to see if the UAV behavior is dominated by angle or
distance coordination for a target moving faster than in the
slow target scenario. Second, we want to compare the optimal
UAV trajectories to those coming from a well-established
coordinated controller. Here, we choose to compare to the
splay state controller from Kingston [6], with the nominal
orbit radius set to 65 m. This orbit radius is the distance the
UAVs should maintain from the target.

The typical behavior resulting from the application of
these two controllers is depicted in the UAV trajectories
shown in Figure 3. Corresponding data is shown for the op-
timal controller in Figure 4 and for the splay state controller
in Figure 5. For Kingston’s controller, the distance to the
target is not shown in Figure 5 as it stays within 3 m of the
set point.

The first observation regarding the optimal UAV trajec-
tories is that they now have a different shape. Instead of
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Fig. 3: Comparison of trajectories generated by (a) dynamic
programming and (b) the splay state controller. In this
scenario, the target travels at 7 m/s.

the combination of circling and straight motions observed in
Figure 1, the UAVs now make back-and-forth motions over
the target. In analyzing Figure 4, it is again apparent that
distance is the dominating factor in the optimal coordination.

This point is further apparent in comparing the instan-
taneous cost between the optimal controller and the splay
state controller. The splay state controller maintains an angle
separation near 90◦ throughout the simulation. However,
the trace of the geolocation error covariance is significantly
higher than that of the optimal controller because the UAVs
stay far from the target. Moreover, even though a 90◦

separation angle is advantageous in reducing the trace of
the error covariance, its benefit is overshadowed by that of
having at least one UAV as close to the target as possible.
Thus we again conclude that distance coordination dominates
angle coordination.

C. Static Interpretation

To gain insight into the observed distance-dominated co-
ordination behavior, we setup two stationary scenarios in
which the first UAV is fixed at distance of d1 = 50 m from
the target. We then plot the trace of the fused geolocation
error covariance as a function of d2 and the relative angle,
γ, for two different UAV altitudes (see Figure 6). When the
UAVs are low, relative to the distance to the target, the error
covariance ellipses are significantly elongated. In this case,
orthogonality between viewing angles is advantageous, but
primarily when d2 is large. When the UAVs fly at a more
reasonable altitude, the effect of orthogonal angles is unno-
ticeable. Of course, these are static scenarios, and dynamic
programming effectively brings the motion constraints into
the UAV routing optimization.

V. CONCLUSIONS AND FUTURE WORK
Dynamic programming proves to be effective in optimiz-

ing the coordination of two camera-equipped UAVs for the
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Fig. 4: Distances, relative angle, and instantaneous cost for
the optimal trajectories shown in Fig. 3(a).
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Fig. 5: Relative angle and instantaneous cost for the splay-
state trajectories shown in Fig. 3(b). The UAVs maintained
a distance of 65± 3 m from the target.

purpose of tracking a target. With the optimal controllers
in place for given target kinematics, the behaviors of the
UAVs are shown to be governed by their planar distances to
the target rather than their separation angle. This result was
interpreted through a static analysis in which the separation
angle and distance to target were varied parametrically. When
one UAV is close to the target, its estimation error ellipse
is nearly circular, so the relative angle to the other UAV is
irrelevant.

Future work involves addressing more complicated target
motion and accommodating larger UAV fleets. Regarding
variable target motion, changes in target direction can be
handled via coordinate transformations while changes in
target speed can be addressed by switching between several
control policies, each of which is optimized for small ranges

(a) UAVs at 25-m altitude

(b) UAVs at 100-m altitude

Fig. 6: Effects of distance from target versus angles between
UAVs.

of target speeds. To employ larger UAV fleets, we plan
to develop heuristic feedback controllers that achieve near-
optimal performance guided by the distance-coordination
behavior observed in the optimal controllers.
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