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Abstract— Recovering or estimating the initial state of a high-
dimensional system can require a potentially large number
of measurements. In this paper, we explain how this burden
can be significantly reduced for certain linear systems when
randomized measurement operators are employed. Our work
builds upon recent results from the field of Compressive
Sensing (CS), in which a high-dimensional signal containing
few nonzero entries can be efficiently recovered from a small
number of random measurements. In particular, we develop
concentration of measure bounds for the observability matrix
and explain circumstances under which this matrix can satisfy
the Restricted Isometry Property (RIP), which is central to
much analysis in CS. We also illustrate our results with a simple
case study of a diffusion system. Aside from permitting recovery
of sparse initial states, our analysis has potential applications in
solving inference problems such as detection and classification
of more general initial states.

I. INTRODUCTION

A. Measurement burdens in observability theory

Let us consider a discrete-time linear dynamical system of
the form:

xk = Axk−1

yk = Ckxk
(1)

where xk ∈ RN represents the state vector at time k ∈
{0, 1, 2, . . . }, A ∈ RN×N represents the state transition
matrix, yk ∈ RM represents a set of measurements (or
“observations”) of the state at time k, and Ck ∈ RM×N
represents the measurement matrix at time k. For any integer
K > 0, we also define the observability matrix

OK :=


C0

C1A
...

CK−1A
K−1

 . (2)

This matrix has size KM ×N .
Although we will consider situations in this paper where

Ck changes with each k, let us first discuss the classical
case where Ck = C for all k. In this setting, the system
(1) is said to be observable if OK has rank N for some
value of K. The primary use of observability is in ensuring
that a state (say, an initial state x0) can be recovered from
a collection of measurement vectors {y0, y1, y2, . . . , yK−1}.
In particular, defining

yK :=
[
yT0 yT1 · · · yTK−1

]T
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we have
yK = OKx0. (3)

If OK has full column rank (i.e., rank N ), then it follows
from standard linear algebra that we may recover any x0

from the measurements yK .
An important and classical result [1] states that the system

(1) is observable if and only if rank(ON ) = N . In other
words, if the system is observable, we need consider no more
then K = N successive measurement vectors to be able to
recover any initial state. One challenge in exploiting this fact
is that for some systems, N can be quite large. For example,
distributed systems evolving on a spatial domain can have
a large state space even after taking a spatially-discretized
approximation. In settings such as these, we might therefore
require a very large total number MN of measurements to
identify an initial state, and moreover, inverting the matrix
ON could be very computationally demanding.

This raises an interesting question: under what circum-
stances might we be able to infer the initial state of a
system when K < N? We might imagine, for example,
that the measurement burden could be alleviated in cases
where we have a model for the state x0 that we wish
to recover. Alternatively, we may have cases where, rather
than needing to recover x0 from yK , we desire only to
solve a much simpler inference problem such as a binary
detection or a classification problem. In this paper, inspired
by the emerging theory of Compressive Sensing (CS) [2,
3], we explain how such assumptions can indeed reduce
the measurement burden and, in some cases, even allow
recovery of the initial state when KM < N and the system
of equations (3) is guaranteed to be underdetermined.

B. Compressive Sensing and randomized measurements

The CS theory states that is is possible to solve certain
rank-deficient sets of linear equations by imposing some
model assumption on the signal to be recovered. In particular,
suppose y = Φx where Φ is an m× n matrix with m < n.
Suppose also that x ∈ Rn is S-sparse, meaning that only
S out of its n entries are nonzero.1 Then if Φ satisfies a
condition called the Restricted Isometry Property (RIP) of
order 2S, meaning that for a suitably small ε > 0

(1− ε)‖u‖22 ≤ ‖Φu‖22 ≤ (1 + ε)‖u‖22 (4)

holds for all 2S-sparse vectors u ∈ Rn, then it is possible to
uniquely recover any S-sparse signal x from the measure-
ments y = Φx using a tractable convex optimization program

1This is easily extended to the case where x is sparse in some transform
basis.



known as `1-minimization [2–4]. The RIP also ensures that
the recovery process is robust to noise and stable in cases
where x is not precisely sparse [5].

In order to obtain an RIP matrix Φ with as few rows m as
possible, one commonly relies on a randomized construction.
Supposing that Φ is populated with independent and iden-
tically distributed (i.i.d.) Gaussian random variables having
mean zero and variance 1

m , for example, then Φ satisfies the
RIP of order 2S with very high probability assuming only
that m = O

(
S log n

S

)
. Other random distributions may also

be considered, including matrices with random ± 1√
m

entries.
Consequently, a number of new sensing hardware architec-
tures, from analog-to-digital converters to digital cameras,
are being developed to take advantage of the benefits of
random measurements [6, 7].

One straightforward way [8] of proving the RIP for a
randomized construction of Φ involves first showing that the
matrix satisfies a concentration of measure inequality akin
to the following.

Lemma 1.1: [9] Let u ∈ Rn be any fixed signal (not
necessarily sparse) and let Φ be a random m × n Gaussian
matrix as described above. Then with probability at least
1− 2e−mc0(ε), (4) holds for u. In other words,

P
(
|‖Φu‖22 − ‖u‖22| > ‖u‖22ε

)
≤ 2 exp {−mc0(ε)} .

We note that in the above lemma, the failure probability
decays exponentially fast in the number of measurements m
and also in some function c0(ε) that depends on the isometry
constant ε.

Aside from connections to the RIP, concentration inequal-
ities such as the above can also be useful when solving
other types of inference problems from compressive mea-
surements. For example, rather than recover a signal x, we
may wish only to solve a binary detection problem and
determine whether a set of measurements y correspond only
to noise (the null hypothesis y = Φ(noise)) or to signal
plus noise (y = Φ(x + noise)). When Φ is random, the
performance of a compressive detector (and of other multi-
signal classifiers) can be well studied using concentration
inequalities [10], and in these settings we do not need to
assume that x is sparse.

C. Observability from random, compressive measurements

In order to exploit CS concepts in observability analysis,
we consider in this paper the case where the measurement
matrices Ck are populated with random entries. Physically,
such randomized measurements may be taken using the types
of CS protocols and hardware mentioned above. Our analysis
is therefore appropriate in cases where one has some control
over the sensing process.

As is apparent from (2), even with randomness in the ma-
trices Ck, our observability matrices OK will contain some
structure and cannot simply modeled as being populated with
i.i.d. Gaussian random variables. Our main goal in this paper
is to show how to account for this structure in deriving a
concentration of measure bound for OK . As we demonstrate,

the concentration performance of such a matrix depends on
properties of both the state transition matrix A and the initial
state x0. This work builds on two recent papers in which we
derive concentration of measure bounds for random, block
diagonal measurement matrices [11, 12].

We show that, under certain conditions on A, the ob-
servability matrix OK will satisfy the RIP of order S with
high probability, where the total number of measurements
KM = O(S log N

S ). Thus, in this best case, the concen-
tration behavior of OK can be just as favorable as for an
i.i.d. Gaussian matrix of the same size. A major implication
of this fact is that for certain N -dimensional systems, we
can potentially infer any initial state from far fewer than N
total measurements as long as that initial state is suitably
sparse. Other inference problems concerning x0 (such as
detection or classification) could also be solved from the
random, compressive measurements, and the performance of
such techniques could be studied using the concentration of
measure bound that we provide.

Questions involving observability in compressive measure-
ment settings have also been raised in a recent paper [13]
concerned with tracking the state of a system from nonlinear
observations. Due to the intrinsic nature of the problems in
that paper, however, the observability issues raised are quite
different. For example, one argument appears to assume that
M ≥ S, a requirement that we do not have.

D. Paper organization

In Sections II and III, we consider two cases in turn.
In both cases, the measurement matrices Ck are populated
with i.i.d. Gaussian random variables having mean zero and
variance σ2 = 1

M . In Section II, however, all matrices Ck are
generated independently of each other, while in Section III,
all matrices Ck are equal. Within each of these two sections,
we derive a concentration of measure bound for OK , discuss
the implications of the properties of A and of x0, and make
connections with the RIP.

In Section IV, we illustrate these phenomena with a short
case study of a diffusion system. Though simplified to a one-
dimensional domain, one may imagine that such problems
could arise when sparse contaminants are introduced into
particular (i.e., sparse) locations in a water supply or in the
air. From the available measurements, we would like to find
the source of the contamination.

We conclude in Section V.

II. INDEPENDENT RANDOM MEASUREMENT MATRICES

In this section, we consider the case where all matrices
Ck are generated independently of each other. Each matrix
Ck is populated with i.i.d. Gaussian random variables having
mean zero and variance σ2 = 1

M .

A. Connection with block diagonal matrices

To begin, it will be useful to note that we can write

OK = CKAK ,



where

CK :=


C0

C1

. . .
CK−1

 (5)

and

AK :=


I
A
...

AK−1

 . (6)

The matrix CK is block diagonal, and focusing just on this
matrix for the moment, we have the following bound on its
concentration behavior.2

Theorem 2.1: [11] Let v0, v1, . . . , vK−1 ∈ RN and define

v =
[
vT0 vT1 · · · vTK−1

]T ∈ RKN .

Suppose CK is a block diagonal matrix as in (5) populated
with Gaussian random variables having mean zero and
variance σ2 = 1

M . Then

P (
∣∣‖CKv‖22 − ‖v‖22∣∣ > ε‖v‖22) ≤2 exp{−Mε2‖γ‖21

256‖γ‖22
}, 0 ≤ ε ≤ 16‖γ‖22

‖γ‖∞‖γ‖1

2 exp{−Mε‖γ‖1
16‖γ‖∞ }, ε ≥ 16‖γ‖22

‖γ‖∞‖γ‖1 ,

where

γ = γ(v) :=


‖v0‖22
‖v1‖22

...
‖vK−1‖22

 ∈ RK .

As we will be frequently concerned with applications
where ε is small, let us consider the first of the cases given in
the right hand side of the above bound. (It can be shown [11]
that this case always permits any value of ε between 0 and
16√
K

.) We define

Γ = Γ(v) :=
‖γ(v)‖21
‖γ(v)‖22

=
(‖v0‖22 + ‖v1‖22 + · · ·+ ‖vK−1‖22)2

‖v0‖42 + ‖v1‖42 + · · ·+ ‖vK−1‖42
(7)

and note that for any v ∈ RKN , 1 ≤ Γ(v) ≤ K. (This
follows from the standard relation that ‖z‖2 ≤ ‖z‖1 ≤√
K‖z‖2 for all z ∈ RK .)
The case Γ(v) = K is quite favorable because the failure

probability will decay exponentially fast in the total number
of measurements KM . In this case, we get the same degree
of concentration from the KM×KN block diagonal matrix
CK as we would get from a dense KM × KN matrix
populated with i.i.d. Gaussian random variables. This event
happens if and only if the components vk have equal energy,
i.e., if and only if

‖v0‖2 = ‖v1‖2 = · · · = ‖vK−1‖2.

On the other hand, the case Γ(v) = 1 is quite unfavorable and
implies that we get the same degree of concentration from

2All results in Section II may be extended to the case where the matrices
Ck are populated with subgaussian random variables, as in [11].

the KM ×KN block diagonal matrix CK as we would get
from a dense Gaussian matrix having size only M ×KN .
This event happens if and only if ‖vk‖2 = 0 for all but one
k. Thus, more uniformity in the values of the ‖vk‖2 ensures
a higher probability of concentration.

B. Relation to the initial state
We now note that, when applying the observability matrix

to an initial state, we will have

OKx0 = CKAKx0.

This leads us to the following corollary of Theorem 2.1.
Corollary 2.1: Fix any state x0 ∈ RN . Then for any ε ∈

(0, 16√
K

),

P (
∣∣‖OKx0‖22 − ‖AKx0‖22

∣∣ > ε‖AKx0‖22) ≤

2 exp

{
−MΓ(AKx0)ε2

256

}
. (8)

There are two important phenomena to consider in this
result, and both are impacted by the interaction of A with
x0. First, on the left hand side of (8), we see that the point
of concentration of ‖OKx0‖22 is actually around ‖AKx0‖22,
where

‖AKx0‖22 = ‖x0‖22 + ‖Ax0‖22 + · · ·+ ‖AK−1x0‖22.
For a concentration bound of the same form as Lemma 1.1,
however, we might like to ensure that ‖OKx0‖22 concentrates
around some constant multiple of ‖x0‖22. In general, for
different initial states x0 and transition matrices A, we may
see widely varying ratios ‖AKx0‖22/‖x0‖22. However, in
Section II-C, we discuss one scenario where this ratio is
predictable and fixed.

Second, on the right hand side of (8), we see that the
exponent of the concentration failure probability scales with

Γ(AKx0) =
(‖x0‖22 + ‖Ax0‖22 + · · ·+ ‖AK−1x0‖22)2

‖x0‖42 + ‖Ax0‖42 + · · ·+ ‖AK−1x0‖42
.

From the discussion in Section II-A, it follows that 1 ≤
Γ(AKx0) ≤ K. The case Γ(AKx0) = K is quite favorable
and happens when ‖x0‖2 = ‖Ax0‖2 = · · · = ‖AK−1x0‖2;
in Section II-C, we discuss one scenario where this is guar-
anteed to occur. The case Γ(AKx0) = 1 is quite unfavorable
and happens if and only if x0 6= 0 and x0 ∈ null(A).

C. Unitary system matrices
In the special case where A is unitary (i.e., ‖Au‖22 = ‖u‖22

for all u ∈ RN ), we can draw a particularly strong conclu-
sion. Because a unitary A guarantees both that ‖AKx0‖22 =
K‖x0‖22 and that Γ(AKx0) = K, we have the following
result.3

Corollary 2.2: Fix any state x0 ∈ RN and suppose that
A is a unitary operator. Then for any ε ∈ (0, 16√

K
),

P (

∣∣∣∣‖ 1√
K
OKx0‖22 − ‖x0‖22

∣∣∣∣ > ε‖x0‖22) ≤

2 exp

{
−MKε2

256

}
. (9)

3Corollary 2.2 may be relaxed in a natural way if the singular values of
A all cluster around (but may not equal) 1.



What this means is that we get the same degree of
concentration from the KM × N observability matrix OK
as we would get from a fully random dense KM × N
matrix populated with i.i.d. Gaussian random variables.
Consequently, many results from CS carry through directly,
including the following.

Corollary 2.3: Suppose that A is a unitary operator and
that KM = O(S log N

S ). Then with high probability,
1√
K
OK satisfies the RIP of order 2S, and so any S-

sparse initial state x0 may be uniquely recovered from the
measurements (3).

Beyond considering sparse signal families, this concen-
tration result can also be used to prove that finite point
clouds [14] and low-dimensional manifolds [15] in RN can
have stable, approximate distance-preserving embeddings
under the matrix OK . In each of these cases we may be
able to solve very powerful signal inference and recovery
problems with KM � N .

III. IDENTICAL RANDOM MEASUREMENT MATRICES

In this section, we consider the case where all matrices
Ck are identical and equal to some M ×N matrix C which
is populated with i.i.d. Gaussian entries having mean zero
and variance σ2 = 1

M .

A. Connection with block diagonal matrices

We can again write OK = CKAK , where this time

CK :=


C0

C1

. . .
CK−1

 =


C

C
. . .

C


(10)

and AK is as defined in (6). The matrix CK is block diagonal
with equal blocks on its main diagonal, and we have the
following bound on its concentration behavior.

Theorem 3.1: [12] Let v0, v1, . . . , vK−1 ∈ RN and define

v =
[
vT0 vT1 · · · vTK−1

]T ∈ RKN .

Suppose CK is a block diagonal matrix as in (10) populated
with Gaussian random variables having mean zero and
variance σ2 = 1

M . Then

P (
∣∣‖CKv‖22 − ‖v‖22∣∣ > ε‖v‖22) ≤2 exp{−Mε2‖λ‖21

256‖λ‖22
}, 0 ≤ ε ≤ 16‖λ‖22

‖λ‖∞‖λ‖1

2 exp{−Mε‖λ‖1
16‖λ‖∞ }, ε ≥ 16‖λ‖22

‖λ‖∞‖λ‖1 ,

where

λ = λ(v) :=


λ1

λ2

...
λmin(K,N)

 ∈ Rmin(K,N)

and {λ1, λ2, . . . , λmin(K,N)} are the first (nonzero) eigenval-
ues of the K ×K matrix V TV , where

V = [v0 v1 · · · vK−1] ∈ RN×K .

Let us again consider the first of the cases given in the
right hand side of the above bound. (Once again, this case
permits any value of ε between 0 and 16√

min(K,N)
.) We define

Λ(v) :=
‖λ(v)‖21
‖λ(v)‖22

(11)

and note that for any v ∈ RKN , 1 ≤ Λ(v) ≤ min(K,N).
Moving forward, we will assume for simplicity that K ≤ N ,
but this assumption can be removed without much compli-
cation.

The case Λ(v) = K is quite favorable and implies that we
get the same degree of concentration from the KM ×KN
block diagonal matrix CK as we would get from a dense
KM × KN matrix populated with i.i.d. Gaussian random
variables. This event happens if and only if λ1 = λ2 = · · · =
λK , which happens if and only if

‖v0‖2 = ‖v1‖2 = · · · = ‖vK−1‖2

and 〈vk, v`〉 = 0 for all 0 ≤ k, ` ≤ K − 1 with k 6= `.
On the other hand, the case Λ(v) = 1 is quite unfavorable
and implies that we get the same degree of concentration
from the KM × KN block diagonal matrix CK as we
would get from a dense Gaussian matrix having only M
rows. This event happens if and only if the dimension
of span{v0, v1, . . . , vK−1} equals 1. Thus, comparing to
Section II-A, uniformity in the norms of the vectors vk is no
longer sufficient for a high probability of concentration; in
addition to this we must have diversity in the directions of
the vk.

B. Relation to the initial state

We again note that, when applying the observability matrix
to an initial state, we will have

OKx0 = CKAKx0.

This leads us to the following corollary of Theorem 3.1.
Corollary 3.1: Fix any state x0 ∈ RN . Then for any ε ∈

(0, 16√
K

),

P (
∣∣‖OKx0‖22 − ‖AKx0‖22

∣∣ > ε‖AKx0‖22) ≤

2 exp

{
−MΛ(AKx0)ε2

256

}
. (12)

Once again, there are two important phenomena to con-
sider in this result, and both are impacted by the interaction
of A with x0. First, on the left hand side of (12), we see
that the point of concentration of ‖OKx0‖22 is again around
‖AKx0‖22. Second, on the right hand side of (12), we see that
the exponent of the concentration failure probability scales
with Λ(AKx0), which is determined by the eigenvalues of
the K ×K Gram matrix V TV , where

V =
[
x0 Ax0 · · · AK−1x0

]
∈ RN×K .

From the discussion in Section III-A, it follows that 1 ≤
Λ(AKx0) ≤ K. The case Γ(AKx0) = K is quite favorable
and happens when ‖x0‖2 = ‖Ax0‖2 = · · · = ‖AK−1x0‖2



and 〈Akx0, A
`x0〉 = 0 for all 0 ≤ k, ` ≤ K − 1 with k 6= `.

The case Λ(AKx0) = 1 is quite unfavorable and happens
the dimension of span{x0, Ax0, . . . , A

K−1x0} equals 1.

C. Unitary system matrices

In the special case where A is unitary, we know that
‖AKx0‖22 = K‖x0‖22. However, a unitary system matrix
does not guarantee a favorable value for Λ(AKx0). Indeed,
if A = IN×N we obtain the worse case value Λ(AKx0) = 1.
If, on the other hand, A acts as a rotation that takes a state
into an orthogonal subspace, we will have a stronger result.

Corollary 3.2: Fix any state x0 ∈ RN and suppose that A
is a unitary operator. Suppose also that 〈Akx0, A

`x0〉 = 0 for
all 0 ≤ k, ` ≤ K − 1 with k 6= `. Then for any ε ∈ (0, 16√

K
),

P (

∣∣∣∣‖ 1√
K
OKx0‖22 − ‖x0‖22

∣∣∣∣ > ε‖x0‖22) ≤

2 exp

{
−MKε2

256

}
. (13)

This result requires a particular relationship between A
and x0, namely that 〈Akx0, A

`x0〉 = 0 for all 0 ≤ k, ` ≤
K−1 with k 6= `. Thus, given a particular system matrix A, it
is possible that it might hold for some x0 and not others. One
must therefore be cautious in using this concentration result
for CS applications (such as proving the RIP) that involve
applying the concentration bound to a prescribed collection
of vectors [8]; one must ensure that the “orthogonal rotation”
property holds for each vector in the prescribed set. We defer
a deeper discussion of this topic to a subsequent paper.

IV. EXAMPLE: ESTIMATING THE INITIAL STATE IN A
DIFFUSION PROCESS

We now use a simple case study to illustrate some of the
phenomena raised in the previous sections.

A. System model

We consider the problem of estimating the initial state in
a system governed by the diffusion equation

∂x

∂t
= ∇ · (D(p)∇x(p, t))

where x(p, t) is the concentration, or density, at position p
at time t, and D(p) is the diffusion coefficient at position p.
If D is independent of position, then this simplifies to

∂x

∂t
= D∇2x(p, t).

The boundary conditions can vary according to the surround-
ings of the domain Ω. If Ω is bounded by an impermeable
surface (e.g., a lake surrounded by the shore), then the
boundary conditions are n(p) · ∂x∂p

∣∣∣
p∈∂Ω

= 0, where n(p)

is normal to ∂Ω at p.
We will work with an approximate model discretized

in time and in space and having one spatial dimension.
We let p =

[
p(1) p(2) · · · p(N)

]T
be a vector of

equally spaced locations with spacing ∆s, and x(p, t) =

Time (s) Position (a.u.)
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Fig. 1. Simulation of diffusion equation with sparse initial state.

[
x(p(1), t) x(p(2), t) · · · x(p(N), t)

]T
. Then a first

difference approximation in space gives the model

ẋ(p, t) = Gx(p, t) (14)

where G represents the discrete Laplacian:

G =
D

∆2
s


−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −1

 .
To obtain a discrete time model, we choose sampling time

Ts, and let the vector xk = x(p, kTs) be the concentration
at positions p(1), p(2), . . . , p(N) at sampling time k. Using
a first difference approximation in time, we have

xk = Axk−1

where A = I +GTs.
For all experiments in this section we take D = 1, ∆s = 1,

N = 100, and Ts = 0.1. An example simulation of this
system is shown in Figure 1, where we have initialized the
system with a sparse initial state x0 containing unit impulses
at S = 10 randomly chosen locations.

From compressive measurements of this system, it is
sometimes possible to recover the initial state. In Section IV-
C, we provide several demonstrations of this fact, and we
discuss the effects of choosing different times at which to
measure the system. Before dealing with the problem of
recovery, however, we start in Section IV-B by examining the
concentration behavior of this system. Because this system
is not unitary and we cannot directly invoke Corollaries 2.2
or 2.3, we explore the connection between concentration and
recovery numerically.

B. Concentration behavior with compressive measurements

As we have discussed in Sections II-A and III-A, a
favorable situation occurs when repeated applications of the



Fig. 2. Concentration behavior for various sparse initial states x0 having
S = 10 random positive entries in random locations. (a) Decay of
‖Akx0‖2. (b) Concentration of ‖AKx0‖22 with K = 20 and M = 2.
(c) Histogram of Γ(AKx0) values. (d) Concentration of ‖OKx0‖22 when
independent measurement matrices are used.

transition matrix A do not significantly change the energy
of the state. Because A is not unitary for this system, it
will preserve the norm of some vectors more than others.4

Figure 2(a) plots the norm ‖Akx0‖2 as a function of k for
various random sparse vectors x0 ∈ RN having S = 10
random positive entries in random locations. Initially, each
vector x0 is normalized to have unit energy. For values of k
in this range, we see that the energy of the initial vector is
mostly preserved. This leads to a reasonable concentration
for values of ‖AKx0‖22; we plot a histogram of this quantity
in Figure 2(b), where we have set K = 20 and M = 2 and
generated 1000 random sparse signals. This also leads to
favorable values of Γ(AKx0), which are relatively close to
the best possible value of K = 20 as shown in the histogram
of Figure 2(c). In contrast, the lack of diversity in Akx0

over time leads to poor values for Λ(AKx0), which tend to
cluster around 1.2. This suggests that such a diffusion system
should be measured using matrices Ck that are generated
randomly and independently of each other. Figure 2(d) shows
the resulting concentration of ‖OKx0‖22 when independent
measurement matrices are used.

While we have considered generic sparse vectors above,
the behavior of A on any particular initial state can depend
very much on that particular state. In Figure 3, we repeat all
of the above experiments, again with random sparse vectors
x0 ∈ RN having S = 10 random positive entries, but where
the nonzero entries all occur in one “block” in the middle of
the vector (centered around position N/2). We see that the
values of Γ(AKx0) tend to be even higher, but the point of
concentration for ‖OKx0‖22 is markedly different.

Finally, we recall that properties such as the RIP require
favorable concentration behavior for any sparse initial state.

4This can be understood more formally by considering the eigende-
composition of A. In this case, since A is nearly a circulant matrix,
it is approximately diagonalized by the Discrete Fourier Transform. Its
eigenvalues decay from 1 as the frequency of the eigenvector increases.

Fig. 3. Concentration behavior for various sparse initial states x0 having
S = 10 random positive entries in one contiguous block at the center of
the vector. (a) Decay of ‖Akx0‖2. (b) Concentration of ‖AKx0‖22 with
K = 20 and M = 2. (c) Histogram of Γ(AKx0) values. (d) Concentration
of ‖OKx0‖22 when independent measurement matrices are used.

Fig. 4. Concentration behavior for various sparse initial state x0 having
±1 entries. (a) Decay of ‖Akx0‖2. (b) Concentration of ‖OKx0‖22 when
independent measurement matrices are used.

We create a “high frequency” sparse signal by setting x0 =
0 everywhere except position N/2, where it equals 1/

√
2,

and position (N/2) + 1, where it equals −1/
√

2. (Although
this vector has a negative entry and is not itself a plausible
initial state, it is relevant for applications such as proving the
RIP, where we must consider differences between plausible
initial states.) As shown in Figure 4, this vector has a much
faster decay of ‖Akx0‖2 and the point of concentration for
‖OKx0‖22 is therefore quite small.

C. State recovery from compressive measurements

To address the problem of recovering the initial state x0,
let us consider the situation where we collect measurements
only of x0 itself. We set M = 32 and construct measurement
matrices C0 of size 32 × 100 that are populated with
i.i.d. Gaussian entries having variance 1

32 . We then generate
random sparse vectors x0 with varying sparsity levels S, and
for each of these we collect the measurements y0 = C0x0.
From these measurements, we attempt to recover the initial
state using the canonical `1 minimization problem from CS:

x̂0 = arg min
x∈RN

‖x‖1 subject to yk = CkA
kx (15)

with k = 0. (In the next paragraph, we repeat this experiment
for different k.) In Figures 5(a) and 5(b) we plot, as a



Fig. 5. Signal recovery from M = 32 compressive measurements at time
k = 0. (a),(b) Percent of trials with perfect recovery of S-sparse signals,
where the signals have random entries in (a) random and (b) clustered
locations. (c),(d) Recovery error of signals with sparsity S = 10, where
the signals have random entries in (c) random and (d) clustered locations.

k 0 10 100 10,11,12,13†

rand mean(‖CkA
kx0‖22) 1.00 0.26 0.13 0.25

std(‖CkA
kx0‖22) 0.25 0.08 0.04 0.07

block mean(‖CkA
kx0‖22) 1.00 0.68 0.41 0.66

std(‖CkA
kx0‖22) 0.25 0.19 0.11 0.18

±1 mean(‖CkA
kx0‖22) 1.00 0.025 0.0008 0.021

std(‖CkA
kx0‖22) 0.24 0.007 0.0002 0.005

TABLE I
MEASUREMENT VECTOR ENERGIES FOR THREE TYPES OF SPARSE

SIGNALS x0 .†IN THE FINAL COLUMN, WE LIST CONCENTRATION VALUES

FOR THE CONCATENATION [(C10A10x0)T · · · (C13A13x0)T ]T .

function of S, the percent of trials (with x0 and C0 randomly
chosen in each trial) in which the initial state is recovered
perfectly, i.e., x̂0 = x0. The first plot corresponds to sparse
vectors generated according to the same model used in
Figure 2 (i.e., with random positions) and the second plot
corresponds to sparse vectors generated according to the
same model used in Figure 3 (i.e., with a cluster of nonzeros).
Naturally, we see that states x0 with higher sparsity levels
S are more difficult to recover. In Figures 5(c) and 5(d), we
consider only states with sparsity S = 10, introduce white
noise in the measurements with standard deviation 0.05, use
a noise-aware version of the `1 recovery algorithm [5], and
plot a histogram of the recovery errors ‖x̂0 − x0‖2. Finally,
in Table I, we provide a small collection of concentration
results for this measurement operator, listing the mean and
standard deviation of ‖C0x0‖22 for the same three types of
signals x0 considered in Section IV-B: sparse signals with
S = 10 having random values and positions, sparse signals
with S = 10 having random values in a cluster, and a fixed
± 1√

2
signal with S = 2.

As can be seen in Figure 1, the diffusion process causes
a profound “spreading” of the spikes that should make
them difficult to distinguish as time evolves. What seems
intuitively clear is that measurements should be taken as

Fig. 6. Signal recovery from M = 32 compressive measurements at time
k = 10.

Fig. 7. Signal recovery from M = 32 compressive measurements at time
k = 100. In each of panels (c) and (d), a small number of trials are omitted
from the histogram in which recovery error is as large as 5.5.

soon as possible after the diffusion begins. For example, we
repeat the recovery experiments described in the previous
paragraph, but with M = 32 compressive measurements only
of state x10 or only of state x100; that is, for k = 10 or
k = 100, we collect only the measurements yk = Ckxk
and solve the recovery program (15) (or the noise-aware
version) to recover x0. The results are plotted in Figures 6
and 7, respectively. When measuring x10 we see a surprising
improvement in noise-free recovery of the clustered sparse
signals, but this improvement vanishes when measuring x100.
More significantly, however, we see that recovery of x10 and
then x100 are progressively less and less robust to measure-
ment noise. While we cannot efficiently verify whether our
sensing matrices meet the RIP, this increased noise sensitivity
is likely due directly to the poor concentration the system
exhibits for certain high-frequency vectors, as demonstrated
in Figure 4. This is also evident in Table I, where the
three signal types exhibit markedly different concentration
behavior in ‖CkAkx0‖22 as k grows.



Fig. 8. Signal recovery from M = 8 compressive measurements at each
of times k = 10, 11, 12, 13.

Of course, it is not necessary to take all measurements
of this system at one time instant. What may not obvious
a priori is how spreading the measurements in time may
impact the signal recovery. In Figure 8 we repeat the signal
recovery experiments when taking M = 8 measurements of
4 successive states xk for k = 10, 11, 12, 13. (The random
elements of the measurement matrices C10, C11, C12, C13

were generated with variance 1
32 for a fair comparison with

Figures 5-7 regarding noise tolerance, and the recovery
program (15) and its noise-aware version were adapted to
incorporate constraints from all four measurement vectors
y10, y11, y12, y13.) Based on the results of Section IV-B,
we do not expect dramatic changes in ‖Akx0‖2 over this
range of k, and so the overall recovery performance should
not be much different compared to, say, taking M = 32
measurements at the single instant k = 10. By comparing the
second and the fourth columns of Table I, and by comparing
Figure 6 to Figure 8, we see that the overall concentration
and recovery performance is indeed quite similar, and so
there is no significant penalty that one pays by slightly
spreading out the measurement collection process in time,
as long as a different random measurement matrix is used
at each time instant.5 Though we omit the results, the same
similarities have been observed when measuring states xk for
k = 100, 101, 102, 103 and comparing recovery performance
to Figure 7.

V. CONCLUSIONS

In this paper, we have built upon CS principles to demon-
strate that the certain initial states of certain high-dimensional
linear systems can be recovered from very small numbers
of randomized measurements. Our analysis centered around
the principle of concentration of measure, and we studied
the signal and system properties that are most desirable
in ensuring favorable concentration behavior. In particular,

5In fact, in all trials of this experiment with 4 observation times, the
observed value of Γ was always between 3.9 and 4.0 (which is the best
possible).

when using different measurement matrices at each time
instant, it is most favorable when the energy of the state
is slowly changing. Moreover, when using identical mea-
surement matrices at each time instant, it is desirable that
the states traverse various subspaces of RN . As discussed
in Section I, other inference problems aside from signal
recovery (such as detection or classification) could also be
solved from the random, compressive measurements, and
following [10], the performance of such techniques could
be studied using the concentration of measure bounds that
we provide.

In ongoing work, we are studying the implications of
these results in systems beyond the diffusion example we
have given here. One potential future application may be in
helping optimize the sensor placements for seismic imaging,
in which sparse representations are currently employed to
improve reconstruction [16].
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