
Topology Optimization in Cellular Neural Networks

Varsha Bhambhani and Herbert G. Tanner

Abstract— This paper presents a constrained combinatorial
optimization approach to the design of cellular neural networks
with sparse connectivity. The method applies to cases where
maintaining links between neurons incurs a cost, which could
possibly vary between these links. The interconnection topology
of the cellular neural network is diluted without significantly
degrading its performance, the latter quantified by the average
recall probability for the desired patterns engraved into its
associative memory. The dilution process selectively removes
the links that contribute the least to a metric related to the
size of system’s desired memory pattern attraction regions.
The metric used here is the magnitude of the network’s nodes’
stability parameters, which have been proposed as a measure
for the quality of memorization. We demonstrate by means of an
example that this method of network dilution produces cheaper
associative memories that in general trade off performance for
cost, and in many cases the performance of the diluted network
is on par with the original system.

Index Terms— Cellular neural networks, stability parame-
ters, sparse associative memory.

I. INTRODUCTION

A cellular neural network (CNN) is a nonlinear dynamical
system, implementing an associative memory, where neuron
interactions are limited to the neighboring units only [1].
Research on the design and synthesis of these types of
networks has gained increasing attention in recent years
because of their topology being relatively sparse, which
makes them a promising choice for very-large-scale inte-
gration implementations. Several synthesis procedures for
designing symmetric/non-symmetric neural network have
been proposed [2]–[4], and one of the main directions of
current research on the topic is the stability behavior of these
systems in the presence of time delays (see for example [5],
[6]), which is however beyond the scope of this paper.

Strengths and weaknesses of several network design tech-
niques are discussed in [2]. The analysis results shown
in [3] allow one to locate in a systematic manner all
equilibrium points of the neural network and to determine
the stability properties of the equilibrium points. Different
design methods are generalized in [7] in a design proce-
dure for neural networks with sparse connectivity. These
results guarantee that the synthesized neural networks have
predetermined sparse interconnection structures and store an
almost arbitrary set of desired memory patterns as reachable
memory vectors. The authors show that a sufficient condition
for the existence of such a sparse neural network design
is self feedback for every neuron in the network. Critical
network issues like robustness and invariance to perturbation
have been addressed in [8] where the authors provide upper

The authors are with the Cooperative Robots Laboratory, Department of
Mechanical Engineering, University of Delaware, Newark, Delaware. Their
work is supported by NSF-IIS award #0822845.

bounds for the perturbations of parameters under which
desired memories stored in a neural network are preserved.
This type of information is of great practical interest during
the implementation process of such networks. In [4] the
problem of realizing associative memories by designing a
CNN that can store given binary vectors with improved
performance is formulated as a constrained optimization
problem, which can be reduced to a generalized eigenvalue
problem (GEVP) [9]. Networks designed using this method
exhibit less spurious patterns and higher recall probabilities
[4]. Similar interior point methods are also applied to the
problem of synchronization in chaotic delayed neural net-
works [18], [19].

The quality of memorization in associative memories is
typically measured by the average recall probability [4], [8],
which is an approximation of the probability that the network
will recall correctly one of the patterns stored in its memory,
if presented with a version of this pattern contaminated
by noise. This number is defined as the ratio of number
of recovered memory patterns (perturbed initial condition
vectors which result in same output as the stored memory
vector) to the total number of perturbed initial condition
vectors. Although this quantification method measures the
network’s performance accurately and unambiguously, it can
only be applied after the network has been designed and
tested on a significant number of test inputs. In other words,
it does not allow the designer to predict the network’s
performance without experimentation.

The concept of stability parameters appears in some
earlier work on associative memory networks [10]–[12], as
a measure of quality of memorization. Specifically, it has
been demonstrated [13], [14] that the sign as well as the
magnitude of these numbers are related to the size of the
attraction regions of the desired memory patters. Although
the applicability of this concept as a universal measure of
memorization quality, (specifically, the use of their size as a
direct measure of the absolute sizes of the attraction regions)
has long been debated [15], these parameters are generally
accepted as a metric for the network’s performance [16].

Reported approaches on the design of CNNs (without
time delays) start with, and build on some given network
topology. The choice of this starting point is justified from
the fact that typically the physical platform on which the
network is implemented is fixed. In this paper, we raise
the question of how could the design process be different
if the network topology was also part of the design. It
could be the case that implementing and maintaining certain
neuron connections might be more expensive than others,
and then one may be forced to strike a balance between
connectivity and performance. Simple stability analysis of

neural networks implementing associative memories suggests
similar links between the network of connections and the
stability of the dynamical system as in consensus networks.
In the case of neural networks, however, the topologies used
are typically standard: either complete graphs (in Hopfield
networks) or grid-like structures (in CNNs). Yet, available
design methodologies do not place specific conditions on
the network’s structure. In addition, the cost of communica-
tion (delayed or otherwise) between neurons is commonly
ignored. But if neurons communicate at a nontrivial cost,
there is benefit in designing networks that perform just as
well, but are less expensive.

This paper presents an approach to the optimization of the
network topology of CNNs in which communication links be-
tween neurons may incur variable cost. We selectively “trim”
network links in an effort to trade network performance for
smaller communication cost. Based on existing design tools,
we perform combinatorial optimization on a portion of a
CNN that includes the most expensive interconnection links.
This produces a sparser CNN, the performance of which can
be comparable to the original network. This performance is
quantified in terms of the network recall probability, and in
the proposed optimization algorithm approach is captured by
the neural network’s stability parameters.

II. PRELIMINARIES

A two-dimensional continuous time zero-input CNN con-
sisting of n = MN cells in a M×N array, as first introduced
by Chua and Yang [1], can be described by

ẋij = −xij +
∑

(k,l)∈Nr(i,j)

Wij,klykl +dij , yij = sat (xij) ,

where 1 ≤ i ≤ M , 1 ≤ j ≤ N , and sat (xij) ,
1
2 (|xij + 1| − |xij − 1|) . Here xij and yij are the state and
output of the (i, j)th cell respectively, and Nr(i, j) is an
r-neighborhood of the (i, j)th cell defined as Nr(i, j) ,
{(k, l) : max {|k − i| , |l − j|} ≤ r}, for 1 ≤ i ≤ M, 1 ≤
j ≤ N . This system can be expressed as

ẋ = −x+ T sat (x) + b, (1a)
y = sat (x) (1b)

where x = [x11, x12, . . . , x21, . . . , xMN]T ∈ Rn
is the stack vector of all neuron states , y =
[y11, y12, . . . , y21, . . . , yMN]T ∈ Hn is the output vector
(Hn is the n-dimensional hypercube [−1,+1]n), T = [Tij] ∈
Rn×n is the network connection weight matrix, b ∈ Rn is the
network’s bias vector and for vector arguments, the saturation
function is defined elementwise.

Let Bn denote the set of bipolar vectors in Hn, namely
those whose elements are either +1 or −1. For i = 1, . . . , n,
the initial condition vectors of (1) should always satisfy
|xi(0)| ≤ 1. The interconnection topology of the network
can be described by an adjacency matrix S, and thus a
weight Tij is non-zero only if Sij = 1. Vector α ∈ Hn

is a memory vector for (1) if the latter has an asymptotically
stable equilibrium point β ∈ Rn such that α = sat (β) [1].

The synthesis problem for a CNN can be stated as follows:
Problem 1 (Synthesis): Given a CNN (1), implemented on

network expressed by an adjacency matrix S, along with the
set of desired bipolar memory vectors α1, . . . αm ∈ Bn,
determine the network connection weights Tij and bias
parameters bi so that the obtained neural network can store
all desired memory patterns as reachable memory vectors.

The adjacency matrix S which determines which Tij ,
typically encodes a lattice structure and can be selected
arbitrarily as long as certain conditions are satisfied [1], [3],
[4]: If α ∈ Bn and β = Tα+ b are such that

αiβi = αi
(n∑
j=1

Tijαj + bi
)
> 1, ∀i = 1, . . . , n, (2)

then (α, β) is a pair of a memory vector and an asymptoti-
cally stable equilibrium point of system (1). Also if α ∈ Bn
and β = Tα + b are such that for any i = 1, . . . , n,
αiβi = αi

(∑n
j=1 Tijαj + bi

)
< 1, then α ∈ Bn cannot

be a memory vector. System (1) is globally stable if T is
symmetric.

In addition to aforementioned stability criteria, specific
stability and robustness properties for these networks are
established in terms of the elements of the network’s weight
matrix T and bias vector b [1], [3], [4]:

Let α ∈ Bn be a memory vector of system (1) and let
k ≥ 1 be an integer. If T̃ = T − In and b satisfy

αi

 n∑
j=1

(T̃ijαj + bi)

 > 2(k − 1) max
1≤j≤n

∣∣∣T̃ij∣∣∣ , (3)

for i = 1, . . . , n, then any binary vector α∗ ∈ Bn such that
1 ≤ h(α∗, α) ≤ k (h(α∗, α) ,

∑
i |α∗i − αi| denotes the

Hamming distance) has the following properties:
1) α∗ is not a memory vector (asymptotically stable

equilibrium point for (1)).
2) if x(0) = α∗ and α∗i 6= αi, then xi(t) converges to αi.
Satisfying (3) with large k increases both the attractivity

and the robustness of the stored memory vector α ∈ Bn and
decrease the probability of existence of spurious patterns in
vertices near α [4].

Problem 1 can be formulated formulated as a GEVP [4].
For i, j = 1, . . . , n, and k = 1, . . . ,m,

min(−δ), s.t. (4a)
(−δ)diag[2q1, . . . , 2qn]− diag[−p1, . . . ,−pn] > 0 (4b)

α
(k)
i

 n∑
j=1

T̃ijα
(k)
j + bi

− pi > 0, (4c)

qi − T̃ij > 0, (4d)

T̃ij + qi > 0, (4e)

T̃ii = 0, , (4f)

T̃ij = T̃Tij = T̃ij |S (4g)

L < qi < U, (4h)

where pi and qi for i = 1, . . . , n are additional slack

variables used to cast the design problem as a linear matrix
inequality (LMI) [17], and L and U are the lower and upper
bounds for the design variables in the GEVP.

In this paper we quantify the quality of memorization
in the network in terms of the magnitude of the stability
parameters Kiµ defined as:

Kiµ = α
(µ)
i hi =

α
(µ)
i

∑
j cijα

(µ)
j

||ci||2
, (5)

where cij = Tij , ‖ci‖ =
√∑

j c
2
ij , and superscipt (·)(µ)

indexes the set of desired memory vectors. The stability
parameters Kiµ, (one for each pair of neuron node and
memory vector) are numbers which have been proposed
as a measure of quality of memorization and it has been
hypothesized that they are linked to the size of the attraction
regions of the neural network [12], [15], [16]. The stability
parameters and the degree of symmetry of connection matrix
control the system dynamics and the domain sizes. Positive
values of stability parameters indicate stability of a pattern.

The problem addressed in this paper is the following
variant of Problem 1:

Problem 2 (Topology optimization): Given (1),
implemented on network expressed by a weighted graph
with adjacency matrix Ŝ, with the set of desired bipolar
memory vectors α1, . . . αm ∈ Bn, determine the connection
weights Tij and bias parameters bi of a subnetwork of S,
so that this subnetwork stores all desired memory patterns
as reachable memory vectors, and recalls them (almost) as
well as the complete network.

In this paper, the performance metric is formulated using
the values of the neural network’s stability parameter val-
ues. The design process includes an optimization stage, in
which the high cost edges that contribute the least to the
engraving of the desired patterns on the network’s memory,
are selectively trimmed.

III. DILUTION OF NETWORK CONNECTIVITY

A CNN can be viewed as a collection of sub-networks
that are linked to each other through communication links.
We assume that communication incurs a cost, and in a
particular scenario of interest, information flow across sub-
networks is more expensive compared to communication
within each subnetwork. In this case, one may be interested
in minimizing communication cost, while maintaining the
functionality and performance of the whole network above
a certain threshold.

In this paper, reducing communication cost is achieved
by trimming those expensive neuron links which do not
contribute significantly to the ability of the network to re-
trieve its memorized information. The communication costs
are captured by the weights of the weighted adjacency
matrix Ŝ. Given the (unweighted) adjacency matrix S of the
CNN, along with the set of desired bipolar memory vectors
α1, ...αm ∈ Bn, the design process begins by determining
the network parameters Tij and bi through the solution of
the GEVP (4). The resulting network maximizes the recall

probability of the patterns it has been designed for, without
considering the cost of using the different network links. The
next step is to dilute the connectivity of S, by judiciously
removing some of the high cost links identified in Ŝ, in
a way so that the quality of memorization is not severely
affected. Balancing performance against communication cost
is achieved through (combinatorial) optimization over the
network links, subject to the stability constraints stated in
Section II.

The optimization process is iterative. For a given (inter-
mediate) topology S, the algorithm determines the neural
network weights Tij for i, j = 1 . . . , n and biases b, and
based on the selected patterns α(µ)

i for µ = 1, . . . ,m to be
memorized, an n ×m stability parameter matrix is formed
by repeated application of (5): K = [Kiµ]i=1,...,n;µ=1,...,m.
For the prescribed patterns α1...αm to be stored effectively
in the network’s memory, all stability parameters Kiµ must
be nonnegative and as large as possible. For the network
topology encoded in S, the value of the following objective
function is evaluated:

K̄ =
n∑
i=1

m∑
µ=1

Kiµ. (6)

Thus K̄, being the sum of all nodes’ stability parameters for
all chosen memory vectors, quantifies the collective ability
of the network to recall all desired memories.

Remark 1: Several performance metrics have been ex-
plored as alternatives to (6), based on different norms of
the stability parameter matrix K, such as the minimum
row (or column) sums, the (absolute) minimum element
of K, etc. When the average recall probability of each
design was evaluated, it was determined that the sum of all
stability parameters captured more accurately the ability of
the network to recall memory patters.

On the other hand, a naive implementation of a “branch-
and-bound” approach, where links are divided into “promis-
ing” and “not-promising” for deletion groups according to
their associated K̄ value, and only the “promising” possi-
bilities are explored in the subsequent steps, will generally
fail. This is because due to the combinatorial nature of the
problem, an edge whose sole deletion has an adverse effect
on the stability parameters may even improve the value of
K̄ when combined with additional edge removals.

For a given cost threshold ν, and performance threshold
κ, the high-cost edges that are candidates for deletion are
identified in the residual adjacency matrix

R =
1
2

(
sign(Ŝ − νS) + S

)
,

where the sign function is evaluated element-wise on the
matrix argument. For every nonzero (i, j) element in R, we
remove the associated (i, j) edge from S. If (3) is satisfied
then we store the resulting value of K̄. The high-cost edge
associated with the highest stored K̄ value is marked for
deletion, and the step is repeated for the topology S′, Ŝ′ in
which neurons i and j are not linked.

The process for evaluating the edges which are candidate

Algorithm 1 Topology optimization

Require: Matrices α, S, Ŝ, constants ν, κ.
Ensure: Matrix A of K̄ values for each edge that may be

removed.
1: R← 1

2

(
sign(Ŝ − νS) + S

)
.

2: n← rowlength(α)
3: m← columnlength(α)
4: A← [0]n×m
5: C ← [0]n×m
6: while max(R) 6= 0 do
7: For each (i, j) such that R(i, j) 6= 0, do
8: S′ ← {S : S(i, j)← 0, S(j, i)← 0}
9: Compute T and b, given S′ and α(µ)

10: K̄ ←
∑n
i=1

∑m
µ=1Kiµ

11: for µ = 1 to m do
12: for t = 1 to n do
13: C(t, µ)← α

(µ)
t

(∑n
j=1 Ttjα

(µ)
j + bt

)
14: end for
15: end for
16: if K̄ > κ ∧ minC > 1 then
17: A(i, j)← K̄ ; A(j, i)← K̄
18: end if
19: R(i, j)← 0; R(j, i)← 0
20: end while

for deletion is outlined using pseudo-code in Algorithm 1.
Upon completion, Algorithm 1 provides the (nonzero)

performance indices of the network produced after each
potential expensive edge which may be trimmed. The (i, j)
edge with the highest K̄ value in A is removed from the
network and the process is repeated until the while loop of
Algorithm 1 is no longer executed (R is a matrix of zeros).
Then either all edges with cost above the threshold ν are
removed, or their removal violates the stability condition (2),
or results in an unacceptable performance metric. Although,
in general, performance deteriorates as more neuron links
are removed, it is possible that one may actually increase
the objective function using fewer network connections.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70
Three sub networks connected by high cost edges

Fig. 1. A CNN interconnection structure where high cost edges are stretched
and highlighted

IV. A DESIGN EXAMPLE AND SIMULATIONS

As an example, and proof of efficiency of suggested
method, we use a CNN that is made up of n = 24 cells
The schematic of the network topology is shown in Fig. 1.
As can be seen, the network is divided into three small sub-
networks which are linked by costly edges marked by solid
lines. These costs are represented in form of a weighted
adjacency matrix Ŝ in eq. (7) such that the costly edges
have a higher weight.

Ŝ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 2 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 1 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0
0 1 1 2 0 0 0 1 0 1 0 0 0 2 2 2 0 0 0 0 0 0 0 0
0 0 2 1 1 0 0 0 2 0 1 0 0 0 2 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 2 2 2 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 2 2 2 0 0 0 1 0 1 0 0 0 1 1 2 0 0
0 0 0 0 0 0 0 0 2 1 1 0 0 0 2 0 1 0 0 0 2 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 1 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 2 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7)

The binary patterns chosen as memory vectors are shown
in Fig. 2. To keep things simple, we first consider only top
four memory patterns as input vectors and test our proposed
method. Each memory vector corresponds to a 6 × 4 array
with black and white boxes represented numerically by −1
and 1 respectively, and is read left to right from top left
corner to produce a single column, stack vector of binary
values. The network parameters namely the bias vector b
and the weight matrix T = T̃ + In, are obtained by solving
the GEVP with the bounds in system (4) set to L = 1 and
U = 10.

To reduce the communication cost, connection edges from
the given set of costly edges marked by solid lines in Fig. 1
are considered for possible removal. These edges can be
numerically identified by setting a cost threshold ν and
evaluating the residual matrix R = 1

2

(
sign(Ŝ − νS) + S

)
.

Successive trimming of costly edges results in a different
K̄ value. Deletion of nine costly edges in the sequence
suggested by this method results in a maximum stability
parameter sum of 108.3362 in the example considered.

The performance of proposed design method is quantified
in terms of average recall probability of the neural network.
We estimate the recall probabilities by generating a set
of 50 different arrays of random noise and contaminating
to each memory vector with these arrays to produce 50
different perturbed input memory vectors for each given
memory pattern αµ. Also for i = 1, . . . , n, the perturbed
input memory vectors always satisfy |xi(0)| ≤ 1. For
each initial condition vector αµ, the corresponding set of
perturbed condition vectors are fed to the network and those
perturbed condition vectors which result in same output as
the initial condition vector are recorded. A comparison is
made between the original network model and the network
with the topology determined by the optimization algorithm

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Pattern 1

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) Pattern 2

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(c) Pattern 3

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(d) Pattern 4

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(e) Pattern 5

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(f) Pattern 6

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(g) Pattern 7

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(h) Pattern 8

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(i) Pattern 9

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

4.5

5

(j) Pattern 10

Fig. 2. Ten patterns to be stored as memory vectors

(shown in Fig. 3). It can be seen that the original network
topology has same recall probability graph as the sparser
topology derived with selective deletion of costly edges.
However with a relatively large number of deleted edges,
there is a noticeable decrease in network performance. The
objective of optimization is thus to balance communication
cost versus average recall probability.

Figure 4 shows the effect on recall probability of the CNN
parameterized by the number of edges deleted. The vertical
axis represents the average of the recall probabilities for

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

45

50

Noise factor value

A
v
e

ra
g

e
 r

e
c
a

ll
p

ro
b

a
b

ili
ty

Comparing performance of original network topology to sparser network topology for a set of 4 input vectors

original network

sparser network

Fig. 3. Network performance vs. selective deletion of edges for the original
and the optimized network. The curves are initially indistinguishable.

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Noise factor value

Av
er

ag
e

re
ca

ll p
ro

ba
bl

ity

Comparing Recall Probablities of the CNN with Successive Deletion of Edges

Original Network Topology
1 edge deleted
2 edges deleted
3 edges deleted
4 edges deleted
5 edges deleted
6 edges deleted
7 edges deleted
8 edges deleted
9 edges deleted
10 edges deleted
11 edges deleted
12 edges deleted
13 edges deleted
14 edges deleted
15 edges deleted
16 edges deleted
All edges deleted

Fig. 4. Network performance, parameterized by number of edges removed.

the four given initial condition vectors and the horizontal
axis represents the noise factor or the amplification factor
by which the set of noise is multiplied. There is always
a gradual decrease in performance as the amount of noise
injected in the pattern increases. The recall probability of
the original network design evolves with the amount of noise
very similar to that of the sparser network produced through
the topology optimization process. The additional curves
correspond to even sparser networks, and demonstrate that
reducing the connectivity further, has an observable impact
on network performance. Also if the new K̄ value is close
to the original K̄, performance is still comparable. But when
K̄ drops significantly compared to its original value, we see
a notable performance degradation.

Next we consider all ten input patterns shown in Fig. 2
to test the ability of the network to store additional patterns
with lean interconnection topologies. A comparison is made
between the original network model and the network with the
topology determined by the optimization algorithm (shown in
Fig. 5) for a set of all ten input memory vectors. Simulation
results again show that the original network topology has
same recall probability graph as the sparser topology derived
with selective deletion of costly edges. This proves the
validity of the above proposed method in presence of larger
set of input data to be stored. It is also observed that the

number of input vectors to be stored is increased, the recall
probability of the network decreases gradually and it is able
to tolerate less noise (Fig. 6). This is to be expected, since
more attractors now share the same area of the state space;
the region of attraction for each one of these stable equilibria
is reduced.

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

45

50

Noise factor value

A
v
e
ra

g
e
 r

e
c
a
ll

p
ro

b
a
b
ili

ty

Comparing performance of original network topology to optimal network topology for a set of 10 input vectors

Original network topology

Sparser Network Topology

Fig. 5. Network performance, original to sparser comparison for 10
memory vectors.

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

45

50

Noise factor value

A
v
e

ra
g

e
 r

e
c
a

ll
p

ro
b

a
b

ili
ty

Effect of increase in input memory vectors (4 to 10) to be stored on original network

A set of 4 input vectors

A set of 10 input vectors

Fig. 6. Original network performance for different set of input vectors.

V. CONCLUSIONS

This paper suggests a topology optimization approach to
cellular neural network design, as a method for realizing
associative memories using sparser (thus more efficient, or
less expensive) networks. The optimization criterion utilizes
the stability parameters of the network as a quantitative
measure of its ability to recall patterns contaminated with
different levels of noise. These stability parameters have been
associated with the size of the attraction regions of the neural
network. Simulations and comparisons show that a sparser
topology can be achieved without significantly degrading the

performance of the network, by selectively deleting those
weights from the optimized network which contribute the
least (as measured by the arithmetic sum of the stability
parameters) to ability of the network to recall the desired
patterns.

REFERENCES

[1] L. O. Chua and L. Yang, “Cellular neural networks: theory and
applications,” IEEE Transactions on Circuits and Systems, vol. 35,
pp. 1257–1290, 1988.

[2] A. N. Michel and J. A. Farrell, “Associative memories via artificial
neural networks,” IEEE Control Systems Magazine, vol. 1990, pp. 6–
17, 1988.

[3] D. Liu and A. N. Michel, “Cellular neural networks for associative
memories,” IEEE Transactions on Circuits and Systems, vol. 40, pp.
119–121, 1993.

[4] J. Park and Y. Park, “An optimization approach to design of cellular
neural networks,” International Journal of Systems Science, vol. 31,
pp. 1585–1591, 2000.

[5] S. Arik and V. Tavsanoglu, “Global asymptotic stability analysis of
bidirectional associative memory neural networks with constant time
delays,” Neurocomputing, vol. 68, pp. 161–176, 2005.

[6] J. H. Park, “Robust stability of bidirectional associative memory neural
networks with time delays,” Physics Letters A, vol. 349, no. 6, p.
494499, 2008.

[7] D. Liu and A. N. Michel, “Sparsely interconnected neural networks for
associative memories with applications to cellular neural networks,”
IEEE Transactions on Circuits and Systems -II, Analog and Digital
Signal Processing, vol. 41, pp. 295–307, 1994.

[8] ——, “Robustness analysis and design of a class of neural networks
with sparse interconnecting structure,” Neurocomputing, vol. 12, pp.
59–76, 1996.

[9] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms
in Convex Programming. Studies in Applied and Numerical Mathe-
matics, 1994, vol. 13.

[10] S.-I. Amari, “Characteristics of randomly connected threshold-element
networks and network systems,” Proceedings of the IEEE, vol. 59,
no. 1, pp. 35–47, 1971.

[11] W. Krauth and M. Mézard, “Learning algorithms with optimal stability
in neural networks,” Journal of Physics A: Mathematical and General,
vol. 20, no. 11, pp. L745–L752, 1987.

[12] E. Gardner, “The space of interactions in neural network models,”
Journal of Physics A: Mathematical and General, vol. 21, no. 1, pp.
257–270, 1988.

[13] B. M. Forrest, “Content-addressability and learning in neural net-
works,” Journal of Physics A: Mathematical and General, vol. 21,
no. 1, pp. 245–255, 1988.

[14] T. B. Kepler and L. Abbott, “Domains of attraction in neural net-
works,” Journal de Physique, vol. 49, no. 10, pp. 1657–1662, 1988.

[15] A. C. C. Coolen, “On the relation between stability parameters
and sizes of domains of attraction in attractor neural networks,”
Europhysics Letters, vol. 16, pp. 73–78, 1991.

[16] K. E. Kurten, “Adaptive architectures for hebbian network models,”
Journal de Physique I, vol. 2, pp. 615–624, 1992.

[17] S. Boyd, L. Elghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory. Studies in Applied and
Numerical Mathematics, 1994, vol. 15.

[18] M. Liu, “Optimal exponential synchronization of general chaotic
delayed neural network: An lmi approach,” Neural Networks, vol. 22,
pp. 949–957, 2009.

[19] D. L. T. Ma, H. Zhang and Z. Wang, “A novel lmi approach to
global impulsive exponential synchronization of chaotic delayed neural
networks,” Proceedings of 48th IEEE Conference of Decision and
Control, pp. 626–631, 2009.

